Does Energy Restriction and Loss of Body Fat Account for the Effect of Intermittent Fasting on Cognitive Function?
Highlights
- An adequate negative energy balance in adults with overweight or obesity, either through IF or CR, is associated with changes in cognitive performance in clinical trials.
- Reductions in body weight, especially visceral adiposity, and improvements in insulin resistance are key factors linked to enhanced cognitive performance.
- Investigating specific types of IF or particular cognitive domains may identify mechanisms through which the eating patterns of IF can benefit neurocognitive health.
Abstract
1. Introduction
- (1)
- Is negative energy balance, regardless of how it is produced, responsible for the effects of these interventions on cognitive performance?
- (2)
- Is reduction in obesity (loss of body fat), or improvement in insulin resistance a necessary component in the effect of IF or CR on cognitive performance?
- Time-restricted eating (TRE): daily fasting intervals (e.g., 14–18 h) followed by an eating window (typically 6–10 h), with no intentional caloric reduction [17].
- Alternate-day modified fasting (ADMF): a version of ADF where fasting days include a low energy intake (~25–30% of daily needs) [20]
- The 5:2 diet (fasting mimicking diet): two non-consecutive days per week of caloric restriction (~500–700 kcal), with ad libitum eating on other days [21]
2. Methods
- “intermittent fasting” OR “TRE” OR “ADF” OR “ADMF” OR “5:2 diet” OR “CR” OR “weight loss” AND “cognition” OR “cognitive function” OR “executive function” OR “memory” OR “attention”.
- “caloric restriction” OR “energy reduction” OR “negative energy balance” AND “cognition” OR “brain function” OR “neuroplasticity” OR “BDNF” OR “hippocampus”.
- “obesity” OR “central obesity” OR “body fat” OR “visceral fat” OR “metabolic syndrome” OR “waist circumference” AND “cognitive impairment” OR “cognitive decline”.
3. Results
3.1. Question 1: Is Negative Energy Balance, Regardless of How It Is Produced, Responsible for the Effects of These Interventions on Cognitive Performance?
3.1.1. Cognitive Effects of Intermittent Fasting
3.1.2. Cognitive Effects of Caloric Restriction
3.1.3. Cognitive Effects of IF vs. CR
3.2. Question 2: Is Reduction in Obesity (Loss of Body Fat), or Improvement in Insulin Resistance a Necessary Component of the Effect of IF or CR on Cognitive Performance?
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Alsuwaidi, H.N.; Ahmed, A.I.; Alkorbi, H.A.; Ali, S.M.; Altarawneh, L.N.; Uddin, S.I.; Roueentan, S.R.; Alhitmi, A.A.; Djouhri, L.; Chivese, T. Association between Metabolic Syndrome and Decline in Cognitive Function: A Cross-Sectional Study. DMSO 2023, 16, 849–859. [Google Scholar] [CrossRef]
- Wang, X.; Ji, L.; Tang, Z.; Ding, G.; Chen, X.; Lv, J.; Chen, Y.; Li, D. The Association of Metabolic Syndrome and Cognitive Impairment in Jidong of China: A Cross-Sectional Study. BMC Endocr. Disord. 2021, 21, 40. [Google Scholar] [CrossRef]
- Gunstad, J.; Strain, G.; Devlin, M.J.; Wing, R.; Cohen, R.A.; Paul, R.H.; Crosby, R.D.; Mitchell, J.E. Improved Memory Function 12 Weeks After Bariatric Surgery. Surg. Obes. Relat. Dis. 2012, 7, 465–472. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.; Georgeaux-Healy, C.; Serpell, L. The Impact of Continuous Calorie Restriction and Fasting on Cognition in Adults without Eating Disorders. Nutr. Rev. 2024, 83, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, J.; Montgomery, A.; Grossberg, G. Intermittent Fasting and Neurocognitive Disorders: What the Evidence Shows. J. Nutr. Health Aging 2025, 29, 100480. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Facchini, S.; Stubbs, B.; Luchini, C.; Solmi, M.; Manzato, E.; Sergi, G.; Maggi, S.; Cosco, T.; Fontana, L. Weight Loss is Associated with Improvements in Cognitive Function among Overweight and Obese People: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2016, 72, 87–94. [Google Scholar] [CrossRef]
