Curcumin for Inflammation Control in Individuals with Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Study Protocol
2.5. Ethics
2.6. Dietary and Exercise Recommendations
2.7. Randomization Procedures
2.8. Blinding Procedures
2.9. Intervention
2.10. Preparation of Curcuminoid Capsules
2.11. Study Outcomes
2.12. Data Collection and Measurement Methods
2.13. Sample Size
2.14. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Anti-Inflammatory Effects
3.3. Antioxidant Effects
3.4. Non-Esterified Fatty Acid Levels
3.5. Anthropometric Measurements and Weight Management
3.6. Glycemic Control Effects
3.7. CAP and Liver Stiffness
3.8. Fatty Liver-Associated Indicators
3.9. Sex-Stratified Analyses
3.10. Blinding Assessment
3.11. Adverse Effects
3.12. Overall Safety and Compliance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFP | body fat percentage |
BMI | body mass index |
CAP | controlled attenuation parameter |
GGT | gamma-glutamyl transferase |
GPx | glutathione peroxidase |
FLI | fatty liver index |
HbA1c | glycated hemoglobin |
HSI | hepatic steatosis index |
IL-1β | interleukin-1 beta |
IL-6 | interleukin-6 |
IQR | interquartile range |
LAP | lipid accumulation product |
MASLD | metabolic dysfunction-associated steatotic liver disease |
MDA | malondialdehyde |
NEFA | non-esterified fatty acids |
SOD | superoxide dismutase |
T2DM | type 2 diabetes mellitus |
TBF | total body fat |
TG | triglycerides |
TNF | tumor necrosis factor |
WC | waist circumference |
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- El-Kassas, M.; Cabezas, J.; Coz, P.I.; Zheng, M.-H.; Arab, J.P.; Awad, A. Nonalcoholic fatty liver disease: Current global burden. Semin. Liver Dis. 2022, 42, 401–412. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Henry, L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Rep. 2021, 3, 100305. [Google Scholar] [CrossRef]
- Kuchay, M.S.; Choudhary, N.S.; Mishra, S.K. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1875–1887. [Google Scholar] [CrossRef]
- Dattani, J.J.; Rajput, D.K.; Moid, N.; Highland, H.N.; George, L.B.; Desai, K.R. Ameliorative effect of curcumin on hepatotoxicity induced by chloroquine phosphate. Environ. Toxicol. Pharmacol. 2010, 30, 103–109. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, S.; Chen, A. Curcumin eliminates leptin’s effects on hepatic stellate cell activation via interrupting leptin signaling. Endocrinology 2009, 150, 3011–3020. [Google Scholar] [CrossRef]
- Jang, E.M.; Choi, M.S.; Jung, U.J.; Kim, M.J.; Kim, H.J.; Jeon, S.M.; Shin, S.K.; Seong, C.N.; Lee, M.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism 2008, 57, 1576–1583. [Google Scholar] [CrossRef]
- Tang, Y. Curcumin targets multiple pathways to halt hepatic stellate cell activation: Updated mechanisms in vitro and in vivo. Dig. Dis. Sci. 2015, 60, 1554–1564. [Google Scholar] [CrossRef]
