Vitamin D and Cardiovascular Health: A Narrative Review of Risk Reduction Evidence
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Prospective Observational Studies
3.2. Temporal Ecological Studies
3.3. Vitamin D Supplementation Observational Studies
3.4. Randomized Controlled Trials
3.5. Vitamin D Supplementation Studies Regarding CVD Risk Factors
3.6. Mechanisms Where Vitamin D Reduces the Risk of CVD
3.7. Mendelian Randomization Analysis Studies
3.8. Hill’s Criteria for Causality
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martin, S.S.; Aday, A.W.; Allen, N.B.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Bansal, N.; Beaton, A.Z.; et al. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation 2025, 151, e41–e660. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global burden of cardiovascular diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2024, zwae281. [Google Scholar] [CrossRef]
- Scragg, R. Seasonality of cardiovascular disease mortality and the possible protective effect of ultra-violet radiation. Int. J. Epidemiol. 1981, 10, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Scragg, R.; Jackson, R.; Holdaway, I.M.; Lim, T.; Beaglehole, R. Myocardial infarction is inversely associated with plasma 25-hydroxyvitamin D3 levels: A community-based study. Int. J. Epidemiol. 1990, 19, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Scragg, R. Clinical trials of vitamin D supplementation and cardiovascular disease: A synthesis of the evidence. J. Steroid Biochem. Mol. Biol. 2025, 250, 106733. [Google Scholar] [CrossRef]
- Shah, V.P.; Nayfeh, T.; Alsawaf, Y.; Saadi, S.; Farah, M.; Zhu, Y.; Firwana, M.; Seisa, M.; Wang, Z.; Scragg, R.; et al. A Systematic Review Supporting the Endocrine Society Clinical Practice Guidelines on Vitamin D. J. Clin. Endocrinol. Metab. 2024, 109, 1961–1974. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef]
- Grant, W.B.; Wimalawansa, S.J.; Pludowski, P.; Cheng, R.Z. Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines. Nutrients 2025, 17, 277. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Vitamin D Deficiency Meets Hill’s Criteria for Causation in SARS-CoV-2 Susceptibility, Complications, and Mortality: A Systematic Review. Nutrients 2025, 17, 599. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Enhancing the Design of Nutrient Clinical Trials for Disease Prevention—A Focus on Vitamin D: A Systematic Review. Nutr. Rev. 2025, 83, e1740–e1781. [Google Scholar] [CrossRef]
- Wang, T.J.; Pencina, M.J.; Booth, S.L.; Jacques, P.F.; Ingelsson, E.; Lanier, K.; Benjamin, E.J.; D’Agostino, R.B.; Wolf, M.; Vasan, R.S. Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008, 117, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Grandi, N.C.; Breitling, L.P.; Brenner, H. Vitamin D and cardiovascular disease: Systematic review and meta-analysis of prospective studies. Prev. Med. 2010, 51, 228–233. [Google Scholar] [CrossRef]
- Melamed, M.L.; Michos, E.D.; Post, W.; Astor, B. 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch. Intern. Med. 2008, 168, 1629–1637. [Google Scholar] [CrossRef]
- Kilkkinen, A.; Knekt, P.; Aro, A.; Rissanen, H.; Marniemi, J.; Heliovaara, M.; Impivaara, O.; Reunanen, A. Vitamin D status and the risk of cardiovascular disease death. Am. J. Epidemiol. 2009, 170, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Bacon, C.J.; Horne, A.M.; Mason, B.H.; Ames, R.W.; Wang, T.K.; Grey, A.B.; Gamble, G.D.; Reid, I.R. Vitamin D insufficiency and health outcomes over 5 y in older women. Am. J. Clin. Nutr. 2010, 91, 82–89. [Google Scholar] [CrossRef]
- Schöttker, B.; Haug, U.; Schomburg, L.; Kohrle, J.; Perna, L.; Muller, H.; Holleczek, B.; Brenner, H. Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am. J. Clin. Nutr. 2013, 97, 782–793. [Google Scholar] [CrossRef]
- Semba, R.D.; Houston, D.K.; Bandinelli, S.; Sun, K.; Cherubini, A.; Cappola, A.R.; Guralnik, J.M.; Ferrucci, L. Relationship of 25-hydroxyvitamin D with all-cause and cardiovascular disease mortality in older community-dwelling adults. Eur. J. Clin. Nutr. 2010, 64, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; May, H.T.; Horne, B.D.; Bair, T.L.; Hall, N.L.; Carlquist, J.F.; Lappe, D.L.; Muhlestein, J.B.; Intermountain Heart Collaborative (IHC) Study Group. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am. J. Cardiol. 2010, 106, 963–968. [Google Scholar] [CrossRef]
- Giovannucci, E.; Liu, Y.; Hollis, B.W.; Rimm, E.B. 25-hydroxyvitamin D and risk of myocardial infarction in men: A prospective study. Arch. Intern. Med. 2008, 168, 1174–1180. [Google Scholar] [CrossRef]