- Sharifi, S.; Rostami, F.; Babaei Khorzoughi, K.; Rahmati, M. Effect of Time-Restricted Eating and Intermittent Fasting on Cognitive Function and Mental Health in Older Adults: A Systematic Review. Prev. Med. Rep. 2024, 42, 102757. [Google Scholar] [CrossRef]
- Waki, T.; Tanaka-Mizuno, S.; Takashima, N.; Takechi, H.; Hayakawa, T.; Miura, K.; Ueshima, H.; Kita, Y.; Dodge, H.H. Waist Circumference and Domain-Specific Cognitive Function among Non-Demented Japanese Older Adults Stratified by Sex: Results from the Takashima Cognition Study. J. Alzheimer’s Dis. 2021, 73, 887–896. [Google Scholar] [CrossRef]
- Liang, F.; Fu, J.; Moore, J.B.; Zhang, X.; Xu, Y.; Qiu, N.; Wang, Y.; Li, R. Body Mass Index, Waist Circumference, and Cognitive Decline among Chinese Older Adults: A Nationwide Retrospective Cohort Study. Front. Aging Neurosci. 2022, 14, 737532. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Dugravot, A.; Shipley, M.; Brunner, E.J.; Elbaz, A.; Sabia, S.; Kivimaki, M. Obesity Trajectories and Risk of Dementia: 28 Years of Follow-up in the Whitehall II Study. Alzheimer Dement. 2017, 14, 178–186. [Google Scholar] [CrossRef]
- Uchida, K.; Sugimoto, T.; Tange, C.; Nishita, Y.; Shimokata, H.; Saji, N.; Kuroda, Y.; Matsumoto, N.; Kishino, Y.; Ono, R.; et al. Association between Abdominal Adiposity and Cognitive Decline in Older Adults: A 10-Year Community-Based Study. J. Nutr. Health Aging 2024, 28, 100175. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Hou, L.; Xia, X.; Hu, F.; Luo, S.; Zhang, G.; Dong, B. Associations of Body Mass Index, Visceral Fat Area, Waist Circumference, and Waist-to-Hip Ratio with Cognitive Function in Western China: Results from WCHAT Study. J. Nutr. Health Aging 2021, 25, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Ozato, N.; Saitou, S.; Yamaguchi, T.; Katashima, M.; Misawa, M.; Jung, S.; Mori, K.; Kawada, H.; Katsuragi, Y.; Mikami, T.; et al. Association between Visceral Fat and Brain Structural Changes or Cognitive Function. Brain Sci. 2021, 11, 1036. [Google Scholar] [CrossRef] [PubMed]
- Prehn, K.; Jumpertz Von Schwartzenberg, R.; Mai, K.; Zeitz, U.; Witte, A.V.; Hampel, D.; Szela, A.; Fabian, S.; Grittner, U.; Spranger, J.; et al. Caloric Restriction in Older Adults—Differential Effects of Weight Loss and Reduced Weight on Brain Structure and Function. Cereb. Cortex 2016, 27, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- Kapogiannis, D.; Manolopoulos, A.; Mullins, R.; Avgerinos, K.; Delgado-Peraza, F.; Mustapic, M.; Nogueras-Ortiz, C.; Yao, P.J.; Pucha, K.A.; Brooks, J.; et al. Brain Responses to Intermittent Fasting and the Healthy Living Diet in Older Adults. Cell Metab. 2024, 36, 1668–1678.e5. [Google Scholar] [CrossRef]
- Gudden, J.; Arias Vasquez, A.; Bloemendaal, M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021, 13, 3166. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, M.; Li, X. Effects of Weight Loss on Cognitive Function in Patients with Diabetes: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2023, 200, 110687. [Google Scholar] [CrossRef]
- Cai, H.; Qin, Y.; Shi, Z.; Chen, J.; Zeng, M.; Zhou, W.; Chen, R.; Chen, Z. Effects of Alternate-Day Fasting on Body Weight and Dyslipidaemia in Patients with Non-Alcoholic Fatty Liver Disease: A Randomised Controlled Trial. BMC Gastroenterol. 2019, 19, 219. [Google Scholar] [CrossRef]