- Vizzutti, F.; Provenzano, A.; Galastri, S.; Milani, S.; Delogu, W.; Novo, E.; Caligiuri, A.; Zamara, E.; Arena, U.; Laffi, G.; et al. Curcumin limits the fibrogenic evolution of experimental steatohepatitis. Lab. Investig. 2010, 90, 104–115. [Google Scholar] [CrossRef]
- Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Mesa, M.D.; Granados, S.; Gil, A.; Quiles, J.L. Curcumin ameliorates rabbits’s steatohepatitis via respiratory chain, oxidative stress, and TNF-alpha. Free Radic. Biol. Med. 2009, 47, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Asgary, S.; Askari, G.; Keshvari, M.; Hatamipour, M.; Feizi, A.; Sahebkar, A. Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytother. Res. 2016, 30, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A randomized controlled trial. Drug Res. 2017, 67, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D.; for the CONSORT Group. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef]
- Petta, S.; Wong, V.W.; Camma, C.; Hiriart, J.B.; Wong, G.L.; Marra, F.; Vergniol, J.; Chan, A.W.; Di Marco, V.; Merrouche, W.; et al. Improved noninvasive prediction of liver fibrosis by liver stiffness measurement in patients with nonalcoholic fatty liver disease accounting for controlled attenuation parameter values. Hepatology 2017, 65, 1145–1155. [Google Scholar] [CrossRef]
- American Diabetes Association. Executive summary: Standards of medical care in diabetes—2013. Diabetes Care 2013, 36 (Suppl. S1), S4–S10. [Google Scholar] [CrossRef]
- Brand, J.C.; Colagiuri, S.; Crossman, S.; Allen, A.; Roberts, D.C.; Truswell, A.S. Low-Glycemic Index Foods Improve Long-Term Glycemic Control in NIDDM. Diabetes Care 1991, 14, 95–101. [Google Scholar] [CrossRef]
- World Health Organization. Annex 3: Supplementary Guidelines on Good Manufacturing Practices for the Manufacture of Herbal Medicines. In WHO Technical Report Series, No. 937; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med. 2003, 9, 161–168. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Q.; Sun, L.; Zong, G.; Lu, L.; Liu, G.; Rosner, B.; Ye, X.; Li, H.; Lin, X. The development and validation of new equations for estimating body fat percentage among Chinese men and women. Br. J. Nutr. 2015, 113, 1365–1372. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Pellegrini, N.; Colombi, B.; Bianchi, M.; Serafini, M.; Torta, F.; Tegoni, M.; Musci, M.; Brighenti, F. Rapid fluorimetric method to detect total plasma malondialdehyde with mild derivatization conditions. Clin. Chem. 2003, 49, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Kahn, H.S.; Bellentani, S.; Tiribelli, C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Eslamparast, T.; Poustchi, H.; Zamani, F.; Sharafkhah, M.; Malekzadeh, R.; Hekmatdoost, A. Synbiotic supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study123. Am. J. Clin. Nutr. 2014, 99, 535–542. [Google Scholar] [CrossRef]