- Dobnig, H.; Pilz, S.; Scharnagl, H.; Renner, W.; Seelhorst, U.; Wellnitz, B.; Kinkeldei, J.; Boehm, B.O.; Weihrauch, G.; Maerz, W. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch. Intern. Med. 2008, 168, 1340–1349. [Google Scholar] [CrossRef]
- Pilz, S.; Dobnig, H.; Nijpels, G.; Heine, R.J.; Stehouwer, C.D.; Snijder, M.B.; van Dam, R.M.; Dekker, J.M. Vitamin D and mortality in older men and women. Clin. Endocrinol. 2009, 71, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Ginde, A.A.; Scragg, R.; Schwartz, R.S.; Camargo, C.A., Jr. Prospective study of serum 25-hydroxyvitamin D level, cardiovascular disease mortality, and all-cause mortality in older U.S. adults. J. Am. Geriatr. Soc. 2009, 57, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, S.; Sanika, G.H.A.; Zhao, J.; Zhang, H.; Zhao, L.; Wang, W. Association between Serum 25-Hydroxyvitamin D Level and Stroke Risk: An Analysis Based on the National Health and Nutrition Examination Survey. Behav. Neurol. 2021, 2021, 5457881. [Google Scholar] [CrossRef]
- Jayedi, A.; Daneshvar, M.; Jibril, A.T.; Sluyter, J.D.; Waterhouse, M.; Romero, B.D.; Neale, R.E.; Manson, J.E.; Shab-Bidar, S. Serum 25(OH)D Concentration, Vitamin D Supplementation, and Risk of Cardiovascular Disease and Mortality in Patients with Type 2 Diabetes or Prediabetes: A Systematic Review and Dose-Response Meta-Analysis. Am. J. Clin. Nutr. 2023, 118, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Candemir, B.; Yamak, B.A.; Candemir, M. The utility of Vitamin D levels in predicting the severity of coronary artery disease in obese patients. Cardiovasc. Surg. Int. 2025, 12, 15–20. [Google Scholar] [CrossRef]
- Hara, H.; Shiomi, H.; van Klaveren, D.; Kent, D.M.; Steyerberg, E.W.; Garg, S.; Onuma, Y.; Kimura, T.; Serruys, P.W. External Validation of the SYNTAX Score II 2020. J. Am. Coll. Cardiol. 2021, 78, 1227–1238. [Google Scholar] [CrossRef]
- Clarke, R.; Shipley, M.; Lewington, S.; Youngman, L.; Collins, R.; Marmot, M.; Peto, R. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am. J. Epidemiol. 1999, 150, 341–353. [Google Scholar] [CrossRef]
- Grant, W.B.; Boucher, B.J. How Follow-Up Period in Prospective Cohort Studies Affects Relationship Between Baseline Serum 25(OH)D Concentration and Risk of Stroke and Major Cardiovascular Events. Nutrients 2024, 16, 3759. [Google Scholar] [CrossRef]
- Su, C.; Jin, B.; Xia, H.; Zhao, K. Association between Vitamin D and Risk of Stroke: A PRISMA-Compliant Systematic Review and Meta-Analysis. Eur. Neurol. 2021, 84, 399–408. [Google Scholar] [CrossRef]
- Xiong, J.; Zhao, C.; Li, J.; Li, Y. A systematic review and meta-analysis of the linkage between low vitamin D and the risk as well as the prognosis of stroke. Brain Behav. 2024, 14, e3577. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Jie, Y.; Sun, Y.; Wang, X.; Fan, Y. Predictive value of 25-hydroxyvitamin D level in patients with coronary artery disease: A meta-analysis. Front. Nutr. 2022, 9, 984487. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.B. The Environment and Disease: Association or Causation? Proc. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef]
- Kong, S.Y.; Jung, E.; Hwang, S.S.; Ro, Y.S.; Shin, S.D.; Cha, K.C.; Hwang, S.O. Circulating Vitamin D Level and Risk of Sudden Cardiac Death and Cardiovascular Mortality: A Dose-Response Meta-Analysis of Prospective Studies. J. Korean Med. Sci. 2023, 38, e260. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.L.; Zoltick, E.S.; Weinstein, S.J.; Fedirko, V.; Wang, M.; Cook, N.R.; Eliassen, A.H.; Zeleniuch-Jacquotte, A.; Agnoli, C.; Albanes, D.; et al. Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. J. Natl. Cancer Inst. 2019, 111, 158–169. [Google Scholar] [CrossRef]
- Muñoz, A.; Grant, W.B. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022, 14, 1448. [Google Scholar] [CrossRef]
- Simon, J.; Sriharsha, T.; Perumal Kumaresan, A.; Chand, U.; Bose, S. Impact of Vitamin D Deficiency on Ischemic Stroke Severity: Insights from a Prospective Study. Cureus 2024, 16, e69376. [Google Scholar] [CrossRef]
- Gaksch, M.; Jorde, R.; Grimnes, G.; Joakimsen, R.; Schirmer, H.; Wilsgaard, T.; Mathiesen, E.B.; Njolstad, I.; Lochen, M.L.; Marz, W.; et al. Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE 2017, 12, e0170791. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Liu, M.; Chen, L. Association of Serum 25-Hydroxyvitamin D Concentrations with All-Cause and Cause-Specific Mortality Among Adult Patients with Existing Cardiovascular Disease. Front. Nutr. 2021, 8, 740855. [Google Scholar] [CrossRef]
