Meat–Carbohydrate Dietary Pattern and Elevated Serum Uric Acid in Children and Adolescents: Mediating Role of Obesity in a Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Dietary Assessment
2.3. Physical Examination and Laboratory Tests
2.4. Assessment of Covariates
2.5. Statistical Analysis
2.5.1. Description and Analysis of the Baseline Characteristics
2.5.2. Identification of Dietary Patterns
2.5.3. Association Between Dietary Patterns and Serum Uric Acid and Hyperuricemia
2.5.4. Parallel Mediating Effects of BMI Z-Score and Ln (WC)
2.5.5. Sensitivity Analysis
3. Results
3.1. Participant Characteristics
3.2. Dietary Pattern Derivation
3.3. The Associations Among Dietary Patterns and SUA Levels/Hyperuricemia
3.4. Mediation Analysis
3.5. Sensitivity Analysis of Association Between Dietary Patterns and SUA
4. Discussion
4.1. Summary
4.2. Interpretation of SUA Levels
4.3. Interpretation of Dietary Patterns
4.4. Meat–Carbohydrate Pattern and SUA Levels
4.5. The Mediating Effects of BMI Z-Score and WC
4.6. High-Protein Pattern and SUA Levels
4.7. Plant-Based Pattern, Snack–Beverage Pattern, and SUA Levels
4.8. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SUA | Serum uric acid |
DP | Dietary pattern |
BMI | Body mass index |
WC | Waist circumference |
DASH | Dietary Approaches to Stop Hypertension |
FFQ | Food frequency questionnaire |
FBG | Blood glucose |
TGs | Triglycerides |
TC | Total cholesterol |
HDL-C | High-density lipoprotein cholesterol |
LDL-C | Low-density lipoprotein cholesterol |
WHO | World Health Organization |
DAG | Directed acyclic graph |
MVPA | Moderate–vigorous intensity physical activity |
IQR | Interquartile range |
OR | Odds ratio |
PR | Prevalence ratio |
CI | Confidence interval |
SD | Standard deviation |
SEM | Structural equation modeling |
ATP | Adenosine triphosphate |
PAF | Population attributable fraction |
References
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An Old Disease in New Perspective—A Review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet 2021, 397, 1843–1855. [Google Scholar] [CrossRef]
- Li, B.; Chen, L.; Hu, X.; Tan, T.; Yang, J.; Bao, W.; Rong, S. Association of Serum Uric Acid With All-Cause and Cardiovascular Mortality in Diabetes. Diabetes Care 2023, 46, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Chonchol, M.; Shlipak, M.G.; Katz, R.; Sarnak, M.J.; Newman, A.B.; Siscovick, D.S.; Kestenbaum, B.; Carney, J.K.; Fried, L.F. Relationship of Uric Acid with Progression of Kidney Disease. Am. J. Kidney Dis. 2007, 50, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Xu, C.; Lin, Y.; Lu, C.; Li, D.; Sang, J.; He, H.; Liu, X.; Li, Y.; Yu, C. Uric Acid Regulates Hepatic Steatosis and Insulin Resistance through the NLRP3 Inflammasome-Dependent Mechanism. J. Hepatol. 2016, 64, 925–932. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhong, S.; Liang, Y.; Zhang, X.; Zhang, R.; Kang, K.; Qu, H.; Xu, Y.; Zhao, C.; Zhao, M. Serum Uric Acid and the Risk of Dementia: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2021, 13, 625690. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, H.; Jeon, S.; Cho, K.W.; Kim, S.J.; Kim, S.; Lee, M.; Suh, J.; Chae, H.W.; Kim, H.-S.; et al. Prediction of Insulin Resistance and Elevated Liver Transaminases Using Serum Uric Acid and Derived Markers in Children and Adolescents. Eur. J. Clin. Nutr. 2024, 78, 864–871. [Google Scholar] [CrossRef]
- Seo, Y.-J.; Shim, Y.S.; Lee, H.S.; Hwang, J.S. Association of Serum Uric Acid Levels with Metabolic Syndromes in Korean Adolescents. Front. Endocrinol. 2023, 14, 1159248. [Google Scholar] [CrossRef]