- Cho, H.; Lee, Y.B.; Ha, Y.; Chon, Y.E.; Kim, M.N.; Lee, J.H.; Park, H.; Rim, K.S.; Hwang, S.G. Changes in liver stiffness values assessed using transient elastography in chronic hepatitis B patients treated with tenofovir disoproxil fumarate: A prospective observational study. BMC Gastroenterol. 2023, 23, 210. [Google Scholar] [CrossRef]
- Kang, H. Sample size determination and power analysis using the G* Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Paik, J.M.; Henry, L.; Younossi, Y.; Ong, J.; Alqahtani, S.; Younossi, Z.M. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatol. Commun. 2023, 7, e0251. [Google Scholar] [CrossRef]
- Diaconu, C.T.; Guja, C. Nonalcoholic Fatty Liver Disease and Its Complex Relation with Type 2 Diabetes Mellitus-From Prevalence to Diagnostic Approach and Treatment Strategies. J. Clin. Med. 2022, 11, 5144. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, H.; Liu, Y.; Hou, X.; Wei, L.; Bao, Y.; Yang, C.; Zong, G.; Wu, J.; Jia, W. Association of MAFLD With Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. J. Clin. Endocrinol. Metab. 2022, 107, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, S.Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Yki-Jarvinen, H.; Luukkonen, P.K.; Hodson, L.; Moore, J.B. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 770–786. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sureda, A.; Devkota, H.P.; Pittalà, V.; Barreca, D.; Silva, A.S.; Tewari, D.; Xu, S.; Nabavi, S.M. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol. Adv. 2020, 38, 107343. [Google Scholar] [CrossRef]
- Chuengsamarn, S.; Rattanamongkolgul, S.; Phonrat, B.; Tungtrongchitr, R.; Jirawatnotai, S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial. J. Nutr. Biochem. 2014, 25, 144–150. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Kumashiro, N.; Erion, D.M.; Zhang, D.; Kahn, M.; Beddow, S.A.; Chu, X.; Still, C.D.; Gerhard, G.S.; Han, X.; Dziura, J. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2011, 108, 16381–16385. [Google Scholar] [CrossRef]
- Radwan, A.M.; Fatoh, S.A.; Massoud, A.; Tousson, E. Effectiveness of curcumin nanoparticles in rat liver fibrosis caused by thioacetamide. Environ. Toxicol. 2024, 39, 388–397. [Google Scholar] [CrossRef]
- Bruck, R.; Ashkenazi, M.; Weiss, S.; Goldiner, I.; Shapiro, H.; Aeed, H.; Genina, O.; Helpern, Z.; Pines, M. Prevention of liver cirrhosis in rats by curcumin. Liver Int. 2007, 27, 373–383. [Google Scholar] [CrossRef]
- Afrin, R.; Arumugam, S.; Rahman, A.; Wahed, M.I.I.; Karuppagounder, V.; Harima, M.; Suzuki, H.; Miyashita, S.; Suzuki, K.; Yoneyama, H.; et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int. Immunopharmacol. 2017, 44, 174–182. [Google Scholar] [CrossRef]
- Jain, S.K.; Rains, J.; Croad, J.; Larson, B.; Jones, K. Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid. Redox Signal. 2009, 11, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W.Z.; Strowig, T.; Thaiss, C.A.; Kau, A.L.; Eisenbarth, S.C.; Jurczak, M.J. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Pan, X.; Luo, J.; Xiao, X.; Li, J.; Bestman, P.L.; Luo, M. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022, 13, 880298. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, R.N.; Fisher, C.D.; Canet, M.J.; Lake, A.D.; Cherrington, N.J. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 2010, 38, 2293–2301. [Google Scholar] [CrossRef]