- Cui, Y.; Cai, T.; Zhou, Z.; Mu, Y.; Lu, Y.; Gao, Z.; Wu, J.; Zhang, Y. Health Effects of Alternate-Day Fasting in Adults: A Systematic Review and Meta-Analysis. Front. Nutr. 2020, 7, 586036. [Google Scholar] [CrossRef]
- Deru, L.S.; Jacobsen, C.G.; Gipson, E.Z.; Graves, P.G.; Stevens, A.J.; Duncan, G.B.; Christensen, W.F.; Bailey, B.W. The Effects of Alternate-Day Fasting on Sleep and Physical Activity in Poor Sleeping Adults: A Randomized Control Trial. J. Sleep Res. 2024, 34, e14341. [Google Scholar] [CrossRef]
- Anton, S.D.; Lee, S.A.; Donahoo, W.T.; Mclaren, C.; Manini, T.; Leeuwenburgh, C.; Pahor, M. The Effects of Time Restricted Feeding on Overweight, Older Adults: A Pilot Study. Nutrients 2019, 11, 1500. [Google Scholar] [CrossRef]
- Ooi, T.C.; Meramat, A.; Rajab, N.F.; Shahar, S.; Ismail, I.S.; Azam, A.A.; Sharif, R. Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic Changes: A 3-Year Progressive Study. Nutrients 2020, 12, 2644. [Google Scholar] [CrossRef] [PubMed]
- Ooi, T.C.; Meramat, A.; Rajab, N.F.; Shahar, S.; Sharif, R. Antioxidant Potential, DNA Damage, Inflammation, Glycemic Control and Lipid Metabolism Alteration: A Mediation Analysis of Islamic Sunnah Intermittent Fasting on Cognitive Function among Older Adults with Mild Cognitive Impairment. J. Nutr. Health Aging 2022, 26, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Kretsch, M.J.; Green, M.W.; Fong, A.; Elliman, N.A.; Johnson, H.L. Cognitive Effects of a Long-Term Weight Reducing Diet. Int. J. Obes. 1997, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Witte, A.V.; Fobker, M.; Gellner, R.; Knecht, S.; Flöel, A. Caloric Restriction Improves Memory in Elderly Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 1255–1260. [Google Scholar] [CrossRef]
- Martin, C.K.; Anton, S.D.; Han, H.; York-Crowe, E.; Redman, L.M.; Ravussin, E.; Williamson, D.A. Examination of Cognitive Function during Six Months of Calorie Restriction: Results of a Randomized Controlled Trial. Rejuvenation Res. 2007, 10, 179–190. [Google Scholar] [CrossRef]
- Leclerc, E.; Trevizol, A.P.; Grigolon, R.B.; Subramaniapillai, M.; Mcintyre, R.S.; Brietzke, E.; Mansur, R.B. The Effect of Caloric Restriction on Working Memory in Healthy Non-Obese Adults. CNS Spectr. 2020, 25, 2–8. [Google Scholar] [CrossRef]
- Silver, R.E.; Roberts, S.B.; Kramer, A.F.; Chui, K.K.H.; Das, S.K. No Effect of Calorie Restriction or Dietary Patterns on Spatial Working Memory during a 2-Year Intervention: A Secondary Analysis of the CALERIE Trial. J. Nutr. 2023, 153, 733–740. [Google Scholar] [CrossRef]
- Alosco, M.L.; Galioto, R.; Spitznagel, M.B.; Strain, G.; Devlin, M.; Cohen, R.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. Cognitive Function After Bariatric Surgery: Evidence for Improvement 3 Years After Surgery. Am. J. Surg. 2014, 207, 870–876. [Google Scholar] [CrossRef]
- Miller, L.A.; Crosby, R.D.; Galioto, R.; Strain, G.; Devlin, M.J.; Wing, R.; Cohen, R.A.; Paul, R.H.; Mitchell, J.E.; Gunstad, J. Bariatric Surgery Patients Exhibit Improved Memory Function 12 Months Postoperatively. Obes. Surg. 2013, 23, 1527–1535. [Google Scholar] [CrossRef]
- Smith, K.R.; Steele, K.E.; Papantoni, A.; Harris, C.; Speck, C.L.; Bakker, A.; Moran, T.H.; Carnell, S.; Kamath, V. The Relationship between Weight Loss and Cognitive Function in Bariatric Surgery. Surg. Endosc. 2023, 37, 1976–1984. [Google Scholar] [CrossRef]
- Keys, A.; Brozek, J.; Henschel, A.; Mickelsen, O.; Taylor, H.L. The Biology of Human Starvation (2 Vols.); University of Minnesota Press: Minneapolis, MN, USA, 1950. [Google Scholar]