- Yun, M.; Zhang, T.; Li, S.; Wang, X.; Fan, L.; Yan, Y.; Bazzano, L.; He, J.; Chen, W. Temporal Relationship between Body Mass Index and Uric Acid and Their Joint Impact on Blood Pressure in Children and Adults: The Bogalusa Heart Study. Int. J. Obes. 2021, 45, 1457–1463. [Google Scholar] [CrossRef]
- Rao, J.; Ye, P.; Lu, J.; Chen, B.; Li, N.; Zhang, H.; Bo, H.; Chen, X.; Liu, H.; Zhang, C.; et al. Prevalence and Related Factors of Hyperuricaemia in Chinese Children and Adolescents: A Pooled Analysis of 11 Population-Based Studies. Ann. Med. 2022, 54, 1608. [Google Scholar] [CrossRef]
- Guo, K.; Han, Y.; Liu, S.; Sun, H.; Lin, X.; Yang, S.; Gao, Y.; Chen, H. Prevalence of and Trends in Hyperuricemia by Race and Ethnicity among US Adolescents, 1999–2018. Arthritis Res. Ther. 2024, 26, 193. [Google Scholar] [CrossRef]
- Reis, L.N.; Borfe, L.; Brand, C.; Franke, S.I.R.; Renner, J.D.P.; Gaya, A.R.; Brazo-Sayavera, J.; Reuter, C.P. Food Consumption Is Associated with Hyperuricemia in Boys. High Blood Press Cardiovasc. Prev. 2020, 27, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Lukesova, M.; Zeman, J. Pediatrics Hyperuricemia in Clinical Practice: A Retrospective Analysis in 1753 Children and Adolescents with Hyperuricemia. Joint Bone Spine 2024, 92, 105796. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Huang, Y.; Wang, H.; Wang, C.; Xu, H.; Ke, P.; He, Y.; Tian, Q.; Cao, S.; Lu, Z. Association between Adherence to the Dietary Approaches to Stop Hypertension Diet and Serum Uric Acid. Sci. Rep. 2023, 13, 6347. [Google Scholar] [CrossRef]
- Bao, Z.; Qian, Z.; Chen, J.; Chen, Y.; Li, N.; Ye, Y.; Ren, Y.; Tang, Y.; Chen, D. Relationships between Different Trends of the Mediterranean Diet and Cardiovascular Disease-Related Risk Factors in China: Results from the CHNS Study, 1997–2009. Front. Nutr. 2024, 11, 1463947. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission. Dietary Guidelines for Hyperuricemia and Gout in Adults (2024 Edition); National Health Commission of the People’s Republic of China: Beijing, China, 2024. Available online: https://www.nhc.gov.cn/wjw/c100378/202402/afd5dda4bd6745fda10aad8d43a16369.shtml (accessed on 12 March 2025).
- Jiguo, Z.; Zhihong, W.; Feifei, H.; Bing, Z.; Huijun, W. Changing trends in Dietary Patterns among Chinese Children and Adolescents from 1991 to 2018. Acta Nutr. Sin. 2021, 43, 213–217. [Google Scholar] [CrossRef]
- National Administration of Disease Prevention and Control Report on Chinese Residents’ Chronic Diseases and Nutrition(2020). Acta Nutr. Sin. 2020, 42, 521.
- Li, S.; Feng, L.; Sun, X.; Ding, J.; Zhou, W. Association between Serum Uric Acid and Measures of Adiposity in Chinese Adults: A Cross-Sectional Study. BMJ Open 2023, 13, e072317. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Wang, P.; Song, M.; Eliassen, A.H.; Wang, M.; Fung, T.T.; Clinton, S.K.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Tabung, F.K.; et al. Optimal Dietary Patterns for Prevention of Chronic Disease. Nat. Med. 2023, 29, 719–728. [Google Scholar] [CrossRef]
- Cheng, S.; Shan, L.; You, Z.; Xia, Y.; Zhao, Y.; Zhang, H.; Zhao, Z. Dietary Patterns, Uric Acid Levels, and Hyperuricemia: A Systematic Review and Meta-Analysis. Food Funct. 2023, 14, 7853–7868. [Google Scholar] [CrossRef] [PubMed]
- National Heath and Family Planning Commission of the People’s Republic of China. Chronic Disease and Nutrition Monitoring Work Plan for Chinese Residents (Trial). Available online: https://www.chinanutri.cn/tzgg_6537/tzgg_102/201412/t20141231_108847.html (accessed on 3 March 2025).