- Hadizadeh, F.; Faghihimani, E.; Adibi, P. Nonalcoholic fatty liver disease: Diagnostic biomarkers. World J. Gastrointest. Pathophysiol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Saadati, S.; Sadeghi, A.; Mansour, A.; Yari, Z.; Poustchi, H.; Hedayati, M.; Hatami, B.; Hekmatdoost, A. Curcumin and inflammation in non-alcoholic fatty liver disease: A randomized, placebo controlled clinical trial. BMC Gastroenterol. 2019, 19, 133. [Google Scholar] [CrossRef]
- Jazayeri-Tehrani, S.A.; Rezayat, S.M.; Mansouri, S.; Qorbani, M.; Alavian, S.M.; Daneshi-Maskooni, M.; Hosseinzadeh-Attar, M.J. Nano-curcumin improves glucose indices, lipids, inflammation, and Nesfatin in overweight and obese patients with non-alcoholic fatty liver disease (NAFLD): A double-blind randomized placebo-controlled clinical trial. Nutr. Metab. 2019, 16, 8. [Google Scholar] [CrossRef]
- Ghaffari, A.; Rafraf, M.; Navekar, R.; Asghari-Jafarabadi, M. Effects of turmeric and chicory seed supplementation on antioxidant and inflammatory biomarkers in patients with non-alcoholic fatty liver disease (NAFLD). Adv. Integr. Med. 2018, 5, 89–95. [Google Scholar] [CrossRef]
- Ore, A.; Akinloye, O.A. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019, 55, 26. [Google Scholar] [CrossRef]
- Rukkumani, R.; Sri Balasubashini, M.; Menon, V.P. Protective effects of curcumin and photo-irradiated curcumin on circulatory lipids and lipid peroxidation products in alcohol and polyunsaturated fatty acid-induced toxicity. Phytother. Res. 2003, 17, 925–929. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Y.; Zhang, X.; Aa, J.; Wang, G.; Xie, Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother. 2018, 105, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Na, L.X.; Li, Y.; Pan, H.Z.; Zhou, X.L.; Sun, D.J.; Meng, M.; Li, X.X.; Sun, C.H. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: A double-blind, placebo-controlled trial. Mol. Nutr. Food Res. 2013, 57, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tian, R.F.; She, Z.G.; Cai, J.J.; Li, H.L. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Milajerdi, A.; Varkaneh, H.K.; Gorjipour, M.M.; Esmaillzadeh, A. The effects of curcumin supplementation on body weight, body mass index and waist circumference: A systematic review and dose-response meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 171–180. [Google Scholar] [CrossRef]
- Argilés, J.M.; Busquets, S.; García-Martínez, C.; López-Soriano, F.J. Mediators involved in the cancer anorexia-cachexia syndrome: Past, present, and future. Nutrition 2005, 21, 977–985. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Yaikwawong, M.; Jansarikit, L.; Jirawatnotai, S.; Chuengsamarn, S. Curcumin extract improves beta cell functions in obese patients with type 2 diabetes: A randomized controlled trial. Nutr. J. 2024, 23, 119. [Google Scholar] [CrossRef]
