Intestinal Biomarkers in Preterm Infants: Influence of Mother’s Own Milk on Fecal Calprotectin and of Gestational Age on IFABP Concentrations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Sampling and Laboratory Procedures
2.4. Clinical Data
2.5. Statistical Analysis
3. Results
3.1. Sample Description
3.2. Associations Between Intestinal Markers, Gestational Age and Neonatal Variables
3.3. Impact of Enteral Nutrition on Intestinal Biomarker Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPD | Bronchopulmonary dysplasia |
DME | Delayed meconium evacuation |
DOL | Days of life |
EOS | Early onset sepsis |
FC | Fecal calprotectin |
HC-ZS | Head circumference z-score |
IFABP | Intestinal fatty acid-binding protein |
IUGR | Intrauterine growth restriction |
IVH | Intraventricular hemorrhage |
LOS | Late onset sepsis |
L-ZS | Length z-score |
MFG-E8 | Milk fat globule endothelial growth factor-8 |
MOM | Mother’s own milk |
NEC | Necrotizing enterocolitis |
PDA | Patent ductus arteriosus |
PGF | Postnatal growth failure |
PMA | Postmenstrual age |
PN | Parenteral nutrition |
ROP | Retinopathy of prematurity |
SD | Standard deviation |
SGA | Small for gestational age |
SIP | Spontaneous intestinal perforation |
UIFABP/Cr | Ratio between urinary intestinal fatty acid-binding protein and urinary creatinine |
VPI | Very preterm infants |
W-ZS | Weight z-score |
W | Weeks |
ZS | z-score |
Appendix A
uIFABP/Cr (pg/nmol) | Hospital Clínic Barcelona | Hospital Sant Joan de Déu | p-Value |
---|---|---|---|
Week 1 | 15.3 ± 15.1 (n = 25) | 8.2 ± 10.6 (n = 36) | 0.036 |
Week 4 | 15.5 ± 19.8 (n = 88) | 7.0 ± 9.7 (n = 66) | 0.001 |
Week 8 | 17.6 ± 13.7 (n = 10) | 3.5 ± 7.3 (n = 9) | 0.014 |
uIFABP/Cr (pg/nmol) | OR (95%CI) | aOR (95%CI) | |
---|---|---|---|
DME | Week 1 | 1.05 (1.00–1.10) * | 1.04 (0.99–1.10) |
Week 4 | 1.01 (0.99–1.04) | 1.00 (0.97–1.03) | |
NEC or SIP | Week 1 | 1.06 (1.01–1.11) * | 1.04 (0.98–1.09) |
Week 4 | 1.01 (0.97–1.04) | 1.00 (0.91–1.03) | |
Treated PDA | Week 1 | 1.02 (0.98–1.07) | 0.97 (0.89–1.05) |
Week 4 | 1.02 (1.00–1.05) * | 1.01 (0.98–1.04) | |
IVH ≥ 2 | Week 1 | 1.02 (0.97–1.06) | 1.00 (0.95–1.06) |
Week 4 | 1.01 (0.98–1.04) | 1.01 (0.98–1.05) | |
ROP > 2 | Week 1 | 1.02 (0.97–1.08) | 0.98 (0.90–1.06) |
Week 4 | 1.03 (1.01–1.06) * | 1.01 (0.97–1.04) | |
BPD | Week 1 | 1.03 (0.99–1.08) | 1.00 (0.95–1.05) |
Week 4 | 1.05 (1.02–1.08) * | 1.00 (0.98–1.03) |
References
- Henderickx, J.G.E.; Zwittink, R.D.; Renes, I.B.; van Lingen, R.A.; van Zoeren-Grobben, D.; Jebbink, L.J.G.; Boeren, S.; van Elburg, R.M.; Knol, J.; Belzer, C. Maturation of the preterm gastrointestinal tract can be defined by host and microbial markers for digestion and barrier defense. Sci. Rep. 2021, 11, 12808. [Google Scholar] [CrossRef]
- Indrio, F.; Riezzo, G.; Cavallo, L.; Di Mauro, A.; Francavilla, R. Physiological basis of food intolerance in VLBW. J. Matern. Fetal Neonatal Med. 2011, 24 (Suppl. 1), 64–66. [Google Scholar] [CrossRef]
- Bekkali, N.L.H.; Hamers, S.L.; Schipperus, M.R.; Reitsma, J.B.; Valerio, P.G.; Van Toledo, L.; A Benninga, M. Duration of meconium passage in preterm and term infants. Arch. Dis. Childhood. Fetal Neonatal Ed. 2008, 93, F376–F379. [Google Scholar] [CrossRef]