- Yang, Y.X. China Food Composition Tables Standard, 6th ed.; Peking University Medical Press: Beijing, China, 2022. [Google Scholar]
- Endocrine Society of Chinese Medical Association. Chinese Expert Consensus on the Treatment of Gout and Hyperuricaemia. Chin. J. Endocrinol. Metab. 2013, 29, 913–920. [Google Scholar] [CrossRef]
- Bardin, T.; Richette, P. Definition of Hyperuricemia and Gouty Conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- WS/T 456-2014; Screening Standard for Malnutrition of School-Age Children and Adolescents. National Health Commission of the People’s Republic of China: Beijing, China, 2014.
- WS/T 586-2018; Screening for Overweight and Obesity Among School-Age Children and Adolescents. National Health Commission of the People’s Republic of China: Beijing, China, 2018.
- WS/T 610—2018; Reference of Screening for Elevated Blood Pressure among Children and Adolescentsaged 7~18 Years. National Health Commission of the People’s Republic of China: Beijing, China, 2018.
- The Subspecialty Group of Rare Diseases, the Society of Pediatrics, Chinese Medical Association; The Subspecialty Group of Cardiology, the Society of Pediatrics, Chinese Medical Association; The Subspecialty Group of Child Health Care, the Society of Pediatrics, Chinese Medical Association; The Subspecialty Group of Endocrinological, Hereditary and Metabolic Diseases, the Society of Pediatrics; The Editorial Board, Chinese Journal of Pediatrics. Expert consensus on diagnosis and management ofdyslipidemia in children (2022). Chin. J. Pediatr. 2022, 60, 633–639. [Google Scholar] [CrossRef]
- The Subspecialty Group of Endocrinologic, Hereditary and Metabolic Diseases, the Society of Pediatrics, Chinese Medical Association. Type 2 diabetes in the child and adolescent: Consensus in China. Chin. J. Pediatr. 2017, 55, 404–410. [Google Scholar] [CrossRef]
- Composing and Editorial Board of Physical Activity. Guidelines for Chinese Physical Activity Guidelines for Chinese (2021). Chin. J. Epidemiol. 2022, 43, 5–6. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Chen, M.M.; Ma, T.; Ma, Q.; Liu, J.Y.; Dong, Y.H.; Song, Y.; Ma, J. Prevalence of unhealthy lifestyle among children and adolescents of Han nationality in China. Chin. J. Cardiol. 2022, 50, 1177–1185. [Google Scholar]
- The Ministry of Education China Sets Minimum Sleeping Hours for Children, Teens. Available online: https://www.gov.cn/zhengce/zhengceku/2021-04/02/content_5597443.htm (accessed on 5 March 2025).