- Di Pierro, F.; Bressan, A.; Ranaldi, D.; Rapacioli, G.; Giacomelli, L.; Bertuccioli, A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: Preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4195–4202. [Google Scholar]
- Jobin, C.; Bradham, C.A.; Russo, M.P.; Juma, B.; Narula, A.S.; Brenner, D.A.; Sartor, R.B. Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. J. Immunol. 1999, 163, 3474–3483. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, Y. Is Curcumin Intake Really Effective for Chronic Inflammatory Metabolic Disease? A Review of Meta-Analyses of Randomized Controlled Trials. Nutrients 2024, 16, 1728. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Sahebkar, A.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur. J. Nutr. 2020, 59, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Naseri, K.; Saadati, S.; Yari, Z.; Askari, B.; Mafi, D.; Hoseinian, P.; Asbaghi, O.; Hekmatdoost, A.; de Courten, B. Curcumin Offers No Additional Benefit to Lifestyle Intervention on Cardiometabolic Status in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2022, 14, 3224. [Google Scholar] [CrossRef] [PubMed]
- Hammerich, L.; Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 633–646. [Google Scholar] [CrossRef]
- Rivera-Espinoza, Y.; Muriel, P. Pharmacological actions of curcumin in liver diseases or damage. Liver Int. 2009, 29, 1457–1466. [Google Scholar] [CrossRef]
- Hsieh, C. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, e2900. [Google Scholar]
- van Son, K.C.; Te Nijenhuis-Noort, L.C.; Boone, S.C.; Mook-Kanamori, D.O.; Holleboom, A.G.; Roos, P.R.; Lamb, H.J.; Alblas, G.; Coenraad, M.J.; Rosendaal, F.R.; et al. Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) in a middle-aged population with overweight and normal liver enzymes, and diagnostic accuracy of noninvasive proxies. Medicine 2024, 103, e34934. [Google Scholar] [CrossRef]
- Ji, H.; Cheng, S.; Heart-Liver Axis Research, C. Sex differences in prevalence and prognosis of steatotic liver disease phenotypes: Biological sex matters. J. Hepatol. 2024, 80, e68–e69. [Google Scholar] [CrossRef]
- Joo, S.K.; Kim, W. Sex differences in metabolic dysfunction-associated steatotic liver disease: A narrative review. Ewha Med. J. 2024, 47, e17. [Google Scholar] [CrossRef]
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020, 2, 100067. [Google Scholar] [CrossRef]
- Sahebkar, A. Dual effect of curcumin in preventing atherosclerosis: The potential role of pro-oxidant–antioxidant mechanisms. Nat. Prod. Res. 2015, 29, 491–492. [Google Scholar] [CrossRef]
Variable | Placebo | Curcumin | p Value * |
---|---|---|---|
Mean ± SD (n = 39) | Mean ± SD (n = 39) | ||
Sex (M:F ratio) | 14/25 (0.56) | 11/28 (0.39) | 0.62 † |