- Weström, B.; Arévalo Sureda, E.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.J. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front. Immunol. 2020, 11, 1153. [Google Scholar] [CrossRef]
- Thai, J.D.; Gregory, K.E. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients 2020, 12, 581. [Google Scholar] [CrossRef]
- Balcells-Esponera, C.; Borràs-Novell, C.; López-Abad, M.; Cubells Serra, I.; Basseda Puig, A.; Izquierdi Renau, M.; Herranz Barbero, A.; Iglesias-Platas, I. Bioactive peptides in preterm human milk: Impact of maternal characteristics and their association to neonatal outcomes. Biofactors 2024, 50, 135–144. [Google Scholar] [CrossRef]
- Lyu, Y.; Kim, B.J.; Patel, J.S.; Dallas, D.C.; Chen, Y. Human Milk Protein-Derived Bioactive Peptides from In Vitro-Digested Colostrum Exert Antimicrobial Activities against Common Neonatal Pathogens. Nutrients 2024, 16, 2040. [Google Scholar] [CrossRef]
- Nolan, L.S.; Parks, O.B.; Good, M. A review of the immunomodulating components of maternal breast milk and protection against necrotizing enterocolitis. Nutrients 2020, 12, 14. [Google Scholar] [CrossRef]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From biomarker to biological function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef]
- Koninckx, C.R.; Donat, E.; Benninga, M.A.; Broekaert, I.J.; Gottrand, F.; Kolho, K.; Lionetti, P.; Miele, E.; Orel, R.; Papadopoulou, A.; et al. The Use of Fecal Calprotectin Testing in Paediatric Disorders: A Position Paper of the European Society for Paediatric Gastroenterology and Nutrition Gastroenterology Committee. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 617–640. [Google Scholar] [CrossRef]
- Qu, Y.; Xu, W.; Han, J.; Zhou, W.; Wu, H. Diagnostic value of fecal calprotectin in necrotizing enterocolitis: A meta-analysis. Early Hum. Dev. 2020, 151, 105170. [Google Scholar] [CrossRef]
- Reisinger, K.W.; Elst, M.; Derikx, J.P.M.; Nikkels, P.G.; de Vries, B.; Adriaanse, M.P.; Jellema, R.K.; Kramer, B.W.; Wolfs, T.G. Intestinal fatty acid-binding protein: A possible marker for gut maturation. Pediatr. Res. 2014, 76, 261–268. [Google Scholar] [CrossRef]
- Pelsers, M.M.A.L.; Namiot, Z.; Kisielewski, W.; Namiot, A.; Januszkiewicz, M.; Hermens, W.T.; Glatz, J.F. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin. Biochem. 2003, 36, 529–535. [Google Scholar] [CrossRef]
- Su, W.; Li, Y.; Wang, Y.; Li, L.; Yan, J. Correlation between 1-FABP, blood routine and grading of necrotising enterocolitis. J. Coll. Physicians Surg. Pak. 2021, 31, 238–239. [Google Scholar] [CrossRef]
- Needleman, S.; Porvaznik, M.D.A. Creatinine analysis in single collection urine specimens. J. Forensic Sci. 1992, 37, 1125–1133. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacos, E. An integrated approach to fetal growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 38, 48–58. [Google Scholar] [CrossRef]
- British Association of Perinatal Medicine. 2011. Available online: https://hubble-live-assets.s3.eu-west-1.amazonaws.com/bapm/file_asset/file/38/CatsofcarereportAug11.pdf (accessed on 27 June 2025).