- Narita, K.; Hoshide, S.; Kario, K. Seasonal Variation in Day-by-Day Home Blood Pressure Variability and Effect on Cardiovascular Disease Incidence. Hypertension 2022, 79, 2062–2070. [Google Scholar] [CrossRef]
- Marti-Soler, H.; Gubelmann, C.; Aeschbacher, S.; Alves, L.; Bobak, M.; Bongard, V.; Clays, E.; de Gaetano, G.; Di Castelnuovo, A.; Elosua, R.; et al. Seasonality of cardiovascular risk factors: An analysis including over 230 000 participants in 15 countries. Heart 2014, 100, 1517–1523. [Google Scholar] [CrossRef]
- Martins, D.; Wolf, M.; Pan, D.; Zadshir, A.; Tareen, N.; Thadhani, R.; Felsenfeld, A.; Levine, B.; Mehrotra, R.; Norris, K. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: Data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2007, 167, 1159–1165. [Google Scholar] [CrossRef]
- Marti-Soler, H.; Gonseth, S.; Gubelmann, C.; Stringhini, S.; Bovet, P.; Chen, P.C.; Wojtyniak, B.; Paccaud, F.; Tsai, D.H.; Zdrojewski, T.; et al. Seasonal variation of overall and cardiovascular mortality: A study in 19 countries from different geographic locations. PLoS ONE 2014, 9, e113500. [Google Scholar] [CrossRef] [PubMed]
- Hypponen, E.; Power, C. Hypovitaminosis D in British adults at age 45 y: Nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr. 2007, 85, 860–868. [Google Scholar] [CrossRef]
- Blood Pressure Lowering Treatment Trialists’Collaboration. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: An individual participant-level data meta-analysis. Lancet 2021, 397, 1625–1636. [Google Scholar] [CrossRef]
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, A.K.; Singh, R.J.; Noymer, A. Vitamin D (25OHD) Serum Seasonality in the United States. PLoS ONE 2013, 8, e65785. [Google Scholar] [CrossRef] [PubMed]
- Kroll, M.H.; Bi, C.; Garber, C.C.; Kaufman, H.W.; Liu, D.; Caston-Balderrama, A.; Zhang, K.; Clarke, N.; Xie, M.; Reitz, R.E.; et al. Temporal relationship between vitamin D status and parathyroid hormone in the United States. PLoS ONE 2015, 10, e0118108. [Google Scholar] [CrossRef]
- Shraim, R.; Brennan, M.M.; van Geffen, J.; Zgaga, L. Prevalence and Determinants of Profound Vitamin D Deficiency (25-hydroxyvitamin D <10 nmol/L) in the UK Biobank and potential implications for disease association studies. J. Steroid Biochem. Mol. Biol. 2025, 250, 106737. [Google Scholar] [CrossRef]
- Grant, W.B.; Bhattoa, H.P.; Boucher, B.J. Seasonal variations of U.S. mortality rates: Roles of solar ultraviolet-B doses, vitamin D, gene exp ression, and infections. J. Steroid Biochem. Mol. Biol. 2017, 173, 5–12. [Google Scholar] [CrossRef]
- Grant, W.B.; Boucher, B.J. An Exploration of How Solar Radiation Affects the Seasonal Variation of Human Mortality Rates and the Seasonal Variation in Some Other Common Disorders. Nutrients 2022, 14, 2519. [Google Scholar] [CrossRef]
- Phillips, D.; Barker, G.E.; Brewer, K.M. Christmas and New Year as risk factors for death. Soc. Sci. Med. 2010, 71, 1463–1471. [Google Scholar] [CrossRef]
- Burkart, K.G.; Brauer, M.; Aravkin, A.Y.; Godwin, W.W.; Hay, S.I.; He, J.; Iannucci, V.C.; Larson, S.L.; Lim, S.S.; Liu, J.; et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: A two-part modelling approach applied to the Global Burden of Disease Study. Lancet 2021, 398, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Weller, R.B.; Wang, Y.; He, J.; Maddux, F.W.; Usvyat, L.; Zhang, H.; Feelisch, M.; Kotanko, P. Does Incident Solar Ultraviolet Radiation Lower Blood Pressure? J. Am. Heart Assoc. 2020, 9, e013837. [Google Scholar] [CrossRef]
- Weller, R.B. Sunlight: Time for a Rethink? J. Investig. Dermatol. 2024, 144, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Grey, A.; Gamble, G.D.; Reid, I.R. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: A trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2014, 2, 307–320. [Google Scholar] [CrossRef]
- Sluyter, J.D.; Camargo, C.A., Jr.; Stewart, A.W.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Khaw, K.T.; Thom, S.A.M.; Hametner, B.; Wassertheurer, S.; et al. Effect of Monthly, High-Dose, Long-Term Vitamin D Supplementation on Central Blood Pressure Parameters: A Randomized Controlled Trial Substudy. J. Am. Heart Assoc. 2017, 6, e006802. [Google Scholar] [CrossRef] [PubMed]
- Mirhosseini, N.; Vatanparast, H.; Kimball, S.M. The Association between Serum 25(OH)D Status and Blood Pressure in Participants of a Community-Based Program Taking Vitamin D Supplements. Nutrients 2017, 9, 1244. [Google Scholar] [CrossRef]
