First–Second-Trimester Dietary Inflammatory Index and Anemia Risk in the Third Trimester: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sample Size Calculation
2.3. Survey of Participants’ Information
2.4. Dietary Assessment
2.5. DII Calculation
2.6. Diagnostic Criteria and Variable Definitions
- (1)
- (2)
- BMI: According to Chinese national guidelines [40], BMI was categorized into categories defined as non-overweight (BMI < 24 kg/m2) and overweight (BMI ≥ 24.0 kg/m2).
- (3)
- Passive smoking exposure: Passive smoking exposure during pregnancy was defined as self-reported regular exposure to secondhand smoke in household or occupational settings, dichotomously categorized based on questionnaire responses (yes/no).
2.7. Covariates
2.8. Statistical Analysis
3. Results
3.1. Baseline and Pregnancy Characteristics of Participants
3.2. Incidence of Third-Trimester Anemia
3.3. Relationship Between First–Second-Trimester DII and Anemia in Third Trimester
3.4. Stratified Analysis of Iron Supplementation, DII, and Anemia Risk
4. Discussion
4.1. Main Findings Compared to Previous Studies
4.2. Research Significance of This Study
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karami, M.; Chaleshgar, M.; Salari, N.; Akbari, H.; Mohammadi, M. Global Prevalence of Anemia in Pregnant Women: A Comprehensive Systematic Review and Meta-Analysis. Matern. Child Health J. 2022, 26, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.E.; de Paula, A.J. Global profile of anemia during pregnancy versus country income overview: 19 years estimative (2000–2019). Ann. Hematol. 2023, 102, 2025–2031. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, regional, and global estimates of anaemia by severity in women and children for 2000-19: A pooled analysis of population-representative data. Lancet Glob. Health 2022, 10, e627–e639. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wei, Y.; Zhu, W.; Wang, C.; Su, R.; Feng, H.; Yang, H. Prevalence, risk factors and associated adverse pregnancy outcomes of anaemia in Chinese pregnant women: A multicentre retrospective study. BMC Pregnancy Childbirth 2018, 18, 111. [Google Scholar] [CrossRef]
- Zerfu, T.A.; Baye, K.; Faber, M. Dietary diversity cutoff values predicting anemia varied between mid and term of pregnancy: A prospective cohort study. J. Health Popul. Nutr. 2019, 38, 44. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Jing, W.Z.; Liu, J.; Liu, M. Prevalence of anemia during pregnancy in China, 2012–2016: A Meta-analysis. Zhonghua Yu Fang Yi Xue Za Zhi 2018, 52, 951–957. [Google Scholar] [CrossRef]
- Shand, A.W.; Kidson-Gerber, G.L. Anaemia in pregnancy: A major global health problem. Lancet 2023, 401, 1550–1551. [Google Scholar] [CrossRef]
- Xiong, X.; Buekens, P.; Fraser, W.D.; Guo, Z. Anemia during pregnancy in a Chinese population. Int. J. Gynecol. Obstet. 2003, 83, 159–164. [Google Scholar] [CrossRef]
- Moeller, S.L.; Schmiegelow, C.; Larsen, L.G.; Nielsen, K.; Msemo, O.A.; Lusingu, J.; Minja, D.; Theander, T.G.; Bygbjerg, I.C.; Nyengaard, J.R. Anemia in late pregnancy induces an adaptive response in fetoplacental vascularization. Placenta 2019, 80, 49–58. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Song, Y.; Fang, L.; Huang, L.; Sun, Y. Nutritional factors for anemia in pregnancy: A systematic review with meta-analysis. Front. Public Health 2022, 10, 1041136. [Google Scholar] [CrossRef]