- Meiliana, M.; Alexander, T.; Bloomfield, F.H.; Cormack, B.E.; Harding, J.E.; Walsh, O.; Lin, L. Nutrition guidelines for preterm infants: A systematic review. J. Parenter. Enter. Nutr. 2024, 48, 11–26. [Google Scholar] [CrossRef]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; Akker, C.H.v.D.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.M.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022). J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
- Lange, M.; Figura, Y.; Böhne, C.; Beske, F.; Bohnhorst, B.; Heep, A. Management of prolonged meconium evacuation in preterm infants: A survey-based analysis in German Neonatal Intensive Care Units. Acta Paediatr. Int. J. Paediatr. 2022, 111, 2082–2089. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Bhutta, Z.A.; Bertino, E.; Ohuma, E.O.; Ismail, L.C.; Barros, F.C.; Altman, D.G.; Victora, C.; Noble, J.A.; et al. Postnatal growth standards for preterm infants: The Preterm Postnatal Follow-up Study of the INTERGROWTH-21stProject. Lancet Glob. Health 2015, 3, e681–e691. [Google Scholar] [CrossRef]
- Shah, P.S.; Wong, K.Y.; Merko, S.; Bishara, R.; Dunn, M.; Asztalos, E.; Darling, P.B. Postnatal growth failure in preterm infants: Ascertainment and relation to long-term outcome. J. Perinat. Med. 2006, 34, 484–489. [Google Scholar] [CrossRef]
- De Rose, D.U.; Cota, F.; Gallini, F.; Bottoni, A.; Fabrizio, G.C.; Ricci, D.; Romeo, D.M.; Mercuri, E.; Vento, G.; Maggio, L. Extra-uterine growth restriction in preterm infants: Neurodevelopmental outcomes according to different definitions. Eur. J. Paediatr. Neurol. 2021, 33, 135–145. [Google Scholar] [CrossRef]
- Vermont Oxford Network. Vermont Oxford Network: Manual of Operations Part 2; Vermont Oxford Network, Inc.: Kilburn Street Burlington, VT, USA, 2022. [Google Scholar]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef]
- De Pipaón Marcos, M.S.; Bueno, M.T.M.; SanJosé, B.; Torralba, E.; Gil, M.; Parada, I.; Amo, P. Acquisition of full enteral feeds may depend on stooling pattern in very premature infants. J. Perinat. Med. 2012, 40, 427–431. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R.; Ostmo, S.R.; Chan, R.P.; Berrocal, A.; Binenbaum, G.; Blair, M.; Campbell, J.P.; Capone, A.; et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 2021, 128, e51–e68. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. REDCap Consortium. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Shores, D.R.; Fundora, J.; Go, M.; Shakeel, F.; Brooks, S.; Alaish, S.M.; Yang, J.; Sodhi, C.P.; Hackam, D.J.; Everett, A. Normative values for circulating intestinal fatty acid binding protein and calprotectin across gestational ages. BMC Pediatr. 2020, 20, 250. [Google Scholar] [CrossRef]
- Zhou, L.; Taylor, J.; Kidman, A.; Stewart, A.; Bhatia, R. Staff awareness and bundling reduce skin breaks and blood tests in neonatal intensive care. J. Paediatr. Child Health 2021, 57, 1485–1489. [Google Scholar] [CrossRef]
- Hong, L.; Huang, Y.; Jiang, S.; Han, J.; Li, S.; Zhang, L.; Zhou, Q.; Cao, X.; Yu, W.; Yang, Y.; et al. Postnatal Dynamics and Clinical Associations of Fecal Calprotectin in Very Preterm Infants: Implications for Necrotizing Enterocolitis and Feeding Intolerance. Clin. Transl. Gastroenterol. 2023, 14, e00604. [Google Scholar] [CrossRef]