- Barolet, A.C.; Litvinov, I.V.; Barolet, D. Light-induced nitric oxide release in the skin beyond UVA and blue light: Red & near-infrared wavelengths. Nitric Oxide 2021, 117, 16–25. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration/EPIC-CVD/Vitamin D Studies Collaboration. Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: Observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2021, 9, 837–864. [Google Scholar] [CrossRef]
- Zhou, A.; Selvanayagam, J.B.; Hypponen, E. Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur. Heart J. 2022, 43, 1731–1739. [Google Scholar] [CrossRef]
- The Editors of The Lancet Diabetes & Endocrinology. Retraction and republication—Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: Observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2024, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Retraction of: Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur. Heart J. 2025, 46, 1456. [CrossRef] [PubMed]
- Gholami, F.; Moradi, G.; Zareei, B.; Rasouli, M.A.; Nikkhoo, B.; Roshani, D.; Ghaderi, E. The association between circulating 25-hydroxyvitamin D and cardiovascular diseases: A meta-analysis of prospective cohort studies. BMC Cardiovasc. Disord. 2019, 19, 248. [Google Scholar] [CrossRef]
- Oskarsson, V.; Salomaa, V.; Jousilahti, P.; Palmieri, L.; Donfrancesco, C.; Sans, S.; Iacoviello, L.; Costanzo, S.; Ferrario, M.M.; Cesana, G.; et al. Cardiovascular disease outcomes in relation to 25-hydroxyvitamin D and its seasonal variation: Results from the BiomarCaRE consortium. PLoS ONE 2025, 20, e0319607. [Google Scholar] [CrossRef] [PubMed]
- Zeller, T.; Hughes, M.; Tuovinen, T.; Schillert, A.; Conrads-Frank, A.; Ruijter, H.; Schnabel, R.B.; Kee, F.; Salomaa, V.; Siebert, U.; et al. BiomarCaRE: Rationale and design of the European BiomarCaRE project including 300,000 participants from 13 European countries. Eur. J. Epidemiol. 2014, 29, 777–790. [Google Scholar] [CrossRef]
- Nguyen, J.L.; Yang, W.; Ito, K.; Matte, T.D.; Shaman, J.; Kinney, P.L. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiol. 2016, 1, 274–281. [Google Scholar] [CrossRef]
- Sha, S.; Xie, R.; Gwenzi, T.; Wang, Y.; Brenner, H.; Schottker, B. Real-world evidence for an association of vitamin D supplementation with atherosclerotic cardiovascular disease in the UK Biobank. Clin. Nutr. 2025, 49, 118–127. [Google Scholar] [CrossRef]
- Acharya, P.; Dalia, T.; Ranka, S.; Sethi, P.; Oni, O.A.; Safarova, M.S.; Parashara, D.; Gupta, K.; Barua, R.S. The Effects of Vitamin D Supplementation and 25-Hydroxyvitamin D Levels on the Risk of Myocardial Infarction and Mortality. J. Endocr. Soc. 2021, 5, bvab124. [Google Scholar] [CrossRef]
- Kassi, E.; Adamopoulos, C.; Basdra, E.K.; Papavassiliou, A.G. Role of vitamin D in atherosclerosis. Circulation 2013, 128, 2517–2531. [Google Scholar] [CrossRef]
- Pilz, S.; Verheyen, N.; Grubler, M.R.; Tomaschitz, A.; Marz, W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016, 13, 404–417. [Google Scholar] [CrossRef]
- Wu, W.X.; He, D.R. Low Vitamin D Levels Are Associated with the Development of Deep Venous Thromboembolic Events in Patients with Ischemic Stroke. Clin. Appl. Thromb. Hemost. 2018, 24, 69S–75S. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Trummer, C.; Theiler-Schwetz, V.; Grubler, M.R.; Verheyen, N.D.; Odler, B.; Karras, S.N.; Zittermann, A.; Marz, W. Critical Appraisal of Large Vitamin D Randomized Controlled Trials. Nutrients 2022, 14, 303. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Scragg, R.; Stewart, A.W.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Sluyter, J.; Murphy, J.; Khaw, K.T.; Camargo, C.A., Jr. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study: A Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 608–616. [Google Scholar] [CrossRef]
- Thompson, B.; Waterhouse, M.; English, D.R.; McLeod, D.S.; Armstrong, B.K.; Baxter, C.; Duarte Romero, B.; Ebeling, P.R.; Hartel, G.; Kimlin, M.G.; et al. Vitamin D supplementation and major cardiovascular events: D-Health randomised controlled trial. BMJ 2023, 381, e075230. [Google Scholar] [CrossRef] [PubMed]
- Ylilauri, M.P.T.; Hantunen, S.; Lonnroos, E.; Salonen, J.T.; Tuomainen, T.P.; Virtanen, J.K. Associations of dairy, meat, and fish intakes with risk of incident dementia and with cognitive performance: The Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD). Eur. J. Nutr. 2022, 61, 2531–2542. [Google Scholar] [CrossRef]
- Joseph, P.; Pais, P.; Gao, P.; Teo, K.; Xavier, D.; Lopez-Jaramillo, P.; Yusoff, K.; Santoso, A.; Gamra, H.; Talukder, S.H.; et al. Vitamin D supplementation and adverse skeletal and non-skeletal outcomes in individuals at increased cardiovascular risk: Results from the International Polycap Study (TIPS)-3 randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 434–440. [Google Scholar] [CrossRef]