Age | 60.28 ± 9.49 | 57.33 ± 9.39 | 0.17 |
BMI (kg/m2) | 27.50 ± 3.24 | 27.24 ± 3.11 | 0.93 |
Systolic blood pressure (mmHg) | 128.34 ± 1.45 | 128.56 ± 1.52 | 0.86 |
Diastolic blood pressure (mmHg) | 74.56 ± 1.27 | 74.32 ± 1.51 | 0.81 |
TNF (pg/mL) | 4.63 ± 1.61 | 4.74 ± 1.44 | 0.73 |
IL-1β (pg/mL) | 0.42 ± 0.26 | 0.47 ± 0.24 | 0.31 |
IL-6 (pg/mL) | 8.75 ± 1.10 | 8.94 ± 10.56 | 0.48 |
Glutathione peroxidase (U/L) | 6050 ± 2045.6 | 6596 ± 2898.47 | 0.43 |
Superoxide dismutase (U/mL) | 241.33 ± 55.11 | 231.87 ± 37.14 | 0.58 |
Malondialdehyde (μmol/L) | 2.01 ± 0.49 | 1.98 ± 0.45 | 0.84 |
Total body fat (%) | 25.27 ± 6.58 | 24.90 ± 7.35 | 0.72 |
Waist circumference (cm) | 95.33 ± 9.07 | 94.49 ± 10.16 | 0.60 |
Non-esterified fatty acid (μmol/L) | 0.92 ± 0.46 | 1.01 ± 0.39 | 0.30 |
Liver stiffness (kPa) | 7.29 ± 3.67 | 6.65 ± 2.41 | 0.77 |
CAP (db/m) | 281.97 ± 29.04 | 273.67 ± 21.51 | 0.17 |
Fatty liver index | 59.38 ± 24.21 | 59.86 ± 24.86 | 0.16 |
Hepatic steatosis index | 36.73 ± 4.71 | 36.46 ± 4.45 | 0.85 |
Lipid accumulation product | 60.07 ± 29.55 | 57.47 ± 35.88 | 0.63 |
Creatinine (mg/dL) | 0.82 ± 0.04 | 0.85 ± 0.03 | 0.75 |
AST (U/L) | 25.31 ± 0.78 | 25.34 ± 0.74 | 0.58 |
ALT (U/L) | 26.78 ± 1.48 | 28.09 ± 1.35 | 0.08 |
History of cerebrovascular disease †† | 2(5.1%) | 1(2.6%) | 1.00 † |
History of coronary artery disease †† | 3(7.7%) | 3(7.7%) | 1.00 † |
History of hypertension †† | 27(69.2%) | 24(61.5%) | 0.63 † |
History of diabetic nephropathy †† | 5(12.8%) | 7(17.9%) | 0.75 † |
History of dyslipidemia †† | 28(71.8%) | 29(74.4%) | 1.00 † |
Antihypertensive medications †† | |||
Angiotensin receptor blockers | 27(69.2) | 29(74.4) | 0.80 |
Calcium channel blockers | 9(23.1) | 6(15.4) | 0.57 |
Beta blockers | 7(17.9) | 6(15.4) | 1.00 |
Antidyslipedemic medications †† | |||
Statins | 21(53.8) | 17(43.6) | 0.50 |
Outcomes | Follow-Up Period (mo) | Placebo | Curcumin | p Values * | ||
---|---|---|---|---|---|---|
Median (IQR) | Min–Max | Median (IQR) | Min–Max | |||
TNF (pg/mL) | 0 | 5.28 (3.52) | 2.64–7.04 | 5.28 (3.08) | 2.64–7.04 | NS |
3 | 6.16 (2.20) | 2.64–7.04 | 4.46 (2.64) | 2.64–6.16 | <0.001 | |
6 | 6.33 (2.71) | 2.18–14.26 | 4.01 (2.50) | 2.13–6.60 | <0.001 | |
9 | 6.69 (2.53) | 3.30–14.36 | 3.99 (2.55) | 2.10–6.55 | <0.001 | |
12 | 7.06 (3.55) | 2.75–15.37 | 3.28 (1.58) | 1.35–6.55 | <0.001 | |
IL-1β (pg/mL) | 0 | 0.43 (0.44) | 0.03–0.86 | 0.43 (0.43) | 0.02–0.88 | NS |
3 | 0.51 (0.46) | 0.02–0.76 | 0.38(0.40) | 0.02–0.84 | 0.021 | |
6 | 0.89 (0.27) | 0.20–1.44 | 0.42 (0.26) | 0.12–0.89 | <0.001 | |
9 | 0.92 (0.18) | 0.20–1.45 | 0.42 (0.19) | 0.13–0.64 | <0.001 | |
12 | 0.93 (0.17) | 0.32–1.46 | 0.31 (0.18) | 0.12–0.54 | <0.001 | |
IL-6 (pg/mL) | 0 | 8.80 (1.76) | 7.04–10.55 | 8.80 (1.76) | 7.04–10.56 | NS |
3 | 9.27 (2.64) | 7.04–10.56 | 8.28 (2.64) | 7.04–10.56 | 0.002 | |
6 | 12.99 (4.50) | 7.55–17.99 | 8.49 (4.72) | 3.50–12.40 | <0.001 | |
9 | 13.24 (3.35) | 7.65–18.00 | 7.60 (5.57) | 3.21–13.24 | <0.001 | |