- Zhang, M.; Wang, H.; Zhao, J. Use Machine Learning Models to Identify and Assess Risk Factors for Coronary Artery Disease. PLoS ONE 2024, 19, e0307952. [Google Scholar] [CrossRef]
- Kubota, M. Hyperuricemia in Children and Adolescents: Present Knowledge and Future Directions. J. Nutr. Metab. 2019, 2019, 3480718. [Google Scholar] [CrossRef]
- Wang, Y.; Charchar, F.J. Establishment of Sex Difference in Circulating Uric Acid Is Associated with Higher Testosterone and Lower Sex Hormone-Binding Globulin in Adolescent Boys. Sci. Rep. 2021, 11, 17323. [Google Scholar] [CrossRef] [PubMed]
- Alvim, R.O.; Siqueira, J.H.; Zaniqueli, D.; Dutra, D.M.; Oliosa, P.R.; Mill, J.G. Influence of Muscle Mass on the Serum Uric Acid Levels in Children and Adolescents. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, H.; Watanabe, M.; Sugimoto, M.; Ariyoshi, Y.; Mahmood, S.; Araki, M.; Ishii, K.; Nasu, Y.; Nagai, A.; Kumon, H. Testosterone Replacement Elevates the Serum Uric Acid Levels in Patients with Female to Male Gender Identity Disorder. Endocr. J. 2013, 60, 1321–1327. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Z.; Zhu, B.; Zhang, H.; Zhang, X.; Ding, X. Demographic, Regional and Temporal Trends of Hyperuricemia Epidemics in Mainland China from 2000 to 2019: A Systematic Review and Meta-Analysis. Glob. Health Action 2021, 14, 1874652. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Sofue, T.; Kawakami, R.; Ozaki, T.; Manabe, M.; Kanda, K.; Yoda, T.; Kusaka, T.; Hirao, T.; Minamino, T. Prevalence and Factors Related to Hypouricemia and Hyperuricemia in Schoolchildren: Results of a Large-Scale Cross-Sectional Population-Based Study Conducted in Japan. Sci. Rep. 2022, 12, 17848. [Google Scholar] [CrossRef]
- Ju, L.; Zhao, L.; Fang, H.; Guo, Q.; Pu, W.; Xu, X.; Li, S.; Cheng, X.; Cai, S.; Yu, D. Main food intakes of Chinese children aged 6–17 years, 2016–2017: Surveillance data-based evaluation. Chin. J. Public Health 2023, 39, 550–555. [Google Scholar]
- Kong, B.; Liu, F.; Zhang, S.; Wu, Y.; Li, Y.; Xiong, J.; Tang, Y.; Li, Y.; Yao, P. Associations between Dietary Patterns and Serum Uric Acid Concentrations in Children and Adolescents: A Cross-Sectional Study. Food Funct. 2023, 14, 9803–9814. [Google Scholar] [CrossRef]
- Rai, S.K.; Fung, T.T.; Lu, N.; Keller, S.F.; Curhan, G.C.; Choi, H.K. The Dietary Approaches to Stop Hypertension (DASH) Diet, Western Diet, and Risk of Gout in Men: Prospective Cohort Study. BMJ 2017, 357, j1794. [Google Scholar] [CrossRef]
- Aihemaitijiang, S.; Zhang, Y.; Zhang, L.; Yang, J.; Ye, C.; Halimulati, M.; Zhang, W.; Zhang, Z. The Association between Purine-Rich Food Intake and Hyperuricemia: A Cross-Sectional Study in Chinese Adult Residents. Nutrients 2020, 12, 3835. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T.-Y.; Gao, T.-Y.; Shi, K.-Q.; Yin, F.-Q.; Yu, Y.-X.; Zhang, C. Pro-Inflammatory Diets Promote the Formation of Hyperuricemia. Front. Endocrinol. 2024, 15, 1398917. [Google Scholar] [CrossRef]
- Rao, J.; Yan, Y.; Cheng, H.; Hou, D.; Zhao, X.; Shan, X.; Mi, J. Uric Acid Mediated the Relationship between Obesity and Hypertension in Children and Adolescents: A Population-based Cohort Study. Nutr. Metab. Cardiovasc. Dis. NMCD 2024, 34, 214–222. [Google Scholar] [CrossRef]