- Thai, J.D.; Cherkerzian, S.; Filatava, E.J.; Luu, N.; Yamamoto, H.S.; Fichorova, R.N.; Belfort, M.B.; Gregory, K.E. Intestinal Inflammation is Significantly Associated with Length Faltering in Preterm Infants at Neonatal Intensive Care Unit Discharge. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 837–844. [Google Scholar] [CrossRef]
- Jung, Y.H.; Kim, E.K.; Shin, S.H.; Lee, J.-A.; Kim, H.-S.; Kim, B.-I. The Physiologic Significance of Early Urinary Intestinal Fatty Acid Binding Protein Levels in Preterm Infants: A Prospective Cohort Study. Children 2021, 8, 842. [Google Scholar] [CrossRef]
- Van De Poll, M.C.G.; Derikx, J.P.M.; Buurman, W.A.; Peters, W.H.M.; Roelofs, H.M.J.; Wigmore, S.J.; Dejong, C.H. Liver manipulation causes hepatocyte injury and precedes systemic inflammation in patients undergoing liver resection. World J. Surg. 2007, 31, 2033–2038. [Google Scholar] [CrossRef]
- Salim, S.Y.; Young, P.Y.; Churchill, T.A.; Khadaroo, R.G. Urine intestinal fatty acid-binding protein predicts acute mesenteric ischemia in patients. J. Surg. Res. 2017, 209, 258–265. [Google Scholar] [CrossRef]
- Cortez, J.; Makker, K.; Kraemer, D.F.; Neu, J.; Sharma, R.; Hudak, M.L. Maternal milk feedings reduce sepsis, necrotizing enterocolitis and improve outcomes of premature infants. J. Perinatol. 2018, 38, 71–74. [Google Scholar] [CrossRef]
- Savino, F.; Castagno, E.; Calabrese, R.; Viola, S.; Oggero, R.; Miniero, R. High faecal calprotectin levels in healthy, exclusively breast-fed infants. Neonatology 2010, 97, 299–304. [Google Scholar] [CrossRef]
- Groer, M.; Ashmeade, T.; Louis-Jacques, A.; Beckstead, J.; Ji, M. Relationships of Feeding and Mother’s Own Milk with Fecal Calprotectin Levels in Preterm Infants. Breastfeed. Med. 2016, 11, 207–212. [Google Scholar] [CrossRef]
- MacQueen, B.C.; Christensen, R.D.; Yost, C.C.; Gordon, P.V.; Baer, V.L.; Schlaberg, R.; Lowe, J. Reference intervals for stool calprotectin in preterm neonates and their utility for the diagnosis of necrotizing enterocolitis. J. Perinatol. 2018, 38, 1379–1385. [Google Scholar] [CrossRef]
- Shelly, C.E.; Filatava, E.J.; Thai, J.; Pados, B.F.; Rostas, S.E.; Yamamoto, H.; Fichorova, R.; Gregory, K.E. Elevated Intestinal Inflammation in Preterm Infants with Signs and Symptoms of Gastroesophageal Reflux Disease. Biol. Res. Nurs. 2021, 23, 524–532. [Google Scholar] [CrossRef]
- Park, J.S.; Cho, J.Y.; Chung, C.; Oh, S.H.; Do, H.-J.; Seo, J.-H.; Lim, J.Y.; Park, C.-H.; Woo, H.-O.; Youn, H.-S. Dynamic Changes of Fecal Calprotectin and Related Clinical Factors in Neonates. Front. Pediatr. 2020, 8, 326. [Google Scholar] [CrossRef]
- Costa, S.; Patti, M.L.; Perri, A.; Cocca, C.; Pinna, G.; Tirone, C.; Tana, M.; Lio, A.; Vento, G. Effect of Different Milk Diet on the Level of Fecal Calprotectin in Very Preterm Infants. Front. Pediatr. 2020, 8, 552. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Lai, S.; Xie, Y.; Xiu, W.; Yang, C. Values of serum intestinal fatty acid-binding protein, fecal calprotectin, and fecal human β-defensin 2 for predicting necrotizing enterocolitis. BMC Pediatr. 2024, 24, 183. [Google Scholar] [CrossRef]