- Rochon, J.; Bales, C.W.; Ravussin, E.; Redman, L.M.; Holloszy, J.O.; Racette, S.B.; Roberts, S.B.; Das, S.K.; Romashkan, S.; Galan, K.M.; et al. Design and Conduct of the CALERIE Study: Comprehensive Assessment of the Long-Term Effects of Reducing Intake of Energy. J. Gerontol. Ser. A 2010, 66A, 97–108. [Google Scholar] [CrossRef]
- Dorling, J.L.; Van Vliet, S.; Huffman, K.M.; Kraus, W.E.; Bhapkar, M.; Pieper, C.F.; Stewart, T.; Das, S.K.; Racette, S.B.; Roberts, S.B.; et al. Effects of Caloric Restriction on Human Physiological, Psychological, and Behavioral Outcomes: Highlights from CALERIE Phase 2. Nutr. Rev. 2020, 79, 98–113. [Google Scholar] [CrossRef]
- Das, S.K.; Roberts, S.B.; Bhapkar, M.V.; Villareal, D.T.; Fontana, L.; Martin, C.K.; Racette, S.B.; Fuss, P.J.; Kraus, W.E.; Wong, W.W.; et al. Body-Composition Changes in the Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE)-2 Study: A 2-Y Randomized Controlled Trial of Calorie Restriction in Nonobese Humans. Am. J. Clin. Nutr. 2017, 105, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Pinto, A.M.; Bordoli, C.; Buckner, L.P.; Kaplan, P.C.; Del Arenal, I.M.; Jeffcock, E.J.; Hall, W.L.; Thuret, S. Energy Restriction Enhances Adult Hippocampal Neurogenesis-Associated Memory After Four Weeks in an Adult Human Population with Central Obesity; a Randomized Controlled Trial. Nutrients 2020, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Teong, X.T.; Hutchison, A.T.; Liu, B.; Wittert, G.A.; Lange, K.; Banks, S.; Heilbronn, L.K. Eight Weeks of Intermittent Fasting Versus Calorie Restriction does Not Alter Eating Behaviors, Mood, Sleep Quality, Quality of Life and Cognitive Performance in Women with Overweight. Nutr. Res. 2021, 92, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.H.; Choi, S.H.; Yu, J.H.; Ha, J.H.; Ryu, S.H.; Park, D.H. The Relationship between Visceral Adiposity and Cognitive Performance in Older Adults. Age Ageing 2012, 41, 456–461. [Google Scholar] [CrossRef]
- Nguyen, J.C.D.; Killcross, A.S.; Jenkins, T.A. Obesity and Cognitive Decline: Role of Inflammation and Vascular Changes. Front. Neurosci. 2014, 8, 375. [Google Scholar] [CrossRef]
- Trollor, J.N.; Smith, E.; Agars, E.; Kuan, S.A.; Baune, B.T.; Campbell, L.; Samaras, K.; Crawford, J.; Lux, O.; Kochan, N.A.; et al. The Association between Systemic Inflammation and Cognitive Performance in the Elderly: The Sydney Memory and Ageing Study. Age 2011, 34, 1295–1308. [Google Scholar] [CrossRef]
- Banks, W.A.; Burney, B.O.; Robinson, S.M. Effects of Triglycerides, Obesity, and Starvation on Ghrelin Transport Across the Blood–brain Barrier. Peptides 2008, 29, 2061–2065. [Google Scholar] [CrossRef]
- Drake, C.; Boutin, H.; Jones, M.S.; Denes, A.; Mccoll, B.W.; Selvarajah, J.R.; Hulme, S.; Georgiou, R.F.; Hinz, R.; Gerhard, A.; et al. Brain Inflammation is Induced by Co-Morbidities and Risk Factors for Stroke. Brain Behav. Immun. 2011, 25, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Jeon, B.T.; Jeong, E.A.; Shin, H.J.; Lee, Y.; Lee, D.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Roh, G.S. Resveratrol Attenuates Obesity-Associated Peripheral and Central Inflammation and Improves Memory Deficit in Mice Fed a High-Fat Diet. Diabetes 2012, 61, 1444–1454. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Teoh, S.H.; Embong, H.; Balan, S.S.; Othman, F.; Bahari, H.; Yazid, M.D. The Role of Oxidative Stress and Inflammation in Obesity and its Impact on Cognitive Impairments—A Narrative Review. Antioxidants 2023, 12, 1071. [Google Scholar] [CrossRef]