- He, H.; Pan, L.; Du, J.; Jin, Y.; Jia, P.; Shan, G. Body Mass Index Was Linked with Multi-Cardiometabolic Abnormalities in Chinese Children and Adolescents: A Community-Based Survey. BMC Pediatr. 2022, 22, 33. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Zhao, J.; Liang, J.; Gao, X.; Gao, Q.; He, S.; Wang, T. Association between Nutrient Patterns and Hyperuricemia: Mediation Analysis Involving Obesity Indicators in the NHANES. BMC Public Health 2022, 22, 1981. [Google Scholar] [CrossRef] [PubMed]
- Topless, R.K.G.; Major, T.J.; Florez, J.C.; Hirschhorn, J.N.; Cadzow, M.; Dalbeth, N.; Stamp, L.K.; Wilcox, P.L.; Reynolds, R.J.; Cole, J.B.; et al. The Comparative Effect of Exposure to Various Risk Factors on the Risk of Hyperuricaemia: Diet Has a Weak Causal Effect. Arthritis Res. Ther. 2021, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Özalp Kızılay, D.; Şen, S.; Ersoy, B. Associations Between Serum Uric Acid Concentrations and Cardiometabolic Risk and Renal Injury in Obese and Overweight Children. J. Clin. Res. Pediatr. Endocrinol. 2019, 11, 262–269. [Google Scholar] [CrossRef]
- Sun, H.; Chang, X.; Bian, N.; An, Y.; Liu, J.; Leng, S.; Wang, G. Adipose Tissue Insulin Resistance Is Positively Associated With Serum Uric Acid Levels and Hyperuricemia in Northern Chinese Adults. Front. Endocrinol. 2022, 13, 835154. [Google Scholar] [CrossRef]
- Hang, Y.; Zou, L.; Jiang, L.; Zhang, X.; Huang, X.; Liu, Y.; Zhou, Z.; Pan, H.; Ma, H.; Rong, S. Association between Visceral Fat Area and Serum Uric Acid in Chinese Adults: A Cross-Sectional Study. Nutr. Metab. Cardiovasc. Dis. NMCD 2023, 33, 2464–2470. [Google Scholar] [CrossRef]
- Bae, J.; Park, K.-Y.; Son, S.; Huh, Y.; Nam, G.E. Associations between Obesity Parameters and Hyperuricemia by Sex, Age, and Diabetes Mellitus: A Nationwide Study in Korea. Obes. Res. Clin. Pract. 2023, 17, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhang, Y.; Sun, Y.; Sheng, J.; Lu, W.; Li, J.; Mao, X.; Feng, Y.; Shen, X. A Combined Association of Obesity, Alanine Aminotransferase and Creatinine with Hyperuricemia in Youth Aged 13–20 Years. Front. Nutr. 2024, 11, 1326039. [Google Scholar] [CrossRef]
- Mazidi, M.; Katsiki, N.; Mikhailidis, D.P.; Banach, M. The Link between Insulin Resistance Parameters and Serum Uric Acid Is Mediated by Adiposity. Atherosclerosis 2018, 270, 180–186. [Google Scholar] [CrossRef]
- Cantonese Dietary Pattern Expert Group; Guangdong Nutrition Society. An Introduction to the cantonese dietary pattern. Acta Nutr. Sin. 2023, 45, 417–421. [Google Scholar] [CrossRef]
- Meng, S.; Cui, Z.; Li, M.; Li, T.; Wu, F.; Kang, T.; Meng, H. Associations between Dietary Animal and Plant Protein Intake and Cardiometabolic Risk Factors-A Cross-Sectional Study in China Health and Nutrition Survey. Nutrients 2021, 13, 336. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; McAdams-Demarco, M.; Gelber, A.C.; Sacks, F.M.; Appel, L.J.; White, K.J.; Miller, E.R. Effects of Lowering Glycemic Index of Dietary Carbohydrate on Plasma Uric Acid Levels: The OmniCarb Randomized Clinical Trial. Arthritis Rheumatol. 2016, 68, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimpour-Koujan, S.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Consumption of Sugar-Sweetened Beverages and Serum Uric Acid Concentrations: A Systematic Review and Meta-Analysis. J. Hum. Nutr. Diet. 2021, 34, 305–313. [Google Scholar] [CrossRef]