- Campeotto, F.; Baldassarre, M.; Butel, M.J.; Viallon, V.; Nganzali, F.; Soulaines, P.; Kalach, N.; Lapillonne, A.; Laforgia, N.; Moriette, G.; et al. Fecal calprotectin: Cutoff values for identifying intestinal distress in preterm infants. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 507–510. [Google Scholar] [CrossRef]
- De Rose, D.U.; Lapillonne, A.; Iacobelli, S.; Capolupo, I.; Dotta, A.; Salvatori, G. Nutritional Strategies for Preterm Neonates and Preterm Neonates Undergoing Surgery: New Insights for Practice and Wrong Beliefs to Uproot. Nutrients 2024, 16, 1719. [Google Scholar] [CrossRef]
- Mo, I.; Lapillonne, A.; van den Akker, C.H.P.; Khashu, M.; Johnson, M.J.; McElroy, S.J.; Zachariassen, G.; ESPR Nutrition Council Including; de Pipaón, M.S.; Moltu, S.J.; et al. Nutritional management after necrotizing enterocolitis and focal intestinal perforation in preterm infants. Pediatr. Res. 2024, 1–9. [Google Scholar] [CrossRef]
- Ren, L.; Hei, M.; Wu, H.; Guo, D.; Liu, S.; Zhang, Q.; Jiang, M. The value of intestinal fatty acid binding protein as a biomarker for the diagnosis of necrotizing enterocolitis in preterm infants: A meta-analysis. BMC Pediatr. 2025, 25, 338. [Google Scholar] [CrossRef]
- Coufal, S.; Kokesova, A.; Tlaskalova-Hogenova, H.; Frybova, B.; Snajdauf, J.; Rygl, M.; Kverka, M. Urinary I-FABP, L-FABP, TFF-3, and SAA Can Diagnose and Predict the Disease Course in Necrotizing Enterocolitis at the Early Stage of Disease. J. Immunol. Res. 2020, 2020, 3074313. [Google Scholar] [CrossRef]
- El-Abd Ahmed, A.; Hassan, M.H.; Abo-Halawa, N.; Abdel-Razik, G.M.; Moubarak, F.A.; Sakhr, H.M. Lactate and intestinal fatty acid binding protein as essential biomarkers in neonates with necrotizing enterocolitis: Ultrasonographic and surgical considerations. Pediatr. Neonatol. 2020, 61, 481–489. [Google Scholar] [CrossRef]
- Saran, A.; Devegowda, D.; Doreswamy, S.M. Urinary Intestinal Fatty Acid Binding Protein for Diagnosis of Necrotizing Enterocolitis. Indian Pediatr. 2020, 57, 798–800. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Jiang, X. Diagnostic Value of Intestinal Fatty-Acid-Binding Protein in Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Indian J. Pediatr. 2016, 83, 1410–1419. [Google Scholar] [CrossRef]
- Li, Y.; Shen, R.L.; Ayede, A.I.; Berrington, J.; Bloomfield, F.H.; Busari, O.O.; Cormack, B.E.; Embleton, N.D.; van Goudoever, J.B.; Greisen, G.; et al. Early Use of Antibiotics Is Associated with a Lower Incidence of Necrotizing Enterocolitis in Preterm, Very Low Birth Weight Infants: The NEOMUNE-NeoNutriNet Cohort Study. J. Pediatr. 2020, 227, 128–134.e2. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilizand, R.; Shah, P.S.; Seshia, M.; Yee, W.; Yoon, E.W.; Dow, K. Antibiotic exposure and development of necrotizing enterocolitis in very preterm neonates. Paediatr. Child Heal 2018, 23, e56–e61. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M.; Pihlsgård, M.; et al. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef]
- Staub, E.; Cao, Q.; Chen, X.M.; Pollock, C. Concentration of kidney markers and detection of exosomes in urine samples collected in cotton wool balls in preterm and term neonates. Pathology 2024, 57, 81–86. [Google Scholar] [CrossRef]