- Glonnegger, H.; Glenzer, M.M.; Lancaster, L.; Barnes, R.; von Drygalski, A. Prepartum Anemia and Risk of Postpartum Hemorrhage: A Meta-Analysis and Brief Review. Clin. Appl. Thromb./Hemost. 2023, 29, 10760296231214536. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.E.; Seid, O.; Mariam, Y.G.; Fekadu, A.; Wasihun, Y.; Endris, K.; Bitew, A. Determinants of anemia among pregnant mothers attending antenatal care in Dessie town health facilities, northern central Ethiopia, unmatched case-control study. PLoS ONE 2017, 12, e173173. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Bai, C.H.; Chang, J.S.; Huang, Y.L.; Wang, F.F.; Chen, Y.C.; Chao, J.C. Associations of Dietary Patterns and Vitamin D Levels with Iron Status in Pregnant Women: A Cross-Sectional Study in Taiwan. Nutrients 2023, 15, 1805. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Chinese Medical Association Hematology Branch Red Cell Disorders (Anemia) Group. Multidisciplinary expert consensus on the diagnosis, treatment, and prevention of iron deficiency and iron deficiency anemia (2022 edition). Natl. Med. J. China 2022, 102, 3246–3256. [Google Scholar] [CrossRef]
- Li, S.; Zhao, L.; Yu, D.; Ren, H. Attention Should Be Paid to Adolescent Girl Anemia in China: Based on China Nutrition and Health Surveillance (2015–2017). Nutrients 2022, 14, 2449. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, Y.; Dang, S.; Wang, D.; Zhao, Y.; Li, C.; Li, S.; Lei, F.; Qu, P.; Mi, B.; et al. Maternal adherence to micronutrient supplementation before and during pregnancy in Northwest China: A large-scale population-based cross-sectional survey. BMJ Open 2019, 9, e028843. [Google Scholar] [CrossRef]
- Annan, R.A.; Gyimah, L.A.; Apprey, C.; Edusei, A.K.; Asamoah-Boakye, O.; Aduku, L.; Azanu, W.; Lutterodt, H.E. Factors associated with iron deficiency anaemia among pregnant teenagers in Ashanti Region, Ghana: A hospital-based prospective cohort study. PLoS ONE 2021, 16, e0250246. [Google Scholar] [CrossRef]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Musina, N.N.; Saprina, T.V.; Prokhorenko, T.S.; Kanev, A.; Zima, A.P. Correlations between Iron Metabolism Parameters, Inflammatory Markers and Lipid Profile Indicators in Patients with Type 1 and Type 2 Diabetes Mellitus. J. Pers. Med. 2020, 10, 70. [Google Scholar] [CrossRef]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, S.L. Inflammation, dysregulated iron metabolism, and cardiovascular disease. Front. Aging 2023, 4, 1124178. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xiao, J.; Cai, W.; Lu, X.; Liu, C.; Dong, Y.; Zheng, Y.; Song, G.; Sun, Q.; Wang, H.; et al. Association of the systemic immune-inflammation index with anemia: A population-based study. Front. Immunol. 2024, 15, 1391573. [Google Scholar] [CrossRef] [PubMed]
- Czerwonka, M.; Tokarz, A. Iron in red meat-friend or foe. Meat Sci. 2017, 123, 157–165. [Google Scholar] [CrossRef]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- Jackson, J.; Williams, R.; McEvoy, M.; MacDonald-Wicks, L.; Patterson, A. Is Higher Consumption of Animal Flesh Foods Associated with Better Iron Status among Adults in Developed Countries? A Systematic Review. Nutrients 2016, 8, 89. [Google Scholar] [CrossRef]
- Shiraseb, F.; Hosseininasab, D.; Mirzababaei, A.; Bagheri, R.; Wong, A.; Suzuki, K.; Mirzaei, K. Red, white, and processed meat consumption related to inflammatory and metabolic biomarkers among overweight and obese women. Front. Nutr. 2022, 9, 1015566. [Google Scholar] [CrossRef]
- Campmans-Kuijpers, M.; Dijkstra, G. Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021, 13, 1067. [Google Scholar] [CrossRef]