- Baron, J.A.; Barry, E.L.; Mott, L.A.; Rees, J.R.; Sandler, R.S.; Snover, D.C.; Bostick, R.M.; Ivanova, A.; Cole, B.F.; Ahnen, D.J.; et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N. Engl. J. Med. 2015, 373, 1519–1530. [Google Scholar] [CrossRef]
- Hansen, K.E.; Johnson, R.E.; Chambers, K.R.; Johnson, M.G.; Lemon, C.C.; Vo, T.N.; Marvdashti, S. Treatment of Vitamin D Insufficiency in Postmenopausal Women: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1612–1621. [Google Scholar] [CrossRef]
- Aloia, J.; Fazzari, M.; Islam, S.; Mikhail, M.; Shieh, A.; Katumuluwa, S.; Dhaliwal, R.; Stolberg, A.; Usera, G.; Ragolia, L. Vitamin D Supplementation in Elderly Black Women Does Not Prevent Bone Loss: A Randomized Controlled Trial. J. Bone Miner. Res. 2018, 33, 1916–1922. [Google Scholar] [CrossRef]
- Witham, M.D.; Dove, F.J.; Khan, F.; Lang, C.C.; Belch, J.J.; Struthers, A.D. Effects of vitamin D supplementation on markers of vascular function after myocardial infarction—A randomised controlled trial. Int. J. Cardiol. 2013, 167, 745–749. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, S.A.; Lee, I.K.; Kim, J.G.; Park, K.G.; Jeong, J.Y.; Jeon, J.H.; Shin, J.Y.; Lee, D.H. Effect of a Brown Rice Based Vegan Diet and Conventional Diabetic Diet on Glycemic Control of Patients with Type 2 Diabetes: A 12-Week Randomized Clinical Trial. PLoS ONE 2016, 11, e0155918. [Google Scholar] [CrossRef] [PubMed]
- Epstein, D.E.; Sherwood, A.; Smith, P.J.; Craighead, L.; Caccia, C.; Lin, P.H.; Babyak, M.A.; Johnson, J.J.; Hinderliter, A.; Blumenthal, J.A. Determinants and consequences of adherence to the dietary approaches to stop hypertension diet in African-American and white adults with high blood pressure: Results from the ENCORE trial. J. Acad. Nutr. Diet. 2012, 112, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D status and ill health: A systematic review. Lancet Diabetes Endocrinol. 2014, 2, 76–89. [Google Scholar] [CrossRef]
- Autier, P.; Mullie, P.; Macacu, A.; Dragomir, M.; Boniol, M.; Coppens, K.; Pizot, C.; Boniol, M. Effect of vitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017, 5, 986–1004. [Google Scholar] [CrossRef]
- Grant, W.B.; Boucher, B.J.; Al Anouti, F.; Pilz, S. Comparing the Evidence from Observational Studies and Randomized Controlled Trials for Nonskeletal Health Effects of Vitamin D. Nutrients 2022, 14, 3811. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Pena Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef]
- Mohamad, M.I.; El-Sherbeny, E.E.; Bekhet, M.M. The Effect of Vitamin D Supplementation on Glycemic Control and Lipid Profile in Patients with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2016, 35, 399–404. [Google Scholar] [CrossRef]
- Imga, N.N.; Karci, A.C.; Oztas, D.; Berker, D.; Guler, S. Effects of vitamin D supplementation on insulin resistance and dyslipidemia in overweight and obese premenopausal women. Arch. Med. Sci. 2019, 15, 598–606. [Google Scholar] [CrossRef]
- Li, Y.; Tong, C.H.; Rowland, C.M.; Radcliff, J.; Bare, L.A.; McPhaul, M.J.; Devlin, J.J. Association of changes in lipid levels with changes in vitamin D levels in a real-world setting. Sci. Rep. 2021, 11, 21536. [Google Scholar] [CrossRef]
- Pecoraro, L.; Nisi, F.; Serafin, A.; Antoniazzi, F.; Dalle Carbonare, L.; Piacentini, G.; Pietrobelli, A. Vitamin D Supplementation in the Assessment of Cardiovascular Risk Factors in Overweight and Obese Children. Med. Sci. 2022, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Wani, K.; Grant, W.B.; Al-Daghri, N.M. Improved HDL Cholesterol through Vitamin D Status Correction Substantially Lowers 10-Year Atherosclerotic Cardiovascular Disease Risk Score in Vitamin D-Deficient Arab Adults. Nutrients 2023, 15, 551. [Google Scholar] [CrossRef]
- Li, Y.C. Vitamin D regulation of the renin-angiotensin system. J. Cell. Biochem. 2003, 88, 327–331. [Google Scholar] [CrossRef]
- Hewison, M. Vitamin D and immune function: Autocrine, paracrine or endocrine? Scand. J. Clin. Lab. Investig. Suppl. 2012, 243, 92–102. [Google Scholar]
- Timms, P.M.; Mannan, N.; Hitman, G.A.; Noonan, K.; Mills, P.G.; Syndercombe-Court, D.; Aganna, E.; Price, C.P.; Boucher, B.J. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: Mechanisms for inflammatory damage in chronic disorders? QJM 2002, 95, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, N.; Campodonico, J.; Milazzo, V.; De Metrio, M.; Brambilla, M.; Camera, M.; Marenzi, G. Vitamin D and Cardiovascular Disease: Current Evidence and Future Perspectives. Nutrients 2021, 13, 3603. [Google Scholar] [CrossRef]