12 | 14.39 (3.85) | 4.33–18.50 | 6.35 (5.44) | 3.10–12.40 | <0.001 | |
GPx (U/L) | 0 | 6243 (2549) | 1083–9220 | 6717 (2939) | 1124–11,969 | NS |
3 | 6044 (2938) | 3540–19,484 | 6591 (3303) | 4252–13,425 | <0.001 | |
6 | 6189 (1643) | 2550–18,386 | 7987 (2807) | 4549–17,679 | <0.001 | |
9 | 5367 (1817) | 3769–8965 | 9898 (2143) | 6089–15,436 | <0.001 | |
12 | 4653 (1231) | 3576–7980 | 12,468 (3586) | 5874–17,790 | <0.001 | |
SOD (U/mL) | 0 | 231 (76) | 153–379 | 218 (50) | 192–348 | NS |
3 | 214 (79) | 153–420 | 236 (43) | 192–348 | 0.027 | |
6 | 211 (58) | 150–420 | 257 (63) | 195–356 | 0.01 | |
9 | 206 (20) | 150–246 | 269 (63) | 243–356 | <0.001 | |
12 | 180 (30) | 120–211 | 310 (58.5) | 269–399 | <0.001 | |
MDA (μmol/L) | 0 | 1.99 (0.73) | 1.20–3.33 | 1.90 (0.58) | 1.30–3.23 | NS |
3 | 2.19 (0.52) | 1.21–3.42 | 1.92 (0.77) | 1.12–3.17 | 0.027 | |
6 | 2.28 (0.47) | 0.77–3.54 | 1.87 (0.82) | 1.22–2.64 | <0.001 | |
9 | 2.32 (0.590 | 1.23–3.90 | 1.70 (0.65) | 0.93–2.50 | <0.001 | |
12 | 2.39 (0.83) | 1.20–3.96 | 1.35 (0.43) | 0.93–2.20 | <0.001 | |
TBF (%) | 0 | 24.57(9.55) | 13.77–36.89 | 23.16(9.64) | 11.98–40.77 | NS |
3 | 25.71(8.08) | 13.03–38.54 | 21.53(9.18) | 12.19–39.10 | NS | |
6 | 25.88(7.88) | 14.91–39.14 | 20.76(9.16) | 11.76–41.16 | 0.001 | |
9 | 26.77(8.95) | 15.75–39.74 | 21.20(8.26) | 11.39–39.62 | 0.003 | |
12 | 27.08(8.93) | 16.48–42.82 | 20.19(7.84 | 11.25–36.90 | 0.001 | |
WC (cm) | 0 | 95 (11) | 76.00–112.00 | 95 (12) | 74.00–120.00 | NS |
3 | 98 (10) | 75.00–113.00 | 94 (9) | 75.00–117.00 | NS | |
6 | 100 (9.5) | 78.00–115.00 | 93 (9) | 75.00–135.00 | 0.01 | |
9 | 99 (11) | 78.00–117.00 | 92 (10) | 74.00–117.00 | 0.003 | |
12 | 99 (10.5) | 76.00–118.00 | 91 (11) | 73.00–114.00 | <0.001 | |
NEFA (μmol/L) | 0 | 0.85 (0.57) | 0.20–1.98 | 0.84 (0.5) | 0.30–1.73 | NS |
3 | 1.15 (0.66) | 0.34–1.86 | 1.14 (0.57) | 0.34–1.79 | NS | |
6 | 1.18 (0.78) | 0.32–1.89 | 0.87 (0.58) | 0.34–1.85 | 0.001 | |
9 | 1.19 (0.58) | 0.45–1.98 | 0.87 (0.48) | 0.34–1.79 | 0.007 | |
12 | 1.25 (0.75) | 0.40–1.95 | 0.88 (0.53) | 0.20–1.92 | 0.002 | |
BMI (kg/m2) | 0 | 27.06 (4.79) | 19.05–34.77 | 27.68 (4.87) | 20.43–36.58 | NS |
3 | 27.63 (4.25) | 17.89–33.69 | 27.10 (4.45) | 19.22–36.20 | NS | |
6 | 27.78 (3.68) | 18.07–33.46 | 26.33 (4.45) | 18.80–35.16 | 0.031 | |
9 | 27.46 (4.77) | 17.89–33.03 | 26.08 (4.29) | 19.22–36.72 | 0.017 | |
12 | 27.70 (4.16) | 17.72–33.32 | 25.97 (4.05) | 20.55–35.55 | 0.002 | |
Glucose (mg/dL) | 0 | 126 (26.5) | 91–181 | 122 (22) | 79–163 | NS |
3 | 128 (36.5) | 102–195 | 124 (28) | 80–171 | NS | |
6 | 131 (37.5) | 98–214 | 123 (27) | 79–171 | 0.029 | |
9 | 130 (27.0) | 105–185 | 120 (18) | 75–150 | <0.001 | |
12 | 131 (26.5) | 98–187 | 117 (20) | 70–151 | <0.001 | |
HbA1C (%) | 0 | 6.2 (0.85) | 5.1–8.9 | 6.3 (0.70) | 4.8–7.8 | NS |
3 | 6.6 (0.70) | 5.4–8.9 | 6.3 (0.70) | 4.8–8.0 | NS | |
6 | 6.6 (1.00) | 5.4–9.0 | 6.2 (1.05) | 4.5–8.3 | 0.030 | |