- Shivappa, N.; Wirth, M.D.; Hurley, T.G.; Hebert, J.R. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey-1999–2002. Mol. Nutr. Food Res. 2017, 61, 1600630. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Namazi, N.; Larijani, B.; Azadbakht, L. Dietary Inflammatory Index and its Association with the Risk of Cardiovascular Diseases, Metabolic Syndrome, and Mortality: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2018, 50, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Lecorguille, M.; Teo, S.; Phillips, C.M. Maternal Dietary Quality and Dietary Inflammation Associations with Offspring Growth, Placental Development, and DNA Methylation. Nutrients 2021, 13, 3130. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Aminianfar, A.; Hajianfar, H.; Azadbakht, L.; Shahshahan, Z.; Esmaillzadeh, A. Association between dietary inflammatory potential and risk of developing gestational diabetes: A prospective cohort study. Nutr. J. 2021, 20, 48. [Google Scholar] [CrossRef] [PubMed]
- Canny, S.P.; Orozco, S.L.; Thulin, N.K.; Hamerman, J.A. Immune Mechanisms in Inflammatory Anemia. Annu. Rev. Immunol. 2023, 41, 405–429. [Google Scholar] [CrossRef]
- Wang, W.; Dong, Y.; Wang, K.; Sun, H.; Yu, H.; Ling, B. Dietary Inflammatory Index and female infertility: Findings from NHANES survey. Front. Nutr. 2024, 11, 1391983. [Google Scholar] [CrossRef]
- Casas, R.; Castro-Barquero, S.; Crovetto, F.; Larroya, M.; Ruiz-Leon, A.M.; Segales, L.; Nakaki, A.; Youssef, L.; Benitez, L.; Casanovas-Garriga, F.; et al. Maternal Dietary Inflammatory Index during Pregnancy Is Associated with Perinatal Outcomes: Results from the IMPACT BCN Trial. Nutrients 2022, 14, 2284. [Google Scholar] [CrossRef]
- Liu, P.; Maharjan, R.; Wang, Y.; Zhang, Y.; Zhang, Y.; Xu, C.; Geng, Y.; Miao, J. Association between dietary inflammatory index and risk of endometriosis: A population-based analysis. Front. Nutr. 2023, 10, 1077915. [Google Scholar] [CrossRef]
- Schirm, S.; Scholz, M. A biomathematical model of human erythropoiesis and iron metabolism. Sci. Rep. 2020, 10, 8602. [Google Scholar] [CrossRef]
- Guideline on Haemoglobin Cutoffs to Define Anaemia in Individuals and Populations; World Health Organization: Geneva, Switzerland, 2024.
- Chen, C.; Lu, F.C. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed. Environ. Sci. 2004, 17, 1–36. [Google Scholar]
- Nicholson, W.K.; Silverstein, M.; Wong, J.B.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Jaen, C.R.; Krousel-Wood, M.; Lee, S.; Li, L.; et al. Screening and Supplementation for Iron Deficiency and Iron Deficiency Anemia During Pregnancy: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 332, 906–913. [Google Scholar] [CrossRef]
- Jugha, V.T.; Anchang-Kimbi, J.K.; Anchang, J.A.; Mbeng, K.A.; Kimbi, H.K. Dietary Diversity and Its Contribution in the Etiology of Maternal Anemia in Conflict Hit Mount Cameroon Area: A Cross-Sectional Study. Front. Nutr. 2020, 7, 625178. [Google Scholar] [CrossRef]
- Gibore, N.S.; Ngowi, A.F.; Munyogwa, M.J.; Ali, M.M. Dietary Habits Associated with Anemia in Pregnant Women Attending Antenatal Care Services. Curr. Dev. Nutr. 2021, 5, nzaa178. [Google Scholar] [CrossRef]
- Skolmowska, D.; Glabska, D.; Kolota, A.; Guzek, D. Effectiveness of Dietary Interventions in Prevention and Treatment of Iron-Deficiency Anemia in Pregnant Women: A Systematic Review of Randomized Controlled Trials. Nutrients 2022, 14, 3023. [Google Scholar] [CrossRef]
- Aspuru, K.; Villa, C.; Bermejo, F.; Herrero, P.; Lopez, S.G. Optimal management of iron deficiency anemia due to poor dietary intake. Int. J. Gen. Med. 2011, 4, 741–750. [Google Scholar] [CrossRef]