Prenatal Condition | Neonatal Characteristics | ||
IUGR | 37 (19.1) | Female sex | 100 (51.5) |
Histologic Chorioamnionitis | 52 (26.9) | Gestational age (w) | 28.9 ± 2.3 |
Prenatal steroids (≥2 doses) | 161 (83.0) | Birth weight (grams) | 1178 ± 365 |
C-section | 95 (49.0) | SGA | 27 (13.9) |
Postnatal Morbidities | Neonatal Nutrition and Growth | ||
Surfactant | 57 (29.8) | Total enteral feeds (DOL) | 8.8 ± 4.6 |
Postnatal steroids | 17 (8.8) | % Initial weight loss | −9.7 ± 4.9 |
BPD | 63 (33) | PN (days) | 10.0 ± 9.3 |
IVH ≥ 2 | 5 (2.6) | % MOM at 28 days | 78 ± 26 |
ROP > 2 | 12 (6.2) | % MOM at 36w PMA | 77 ± 35 |
Treated PDA | 33 (17.0) | Change W-ZS birth to 36w PMA | −0.99 ± 0.86 |
EOS | 5 (2.6) | Change L-ZS birth to 36w PMA | −1.18 ± 1.3 |
LOS | 39 (20.0) | Change HC-ZS birth to 36w PMA | −0.15 ± 1.1 |
NEC or SIP | 17 (8.8) | PGF (weight) at 36w PMA | 29 (13.7) |
Death before discharge | 4 (2.1) | PGF (length) at 36w PMA | 44 (43.8) |
PMA discharge (w) | 37 ± 2.5 | PGF (head circumference) at 36w PMA | 12 (11.5) |
Gestational Age | Week | n | Fecal Calprotectin (mcg/g feces) | ||||
---|---|---|---|---|---|---|---|
Median | IQR | Q1 | Q2 | Q3 | |||
230–276 | w1 | 23 | 422 | 464 | 201 | 422 | 665 |
w4 | 27 | 250 | 300 | 157 | 250 | 457 | |
w8 | 21 | 383 | 501 | 248 | 383 | 749 | |
280–320 | w1 | 64 | 449 | 310 | 286 | 449 | 595 |
w4 | 54 | 349 | 363 | 215 | 349 | 578 | |
w8 | 6 | 578 | --- | 210 | 578 | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcells-Esponera, C.; Aldecoa-Bilbao, V.; Borràs-Novell, C.; López-Abad, M.; Valls Lafón, A.; Batllori Tragant, M.; Izquierdo Renau, M.; del Rey Hurtado de Mendoza, B.; Herranz-Barbero, A.; Iglesias-Platas, I. Intestinal Biomarkers in Preterm Infants: Influence of Mother’s Own Milk on Fecal Calprotectin and of Gestational Age on IFABP Concentrations. Nutrients 2025, 17, 2177. https://doi.org/10.3390/nu17132177
Balcells-Esponera C, Aldecoa-Bilbao V, Borràs-Novell C, López-Abad M, Valls Lafón A, Batllori Tragant M, Izquierdo Renau M, del Rey Hurtado de Mendoza B, Herranz-Barbero A, Iglesias-Platas I. Intestinal Biomarkers in Preterm Infants: Influence of Mother’s Own Milk on Fecal Calprotectin and of Gestational Age on IFABP Concentrations. Nutrients. 2025; 17(13):2177. https://doi.org/10.3390/nu17132177
Chicago/Turabian StyleBalcells-Esponera, Carla, Victoria Aldecoa-Bilbao, Cristina Borràs-Novell, Miriam López-Abad, Anna Valls Lafón, Marta Batllori Tragant, Montserrat Izquierdo Renau, Beatriz del Rey Hurtado de Mendoza, Ana Herranz-Barbero, and Isabel Iglesias-Platas. 2025. "Intestinal Biomarkers in Preterm Infants: Influence of Mother’s Own Milk on Fecal Calprotectin and of Gestational Age on IFABP Concentrations" Nutrients 17, no. 13: 2177. https://doi.org/10.3390/nu17132177
APA StyleBalcells-Esponera, C., Aldecoa-Bilbao, V., Borràs-Novell, C., López-Abad, M., Valls Lafón, A., Batllori Tragant, M., Izquierdo Renau, M., del Rey Hurtado de Mendoza, B., Herranz-Barbero, A., & Iglesias-Platas, I. (2025). Intestinal Biomarkers in Preterm Infants: Influence of Mother’s Own Milk on Fecal Calprotectin and of Gestational Age on IFABP Concentrations. Nutrients, 17(13), 2177. https://doi.org/10.3390/nu17132177