- Longo, G.Z.; Ordaz, K.D.; da Silva, D.C.G.; Hinnig, P.d.F.; Roberto, D.M.T.; Reinert, C.; Pot, G.K.; Palla, L. Dietary Patterns and Cardiovascular Risk Factors among Brazilians: A Population-Based Study in Viçosa, Minas Gerais. Nutrition 2022, 98, 111626. [Google Scholar] [CrossRef]
Characteristic | n (%) | SUA [Median (IQR)] a | Z/H b | p c |
---|---|---|---|---|
Sex | 26.18 | <0.001 | ||
Boy | 2217 (54.07) | 412 (355, 475) | ||
Girl | 1883 (45.93) | 338 (297, 385) | ||
Age group (year) | 257.61 | <0.001 | ||
9–10 | 591 (14.41) | 329 (287, 383) | ||
11–13 d | 1521 (37.10) | 369 (318, 430) | ||
14–17 de | 1988 (48.49) | 395 (334, 458) | ||
Boarding status | 14.89 | <0.001 | ||
Yes | 2413 (58.85) | 393 (335, 455) | ||
No | 1687 (41.15) | 351 (301, 407) | ||
Sleep duration | 1.17 | 0.244 | ||
Inadequate | 2304 (56.20) | 376 (320, 438) | ||
Adequate | 1796 (43.80) | 373 (316, 437) | ||
Physical activity | −3.36 | <0.001 | ||
Inadequate | 2362 (57.61) | 368 (317, 434) | ||
Adequate | 1738 (42.39) | 382 (322, 442) | ||
Education of mother | 5.72 | 0.057 | ||
Junior high school or below | 1291 (31.49) | 378 (320, 443) | ||
High school | 1186 (28.93) | 378 (323, 438) | ||
College degree or above | 1623 (39.58) | 369 (315, 434) | ||
Education of father | 0.30 | 0.863 | ||
Junior high school or below | 1219 (29.73) | 376 (319, 439) | ||
High school | 1232 (30.05) | 373 (320, 439) | ||
College degree or above | 1649 (40.22) | 374 (318, 437) | ||
Nutritional status | 293.21 | <0.001 | ||
Underweight | 424 (10.34) | 344 (302, 400) | ||
Normal weight f | 2853 (69.59) | 366 (314, 424) | ||
Overweight fg | 493 (12.02) | 403 (345, 475) | ||
Obesity fgh | 330 (8.05) | 458 (382, 522) | ||
Blood pressure | 94.29 | <0.001 | ||
Normal | 3637 (88.71) | 369 (316, 431) | ||
High systolic blood pressure i | 304 (7.41) | 418 (353, 490) | ||
High diastolic blood pressure i | 96 (2.34) | 412 (357, 469) | ||
Both high i | 63 (1.54) | 431 (369, 496) | ||
Blood glucose | 3.62 | 0.164 | ||
Normal | 3926 (95.76) | 375 (319, 438) | ||
Impaired fasting blood glucose | 167 (4.07) | 362 (322, 434) | ||
Diabetes | 7 (0.17) | 316 (279, 404) | ||
Blood lipid | 3.80 | <0.001 | ||
Normal | 3131 (76.37) | 372 (317, 432) | ||
Dyslipidemia | 969 (23.63) | 382 (325, 463) |
Quintile of Dietary Pattern Scores | Per 1 SD a Increase in Dietary Pattern Score | ||||||||
---|---|---|---|---|---|---|---|---|---|
Q2 | Q3 | Q4 | ptrend c | ||||||
β (95% CI b) | p c | β (95% CI b) | p c | β (95% CI b) | p c | β (95% CI b) | p c | ||
Plant-based pattern | |||||||||
Model 1 d | 2.84 (−4.75, 10.43) | 0.464 | 5.51 (−2.10, 13.13) | 0.156 | 7.21 (−0.49, 14.92) | 0.067 | 0.263 | 1.76 (−0.90, 4.42) | 0.195 |
Model 2 e | 3.66 (−3.10, 10.43) | 0.289 | 5.96 (−0.85, 12.77) | 0.086 | 7.788 (0.81, 14.77) | 0.029 | 0.059 | 2.07 (−0.35, 4.48) | 0.093 |