9 | 6.7 (1.10) | 5.6–10.3 | 6.1 (1.05) | 4.3–8.2 | 0.003 | |
12 | 6.6 (1.20) | 5.3–9.9 | 5.9 (0.90) | 4.2–8.4 | 0.003 | |
Liver stiffness (kPa) | 0 | 6.2 (3.60) | 3.20–19.60 | 6.6 (3.15) | 2.80–14.20 | NS |
3 | 6.6 (2.70) | 3.90–14.30 | 6.0 (2.00) | 3.00–9.50 | <0.001 | |
6 | 7.2 (2.15) | 4.20–12.10 | 5.9 (2.16) | 3.00–9.46 | <0.001 | |
9 | 7.9 (3.20) | 4.80–13.50 | 5.5 (1.90) | 3.00–8.11 | <0.001 | |
12 | 6.9 (3.45) | 5.00–13.50 | 4.2 (1.60) | 2.90–7.60 | <0.001 | |
CAP (dB/m) | 0 | 279 (34.5) | 248–387 | 264 (30) | 248.00–323 | NS |
3 | 258 (49) | 184–365 | 287 (34) | 147.00–319 | <0.001 | |
6 | 287 (34) | 203–353 | 263 (53) | 100.00–305 | <0.001 | |
9 | 280 (67.5) | 202–293 | 250 (58) | 102.00–293 | <0.001 | |
12 | 292 (64.5) | 199–35 | 223 (51) | 107.00–274 | <0.001 | |
FLI | 0 | 64.09 (35.29) | 12.68–92.39 | 60.84 (35.35) | 10.64–98.71 | NS |
3 | 66.37 (31.92) | 14.42–92.41 | 57.89 (39.49) | 13.99–98.66 | 0.035 | |
6 | 69.92 (32.71) | 16.64–95.36 | 46.64(27.37) | 10.21–98.86 | 0.001 | |
9 | 71.45 (40.01) | 15.77–96.14 | 45.46(31.39) | 10.82–98.35 | 0.002 | |
12 | 76.43 (36.25) | 17.36–97.55 | 39.64 (35.92) | 9.21–97.44 | <0.001 | |
HSI | 0 | 36.50 (7.28) | 28.39–47.15 | 36.46 (7.19) | 28.39–43.63 | NS |
3 | 37.91 (6.43) | 29.26–50.37 | 36.62 (5.41) | 27.11–48.41 | 0.042 | |
6 | 38.15 (6.03) | 27.95–49.92 | 36.49 (5.27) | 26.58–47.82 | 0.033 | |
9 | 38.30 (5.67) | 29.26–52.91 | 36.22 (5.39) | 26.02–47.46 | 0.033 | |
12 | 38.95 (6.09) | 29.99–54.44 | 35.92 (5.61) | 23.57–48.38 | 0.010 | |
LAP | 0 | 53.68 (34.94) | 12.61–139.17 | 45.86 (31.25) | 13.01–176.37 | NS |
3 | 64.38 (39.28) | 25.32–128.47 | 44.73 (31.45) | 12.87–173.44 | 0.003 | |
6 | 72.86 (42.36) | 29.14–184.22 | 43.38 (27.71) | 13.42–148.20 | 0.003 | |
9 | 59.78 (45.73) | 29.62–207.00 | 40.72 (19.80) | 12.04–144.61 | 0.004 | |
12 | 65.24 (53.58) | 30.90–191.59 | 39.85 (23.38) | 12.19–136.90 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaikwawong, M.; Jansarikit, L.; Jirawatnotai, S.; Chuengsamarn, S. Curcumin for Inflammation Control in Individuals with Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial. Nutrients 2025, 17, 1972. https://doi.org/10.3390/nu17121972
Yaikwawong M, Jansarikit L, Jirawatnotai S, Chuengsamarn S. Curcumin for Inflammation Control in Individuals with Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial. Nutrients. 2025; 17(12):1972. https://doi.org/10.3390/nu17121972
Chicago/Turabian StyleYaikwawong, Metha, Laddawan Jansarikit, Siwanon Jirawatnotai, and Somlak Chuengsamarn. 2025. "Curcumin for Inflammation Control in Individuals with Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial" Nutrients 17, no. 12: 1972. https://doi.org/10.3390/nu17121972
APA StyleYaikwawong, M., Jansarikit, L., Jirawatnotai, S., & Chuengsamarn, S. (2025). Curcumin for Inflammation Control in Individuals with Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial. Nutrients, 17(12), 1972. https://doi.org/10.3390/nu17121972