- Salas-Venegas, V.; Flores-Torres, R.P.; Rodríguez-Cortés, Y.M.; Rodríguez-Retana, D.; Ramírez-Carreto, R.J.; Concepción-Carrillo, L.E.; Pérez-Flores, L.J.; Alarcón-Aguilar, A.; López-Díazguerrero, N.E.; Gómez-González, B.; et al. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front. Integr. Neurosci. 2022, 16, 798995. [Google Scholar] [CrossRef]
- Yaffe, K.; Lindquist, K.; Penninx, B.W.; Simonsick, E.M.; Pahor, M.; Kritchevsky, S.; Launer, L.; Kuller, L.; Rubin, S.; Harris, T. Inflammatory Markers and Cognition in Well-Functioning African-American and White Elders. Neurology 2005, 61, 76–80. [Google Scholar] [CrossRef]
- Dik, M.G.; Jonker, C.; Hack, C.E.; Smit, J.H.; Comijs, H.C.; Eikelenboom, P. Serum Inflammatory Proteins and Cognitive Decline in Older Persons. Neurology 2005, 64, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Subjects | Intervention | Control Group | CF Measures | Results |
---|---|---|---|---|---|
Anton et al. (2019) [21] | ≥65 years Men and women With slow gait BMI 25–40 kg/m2 n = 10 | 4 weeks IF (16:8 TRE) | Same subjects pre vs. post | Attention, memory, and executive function tests: MoCA | No effect on CF IF: ↓ BW: 97 to 95 kg ↓ BMI: 34 to 33 kg/m2 |
Kapogiannis et al. (2024) [15] | 63.2 years Men and women Insulin resistant BMI 35 kg/m2 IF, 33.1 kg/m2 C n = 20 IF 20 C | 8 weeks 5:2 IF or HL diet | Healthy Living (HL) diet Not energy reduced | Memory, executive function tests: CVLT, Executive function composite test, Fluency factor, Dimensional set shifting | Both groups ↑ memory. effect IF > C Both ↑ executive function IF > control ↓ BW, ↓ BMI −1.41 kg/m2 IF > Control ↓ WC IF = Control IF = Control: ↓ HOMA-IR, ↓ HbA1c ↓ neuronal inflammation |
Ooi et al. (2020) [22] | 68.7 years Men and women BMI 24.2–30.0 kg/m2 n = 37 IF 27 C | 36 months IF (Muslim Sunnah fasting, 2 days/week) | Non-fasting group (non-IF) | Memory, executive function, and attention tests: MMSE, MoCA, RAVLT, Digit Span test, Digit Symbol | IF only: ↑ memory, executive function, attention. ↓ BW: 52.8 to 49.2 kg ↓ BMI: 24.2 to 22.6 kg/m2 ↓ WC: 86.6 to 81.5 cm ↓ fasting insulin and glucose, triglyceride, LDL, and total cholesterol, MDA, and CRP, and higher HDL |
Author and Year | Subjects | Intervention | Control Group | CF Measures | Results |
---|---|---|---|---|---|
Witte et al. (2009) [25] | 60.5 years Men and women BMI 28.2 kg/m2 n = 20 CR, 10 C | 3 months CR (30% energy reduction) | Habitual ad lib intake | Attention and working memory tests: AVLT, TMT A/B WMS-R | CR ↑ working memory, correlated with ↓ fasting insulin and CRP. CR: ↓ BW 87.9 to 85.5 kg ↓ BMI 29.9 to 29.1 kg/m |
Prehn et al. (2016) [14] | 61 years Only women BMI > 27 n = 19 CR, 18 C | 12 weeks CR + 4 weeks in energy balance | Habitual ad lib intake | Recognition memory and attention tests: VLMT, TMT A/B, Stroop test | CR only ↑ recognition memory improved brain structure. Effects only during CR. CR only: ↓ BW 93.2 to 79.7 kg ↓ BMI 34.7 to 29.6 kg/m2 ↓ WC 114.6 to 101.6 cm. Reductions maintained @ 4 weeks in energy balance |
Kretsch et al. (1997) [24] | 23–42 years Only women BMI 31.5 kg/m2 CR, 34.2 kg/m2 C n = 14 CR, 11 C | 15 weeks 50% CR + 3 weeks of weight stabilization | Habitual ad lib intake | Memory, attention, and reaction time tests: Bakan vigilance task, Word recall task, two finger tapping task, Eriksen effect | CR ↑ short-term memory ↑ reaction time (neg) CR: ↓ BW 86.6 to 74.3 kg ↓ Body Fat: −10.4 kg |
Martin et al. (2007) [26] | 25–50 years Men and women BMI = 25–30 kg/m2 n = 12 CR 12 C | 6 months 25% CR (CALERIE trial) | Habitual ad lib intake | Memory and attention tests: RAVLT, ACT, BVRT, CPT-II | CR no effect on memory or attention. CR only ↓ BW 80.9–10.4% @ 6 months |