- Marek, K.; Cichon, N.; Saluk-Bijak, J.; Bijak, M.; Miller, E. The Role of Vitamin D in Stroke Prevention and the Effects of Its Supplementation for Post-Stroke Rehabilitation: A Narrative Review. Nutrients 2022, 14, 2761. [Google Scholar] [CrossRef]
- Al-Oanzi, Z.H.; Alenazy, F.O.; Alhassan, H.H.; Alruwaili, Y.; Alessa, A.I.; Alfarm, N.B.; Alanazi, M.O.; Alghofaili, S.I. The Role of Vitamin D in Reducing the Risk of Metabolic Disturbances That Cause Cardiovascular Diseases. J. Cardiovasc. Dev. Dis. 2023, 10, 209. [Google Scholar] [CrossRef]
- Argano, C.; Mirarchi, L.; Amodeo, S.; Orlando, V.; Torres, A.; Corrao, S. The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and Cardiovascular Disease: State of the Art. Int. J. Mol. Sci. 2023, 24, 15485. [Google Scholar] [CrossRef]
- Pal, E.; Ungvari, Z.; Benyo, Z.; Varbiro, S. Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023, 15, 334. [Google Scholar] [CrossRef]
- Ekwaru, J.P.; Zwicker, J.D.; Holick, M.F.; Giovannucci, E.; Veugelers, P.J. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS ONE 2014, 9, e111265. [Google Scholar] [CrossRef] [PubMed]
- Roizen, J.D.; Long, C.; Casella, A.; O’Lear, L.; Caplan, I.; Lai, M.; Sasson, I.; Singh, R.; Makowski, A.J.; Simmons, R.; et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J. Bone Miner. Res. 2019, 34, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Davey Smith, G. Non-linear Mendelian randomization publications on vitamin D report spurious findings and require major correction. Eur. Heart J. 2024, 45, 2677–2678. [Google Scholar] [CrossRef]
- Hamilton, F.W.; Hughes, D.A.; Spiller, W.; Tilling, K.; Davey Smith, G. Non-linear Mendelian randomization: Detection of biases using negative controls with a focus on BMI, Vitamin D and LDL cholesterol. Eur. J. Epidemiol. 2024, 39, 451–465. [Google Scholar] [CrossRef]
- Davey Smith, G.; Ebrahim, S. Erroneous epidemiological findings on vitamins: Coming full circle after two decades of Mendelian randomization? Int. J. Epidemiol. 2025, 54, dyae179. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B. How strong is the evidence that solar ultraviolet B and vitamin D reduce the risk of cancer?: An examination using Hill’s criteria for causality. Dermato-Endocrinology 2009, 1, 17–24. [Google Scholar] [CrossRef]
- Annweiler, C. Vitamin D in dementia prevention. Ann. N. Y. Acad. Sci. 2016, 1367, 57–63. [Google Scholar] [CrossRef]
- Weyland, P.G.; Grant, W.B.; Howie-Esquivel, J. Does sufficient evidence exist to support a causal association between vitamin D status and cardiovascular disease risk? An assessment using Hill’s criteria for causality. Nutrients 2014, 6, 3403–3430. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Vitamin D and cardiovascular diseases: Causality. J. Steroid Biochem. Mol. Biol. 2018, 175, 29–43. [Google Scholar] [CrossRef]
- Mirhosseini, N.; Rainsbury, J.; Kimball, S.M. Vitamin D Supplementation, Serum 25(OH)D Concentrations and Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Aiello, G.; Lombardo, M.; Baldelli, S. Exploring Vitamin D Synthesis and Function in Cardiovascular Health: A Narrative Review. Appl. Sci. 2024, 14, 4339. [Google Scholar] [CrossRef]
- Potischman, N.; Weed, D.L. Causal criteria in nutritional epidemiology. Am. J. Clin. Nutr. 1999, 69, 1309S–1314S. [Google Scholar] [CrossRef] [PubMed]
- Kiely, M.; Brennan, L.; Dunlop, T.; Tate, G.; Woodside, J.V.; Moretti, D.; Working Group 1 of the Federation of European Nutrition Societies Presidential, A. Prevention of chronic disease using vitamins—A case study of the vitamin D and cardiovascular disease hypothesis using evidence from randomised controlled and prospective cohort studies. Eur. J. Nutr. 2025, 64, 199. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Coppi, F.; Severino, P.; Penna, C.; Pagliaro, P.; Dei Cas, A.; Bucciarelli, V.; Madonna, R.; Tarperi, C.; Schena, F.; et al. A Personalized Approach to Vitamin D Supplementation in Cardiovascular Health Beyond the Bone: An Expert Consensus by the Italian National Institute for Cardiovascular Research. Nutrients 2024, 17, 115. [Google Scholar] [CrossRef]
- Tahmaz, G.A.A.; Alhammadi, H.S.; Al Hussami, J.; Abdalla, A.A.S.M.; Alasfour, A.A.A.A.A.; Mohammed, M.O.O.; Tahir, I.; Qureshi, S.; Mustafa, L.A. Role of Vitamin D Supplementation in the Prevention and Treatment of Cardiovascular Diseases. J. Popul. Ther. Clin. Pharmacol. 2025, 32, 16–37. [Google Scholar] [CrossRef]