Model 3 f | 2.57 (−4.12, 9.27) | 0.451 | 5.25 (−1.49,11.98) | 0.127 | 6.11 (−0.80, 13.02) | 0.083 | 0.098 | 1.96 (−0.43, 4.35) | 0.108 |
Snack–beverage pattern | |||||||||
Model 1 d | 8.51 (0.87, 16.14) | 0.029 | 14.95 (7.31, 22.58) | <0.001 | 17.57 (9.86, 25.27) | <0.001 | <0.001 | 5.40 (2.73, 8.06) | <0.001 |
Model 2 e | 3.57 (−3.24, 10.38) | 0.304 | 4.39 (−2.45, 11.24) | 0.208 | 4.02 (−2.91, 10.96) | 0.255 | 0.349 | 1.50 (−0.89, 3.88) | 0.219 |
Model 3 f | 1.48 (−5.28, 8.23) | 0.668 | 1.68 (−5.13, 8.48) | 0.629 | 0.18 (−6.75, 7.12) | 0.958 | 0.993 | 0.50 (−1.88, 2.88) | 0.679 |
High-protein pattern | |||||||||
Model 1 d | 15.68 (8.07, 23.28) | <0.001 | 9.33 (1.75, 16.91) | 0.016 | 15.71 (8.11, 23.30) | <0.001 | 0.002 | 3.61 (0.95, 6.28) | 0.008 |
Model 2 e | 10.73 (3.96, 17.50) | 0.002 | 2.07 (−4.69, 8.83) | 0.548 | 7.41 (0.61, 14.21) | 0.033 | 0.168 | 0.91 (1.47, 3.29) | 0.454 |
Model 3 f | 8.95 (2.24, 15.66) | 0.009 | 2.33 (−4.36, 9.02) | 0.495 | 9.17 (2.41, 15.93) | 0.008 | 0.027 | 1.95 (−0.43, 4.33) | 0.108 |
Meat–carbohydrate pattern | |||||||||
Model 1 d | 12.67 (4.98, 20.36) | 0.001 | 21.33 (13.69, 28.97) | <0.001 | 45.38 (37.77, 52.98) | <0.001 | <0.001 | 16.40 (13.70, 19.06) | <0.001 |
Model 2 e | −0.42 (−7.31, 6.47) | 0.905 | −0.21 (−7.15, 6.72) | 0.952 | 10.58 (3.48, 17.67) | 0.003 | 0.002 | 4.47 (2.01, 6.94) | <0.001 |
Model 3 f | −1.58 (−8.40, 5.24) | 0.650 | −2.08 (−8.96, 4.80) | 0.554 | 8.14 (1.07, 15.21) | 0.024 | 0.012 | 3.67 (1.22, 6.12) | 0.003 |
Effects | β (95% CI b) | SE c | p d | Mediation Proportion (%) e |
---|---|---|---|---|
Indirect effect via BMI Z-score | 0.009 (0.003, 0.017) | 0.001 | 0.007 | 20.0 |
Indirect effect via ln (WC) f | 0.008 (0.003, 0.017) | 0.001 | 0.036 | 17.8 |
Direct effect | 0.027 (–0.002, 0.055) | 0.003 | 0.057 | / |
Total effect | 0.045 (0.014, 0.075) | 0.004 | 0.004 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, G.; Zeng, C.; Wan, J.; Zhong, W.; Su, Z.; Luo, S.; Huang, J.; Zhang, W.; Yuan, J.; Zhang, J.; et al. Meat–Carbohydrate Dietary Pattern and Elevated Serum Uric Acid in Children and Adolescents: Mediating Role of Obesity in a Cross-Sectional Study. Nutrients 2025, 17, 2090. https://doi.org/10.3390/nu17132090
Tao G, Zeng C, Wan J, Zhong W, Su Z, Luo S, Huang J, Zhang W, Yuan J, Zhang J, et al. Meat–Carbohydrate Dietary Pattern and Elevated Serum Uric Acid in Children and Adolescents: Mediating Role of Obesity in a Cross-Sectional Study. Nutrients. 2025; 17(13):2090. https://doi.org/10.3390/nu17132090
Chicago/Turabian StyleTao, Guixian, Chunzi Zeng, Jiayi Wan, Wanzhen Zhong, Zheng Su, Shiyun Luo, Jie Huang, Weiwei Zhang, Jun Yuan, Jinxin Zhang, and et al. 2025. "Meat–Carbohydrate Dietary Pattern and Elevated Serum Uric Acid in Children and Adolescents: Mediating Role of Obesity in a Cross-Sectional Study" Nutrients 17, no. 13: 2090. https://doi.org/10.3390/nu17132090
APA StyleTao, G., Zeng, C., Wan, J., Zhong, W., Su, Z., Luo, S., Huang, J., Zhang, W., Yuan, J., Zhang, J., Shen, J., & Li, Y. (2025). Meat–Carbohydrate Dietary Pattern and Elevated Serum Uric Acid in Children and Adolescents: Mediating Role of Obesity in a Cross-Sectional Study. Nutrients, 17(13), 2090. https://doi.org/10.3390/nu17132090