Leclerc et al. (2020) [27] | 21–50 years Men and women BMI 22–28 kg/m2 n = 220 | 2-years 25% CR (CALERIE trial) | Habitual ad lib intake | Working memory tests: CANTAB | CR > Control: ↑ working memory. |
Silver et al. (2023) [28] | 38.1 ± 7.2 years Men and women BMI 25.1 kg/m2 n = 143 CR 75 C | 2-years 25% CR (CALERIE trial) | Habitual ad lib intake | Working memory tests: CANTAB | CR no effect on working memory. CR > C baseline |
Alosco et al. (2014) [29] | 20–70 years Men and women with MetSyn BMI 46.61 kg/m2 n = 50 | 36 and 48 months post bariatric surgery | Same subjects pre- vs. post-surgery | Memory, attention, and executive function tests: Digit span, TMT, Stroop Test, Maze Task, Verbal List-learning | Surgery: ↑ attention (to 24 months; effect lost if BW regain), executive function (peak 36 months) memory (to 36 months), Surgery: ↓ BMI 46.6 to 32.4 kg/m2 |
Miller et al. (2013) [30] | 19–61 years Men and women bariatric BMI 46.2 kg/m2 n = 95, 42 C | 12 months post bariatric surgery. Follow-ups at 12 weeks and 12 months | Obese controls BMI 40.77 kg/m2 | Memory, attention, and executive function tests: Cognitive Test Battery, VLL, Digit Span, VI, Maze Task | Surgery only: ↑ memory and executive function @ 12 months Surgery only: ↓ BMI 46.2 to 30.2 kg/m2 |
Smith et al. (2023) [31] | 18–55 years women BMI VSGB = 43.9 kg/m2 n = 17 BMI RYGB = 44.5 kg/m2 n= 18 | Follow-up at 2, 12, 24, and 52 weeks post- VSGB or RYGB surgery. | Same subjects pre- and post-intervention | Auditory attention, processing speed, memory, and executive function tests: LNS, HVLT, SCWT, SDMT, TMT A and B | RYGB and VSGB: ↑ different domains of executive function, processing speed, and auditory attention. VSGB: ↓ BMI by 10 kg/m2@48 weeks RYGB: ↓ BMI by 14 kg/m2@48 weeks |
Author and Year | Subjects | IF Group | CR Group | CF Measures | Results |
---|---|---|---|---|---|
Kim et al. 2020 [36] | 35–75 years Men and women With central obesity BMI = 32.0 kg/m2 IF, 30.9 kg/m2 C n = 20 IF 23 CR | 4 weeks 5:2 Intermittent energy restriction Med-style diet pre v post | 500 kcal/d deficit), both on Med-style diet pre v post | Pattern separation and recognition memory tests: Mnemonic Similarity Task | CF: No group difference Improvement in Combined Cohorts Both diets ↓ BMI IF −3.1 kg/m2 CR −2.8 kg/m2 ↓ WC IF = C |
Teong et al. 2021 [37] | 35–70 years women BMI 25–42 kg/m2 n = 22 IF 24 CR | 8 weeks IF (16:8 TRF) 30% energy reduction Pre v post | 8 weeks (30% kcal restricted) pre v post | Attention, processing speed tests: DSST, PVT | ↑ CF IF = CR ↓ BMI: CR −1.4, IF −2.0 kg/m2 Effect IF > CR ↓ BW CR −3.9, IF −5.4 kg) Effect IF > CR ↓ BF CR −2.8, IF −3.9 kg Effect IF > CR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draicchio, F.; Axen, K.V. Does Energy Restriction and Loss of Body Fat Account for the Effect of Intermittent Fasting on Cognitive Function? Nutrients 2025, 17, 2407. https://doi.org/10.3390/nu17152407
Draicchio F, Axen KV. Does Energy Restriction and Loss of Body Fat Account for the Effect of Intermittent Fasting on Cognitive Function? Nutrients. 2025; 17(15):2407. https://doi.org/10.3390/nu17152407
Chicago/Turabian StyleDraicchio, Fulvia, and Kathleen V. Axen. 2025. "Does Energy Restriction and Loss of Body Fat Account for the Effect of Intermittent Fasting on Cognitive Function?" Nutrients 17, no. 15: 2407. https://doi.org/10.3390/nu17152407
APA StyleDraicchio, F., & Axen, K. V. (2025). Does Energy Restriction and Loss of Body Fat Account for the Effect of Intermittent Fasting on Cognitive Function? Nutrients, 17(15), 2407. https://doi.org/10.3390/nu17152407