- Frame, L.A.; Fischer, J.P.; Geller, G.; Cheskin, L.J. Use of Placebo in Supplementation Studies-Vitamin D Research Illustrates an Ethical Quandary. Nutrients 2018, 10, 347. [Google Scholar] [CrossRef]
- Heaney, R.P. Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr. Rev. 2014, 72, 48–54. [Google Scholar] [CrossRef]
- Grant, W.B.; Boucher, B.J.; Bhattoa, H.P.; Lahore, H. Why vitamin D clinical trials should be based on 25-hydroxyvitamin D concentrations. J. Steroid Biochem. Mol. Biol. 2018, 177, 266–269. [Google Scholar] [CrossRef]
- Gospodarska, E.; Ghosh Dastidar, R.; Carlberg, C. Intervention Approaches in Studying the Response to Vitamin D(3) Supplementation. Nutrients 2023, 15, 3382. [Google Scholar] [CrossRef]
- Rostami, M.; Tehrani, F.R.; Simbar, M.; Bidhendi Yarandi, R.; Minooee, S.; Hollis, B.W.; Hosseinpanah, F. Effectiveness of Prenatal Vitamin D Deficiency Screening and Treatment Program: A Stratified Randomized Field Trial. J. Clin. Endocrinol. Metab. 2018, 103, 2936–2948. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.; Dawson-Hughes, B.; Staten, M. Vitamin D Supplementation and Prevention of Type 2 Diabetes. Reply. N. Engl. J. Med. 2019, 381, 1785–1786. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Staten, M.A.; Knowler, W.C.; Nelson, J.; Vickery, E.M.; LeBlanc, E.S.; Neff, L.M.; Park, J.; Pittas, A.G.; D2d Research Group. Intratrial Exposure to Vitamin D and New-Onset Diabetes Among Adults with Prediabetes: A Secondary Analysis from the Vitamin D and Type 2 Diabetes (D2d) Study. Diabetes Care 2020, 43, 2916–2922. [Google Scholar] [CrossRef]
- Rooney, M.R.; Fang, M.; Ogurtsova, K.; Ozkan, B.; Echouffo-Tcheugui, J.B.; Boyko, E.J.; Magliano, D.J.; Selvin, E. Global Prevalence of Prediabetes. Diabetes Care 2023, 46, 1388–1394. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, X.; Mai, W.; Li, M.; Hu, Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ 2016, 355, i5953. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef]
- Yun, J.S.; Ko, S.H. Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes. Metabolism 2021, 123, 154838. [Google Scholar] [CrossRef] [PubMed]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Physiological Basis for Using Vitamin D to Improve Health. Biomedicines 2023, 11, 1542. [Google Scholar] [CrossRef]
- Tebben, P.J.; Singh, R.J.; Kumar, R. Vitamin D-Mediated Hypercalcemia: Mechanisms, Diagnosis, and Treatment. Endocr. Rev. 2016, 37, 521–547. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Rapidly Increasing Serum 25(OH)D Boosts the Immune System, against Infections-Sepsis and COVID-19. Nutrients 2022, 14, 2977. [Google Scholar] [CrossRef] [PubMed]
Reference | Population Cases, Controls Mean BMI (kg/m2) | Outcome | Mean Follow-Up Period (Years) | Mean Age (Years) | 25(OH)D (nmol/L) | RR (95% CI) |
---|---|---|---|---|---|---|
Scragg, 1990 [4] | 26, 25 | MI inc | 0 | 53 | ≥32 vs. <32 | 0.43 (0.27–0.89) |
Wang, 2008 [11] | 28 ± 5 | CVD inc | 5.4 | 59 ± 9 | <37 vs. ≥37 | 1.62 (1.11–2.36) |
<25 vs. ≥37 | 1.80 (1.05–3.08) | |||||
CVD inc * | <37 vs. ≥37 | 2.13 (1.30–3.48) | ||||
Giovannucci, 2008 [19] | 26 ± 3 | MI inc | 10 | 64 ± 9 | <37 vs. ≥75 | 2.42 (1.53–3.84) |
Dobnig, 2008 [20] | 27 ± 3 | CVD mor | 7.7 | 63 ± 9 | 19 vs. 71 (md) | 2.08 (1.60–2.70) |
33 vs. 71 (md) | 1.53 (1.17–2.01) | |||||
Pilz, 2009 [21] | 27 ± 5 | CVD mor | 6.2 | 70 ± 7 | 31 vs. 58 + 79 (md) | 5.33 (1.97–14.45) |
Anderson, 2010 [18] | CAD/MI | 1.3 ± 1.2 | 55 ± 21 | <38 vs. >75 | 1.45 (p = 0.003) | |
40–75 vs. >75 | 1.15 (p = 0.09) | |||||
HF | <38 vs. >75 | 2.10 (p < 0.001) | ||||
40–75 vs. >75 | 1.31 (p = 0.005) | |||||
Stroke | <38 vs. >75 | 1.78 (p = 0.004) | ||||
40–75 vs. >75 | 1.31 (p = 0.01) | |||||
CVD inc | <38 vs. >75 | 1.79 (1.53–2.10) | ||||
40–75 vs. >75 | 1.22 (1.08–1.38) | |||||
Ginde, 2009 [22] | 27 | CVD mor | 7.3 | 74 | <25 vs. ≥100 | 2.36 (1.17–4.75) |
Semba, 2010 [17] | 27 ± 3 | CVD mor | 6.5 | ~75 ± 3 | <26 vs. >66 | 2.64 (1.14–4.79) |
Grandi, 2010 [12] | CVD inc | MA, 4 studies | Low vs. high | 1.54 (1.22–1.96) | ||
CVD mor | MA, 5 studies | Low vs. high | 1.83 (1.19–2.80) | |||
Schöttker, 2013 [16] | 28 ± 4 | CVD mor | 9.5 | 62 ± 7 | <30 vs. >50 | 1.39 (1.02–1.89) |
Wang, 2021 [23] | 29 | Stroke inc | 5.5 | 47 | <50 vs. 50–125 | 1.77 (1.27–3.07) |
Jayedi, 2023 [24] | CVD mor ** | MA, 5 studies | <25 vs. ≥50 | 1.70 (1.17–1.37) | ||
CVD inc ** | MA, 6 studies | <25 vs. ≥50 | 1.27 (1.34–2.06) |
Author | Baseline 25(OH)D (nmol/L) | BMI | Age (Years) | Vitamin D3 Dose (IU) Treatment, Placebo | Duration (Years) | n | Country | % |
---|---|---|---|---|---|---|---|---|
Manson, 2019 [73] | F, 79 M, 70 | 28 ± 6 | 67 ± 7 | 2000/d 0 | 5.3 | 25,871 | USA | 29.21 |
Scragg, 2017 [74] | 64 ± 24 | 28.4 | 50–84 | 100 k/mo, 0 | 3.3 | 5110 | NZ | 23.28 |
Thompson, 2023 [75] | 77? | 69 ± 6 | 60 k/mo | 5 | 21,310 | Australia | 16.02 | |
Virtanen, 2022 [76] | 75 ± 18 | 27 ± 3 | 68 ± 5 | 1600/d 3200/d 0 | 5 | 2495 | Finland | 3.90 |
Joseph, 2023 [77] | 64 ± 6 | F > 55 M > 50 | 4.6 | 2835, 25,670 | Developing countries | 2.16 | ||
Baron, 2015 [78] | 61 ± 20 | 29 ± 5 | 58 ± 7 | 1000/day | 3–5 | 2259 | USA | 1.33 |
Hansen, 2015 [79] | <75 | 31 ± 7 | 60 ± 6 | 50 k/2 wk 800/15 d 0 | 1 | 229 | USA | 0.64 |
Aloia, 2018 [80] | 55 ± 17 | 30 ± 4 | 68 ± 4 | To achieve >75 nmol/L 0 | 3 | 260 | USA | 0.35 |
Witham, 2013 [81] | ? | 64 ± 10 68 ± 11 | 300 k/2 mo 0 | 0.5 | 75 | UK | 0.35 | |
Lee, 2016 [82] | 49 | 27 ± 5 | 4000/d 2000/d 0 | 1 | 290 | UK | 0.20 | |
Epstein, 2012 [83] | 64 ± 3 | 27 ± 5 | 71 ± 6 | 1000/d 400/d 0 | 1 | 305 | UK | 0.05 |
Author | Population | BMI, Age (Years) | Baseline 25(OH)D (nmol/L) | Vitamin D3 Dose (IU) Treatment, Placebo, | Achieved 25(OH)D (nmol/L) | Variable | Baseline | Achieved |
Mohamad, 2016 [89] | 100 T2DM patients | NA 47 ± 6 | 40 ± 13 | 4500/d 2 mo | 124 ± 44 | FBG (mg/dL) | F: 145 ± 29 M: 126 ± 21 | F: 137 ± 28 * M: 121 ± 19 * |
HbA1c (%) | F: 7.7 ± 1.0 M: 8.1 ± 1.4 | F: 7.3 ± 0.7 * M: 7.3 ± 1.0 * | ||||||
Sluyter, 2017 [56] | 256 [150 with 25(OH)D <50 nmol/L] | 65 ± 9 | 38 ± 9 | 100,000/mo; 0 1.1 yr (0.9–1.5 yr) | 96 ± 7 | Aortic BP (mmHg) | 72 ± 6 | 68.9 ± 5.5 −7.5 (−14.4 to −0.6) CtP |
Pulse wave velocity (m/s) | 9.2 ± 1.8 | 8.9 ± 1.5 −0.3 (−0.6 to −0.1) CtP | ||||||
Peak reservoir pressure (mmHg) | 125 ± 18 | 112 ± 12 −9 (−15 to −2) CtP | ||||||
Mirhosseini, 2017 [57] | 40 hypertensives not taking BP medications | 27 ± 6 NA | 82 ± 38 | 4400 to 7800/d | 113 ± 35 | SBP (mmHg) | 156 ± 15 | 138 ± 21 ** |
Imga, 2019 [90] | 72 women | 28 ± 1 41 ± 10 | 15 (7–40) | NA | 87 (66–176) | LDL-C (mg/dL) | 137 ± 38 | 128 ± 36 * |
FBG (mg/dL) | 92 ± 6 | 87 ± 7 ** | ||||||
HOMA-IR | 3.6 (1.0–6.7) | 2.0 (0.7–3.2) ** | ||||||
50 women | 36 ± 4 41 ± 10 | 14 (8–66) | NA | 87 (67–142) | LDL-C (mg/dL) | 132 ± 39 | 121 ± 33 * | |
FBG (mg/dL) | 92 ± 8 | 92 ± 6 ** | ||||||
HOMA-IR | 4.2 (2.8–10.8) | 2.4 (1.2–7.0) ** | ||||||
[Li, 2021 [91] | 1699 people receiving vitamin D supplements | NA | 82 (58–110) | NA | +25 vs. −25 | LDL-C (mg/dL) | −8 (−7 to −9) ** | |
TG (mg/dL) | −25 (−23 to −29) ** | |||||||
Pecoraro, 2022 [92] | 58 children | 31 ± 4 9–15 | 41 ± 16 | 100,000/mo | 82 ± 42 | LDL-C (mg/dL) | 117 ± 12 | 102 ± 8 p = 0.005 |
TG (mg/dL) | 83 ± 35 | 80 ± 35 (NS) | ||||||
Sabico, 2023 [93] | 62 F | 30 ± 4 39 ± 12 | 30 ± 12 | 50,000/wk for 2 mo; then twice a month, then 1000/d to end of 6 mo | 66 | HDL-C (mmol/L) | 1.03 ± 0.4 | +16% (p = 0.04) |
58 M | 29 ± 4 43 ± 10 | 35 ± 10 | 71 | 0.98 ± 0.3 | +7% (p = 0.001) |
Criterion | How Satisfied | References |
---|---|---|
Strength of association | Prospective cohort studies (Table 1) | [28] |
Consistency | Prospective cohort studies (Table 1) | |
Temporality | Prospective cohort studies (Table 1) | [28] |
Biological gradient | Prospective cohort studies (Table 1) | |
Coherence with known science | Vitamin D supplementation reduces CDRFs, and serum 25(OH)D concentrations are correlated inversely with CDRFs | [111] |
Plausibility | Mechanisms | [97,98,99,110,112] |
Experiment | Prospective observational studies of vitamin D supplementation | [67,68] |
Analogy | The effect of vitamin D in reducing the risk of many other types of disease | [8] |
Accounting for confounding factors [113] | Cold temperature, nitric oxide | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grant, W.B.; Boucher, B.J.; Cheng, R.Z.; Pludowski, P.; Wimalawansa, S.J. Vitamin D and Cardiovascular Health: A Narrative Review of Risk Reduction Evidence. Nutrients 2025, 17, 2102. https://doi.org/10.3390/nu17132102
Grant WB, Boucher BJ, Cheng RZ, Pludowski P, Wimalawansa SJ. Vitamin D and Cardiovascular Health: A Narrative Review of Risk Reduction Evidence. Nutrients. 2025; 17(13):2102. https://doi.org/10.3390/nu17132102
Chicago/Turabian StyleGrant, William B., Barbara J. Boucher, Richard Z. Cheng, Pawel Pludowski, and Sunil J. Wimalawansa. 2025. "Vitamin D and Cardiovascular Health: A Narrative Review of Risk Reduction Evidence" Nutrients 17, no. 13: 2102. https://doi.org/10.3390/nu17132102
APA StyleGrant, W. B., Boucher, B. J., Cheng, R. Z., Pludowski, P., & Wimalawansa, S. J. (2025). Vitamin D and Cardiovascular Health: A Narrative Review of Risk Reduction Evidence. Nutrients, 17(13), 2102. https://doi.org/10.3390/nu17132102