- Achebe, M.M.; Gafter-Gvili, A. How I treat anemia in pregnancy: Iron, cobalamin, and folate. Blood 2017, 129, 940–949. [Google Scholar] [CrossRef]
- Da, S.L.K.; Yamaji, N.; Rahman, M.O.; Suto, M.; Takemoto, Y.; Garcia-Casal, M.N.; Ota, E. Nutrition-specific interventions for preventing and controlling anemia throughout the life cycle: An overview of systematic reviews. Cochrane Database Syst. Rev. 2021, 9, CD013092. [Google Scholar] [CrossRef]
- Abe, S.K.; Balogun, O.O.; Ota, E.; Takahashi, K.; Mori, R. Supplementation with multiple micronutrients for breastfeeding women for improving outcomes for the mother and baby. Cochrane Database Syst. Rev. 2016, 2, CD010647. [Google Scholar] [CrossRef]
- Hayashi, I.; Sakane, N.; Suganuma, A.; Nagai, N. Association of a pro-inflammatory diet and gestational diabetes mellitus with maternal anemia and hemoglobin levels during pregnancy: A prospective observational case-control study. Nutr. Res. 2023, 115, 38–46. [Google Scholar] [CrossRef]
- Ma, H.; Deng, W.; Chen, H.; Ding, X. Association between dietary inflammatory index and anemia in US adults. Front. Nutr. 2023, 10, 1310345. [Google Scholar] [CrossRef]
- Goodwin, T.M.; Ramin, S.M. Practice Bulletin Summary No. 153: Nausea and Vomiting of Pregnancy. Obstet. Gynecol. 2015, 126, 687–688. [Google Scholar] [CrossRef]
- Pieczynska, J.; Placzkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Sozanski, R.; Grajeta, H. Association of Dietary Inflammatory Index with Serum IL-6, IL-10, and CRP Concentration during Pregnancy. Nutrients 2020, 12, 2789. [Google Scholar] [CrossRef]
- Lee, Y.J.; Seo, J.A.; Yoon, T.; Seo, I.; Lee, J.H.; Im, D.; Lee, J.H.; Bahn, K.N.; Ham, H.S.; Jeong, S.A.; et al. Effects of low-fat milk consumption on metabolic and atherogenic biomarkers in Korean adults with the metabolic syndrome: A randomised controlled trial. J. Hum. Nutr. Diet. 2016, 29, 477–486. [Google Scholar] [CrossRef]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef]
- Theurl, I.; Aigner, E.; Theurl, M.; Nairz, M.; Seifert, M.; Schroll, A.; Sonnweber, T.; Eberwein, L.; Witcher, D.R.; Murphy, A.T.; et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: Diagnostic and therapeutic implications. Blood 2009, 113, 5277–5286. [Google Scholar] [CrossRef]
- Lanser, L.; Fuchs, D.; Kurz, K.; Weiss, G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021, 13, 3732. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021, 22, 6493. [Google Scholar] [CrossRef]
- Galy, B.; Conrad, M.; Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell Biol. 2024, 25, 133–155. [Google Scholar] [CrossRef]
- Giles, M.L.; Way, S.S.; Marchant, A.; Aghaepour, N.; James, T.; Schaltz-Buchholzer, F.; Zazara, D.; Arck, P.; Kollmann, T.R. Maternal Vaccination to Prevent Adverse Pregnancy Outcomes: An Underutilized Molecular Immunological Intervention? J. Mol. Biol. 2023, 435, 168097. [Google Scholar] [CrossRef]
- Blackwell, C. The Role of Infection and Inflammation in Stillbirths: Parallels with SIDS? Front. Immunol. 2015, 6, 248. [Google Scholar] [CrossRef]
- Skoczek-Rubinska, A.; Muzsik-Kazimierska, A.; Chmurzynska, A.; Jamka, M.; Walkowiak, J.; Bajerska, J. Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women. Nutrients 2021, 13, 2323. [Google Scholar] [CrossRef]
- Hebert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 545) | Anti-Inflammatory Diet Group (n = 136) | Intermediate Group (n = 273) | Pro-Inflammatory Diet Group (n = 136) | p 1 |
---|---|---|---|---|---|
Baseline serum iron | 8.76 ± 0.85 | 8.69 ± 0.86 | 8.76 ± 0.84 | 8.81 ± 0.87 | 0.502 |
Maternal age, n (%) | 0.869 | ||||
<30 years | 310 (56.88) | 77 (56.62) | 158 (57.88) | 75 (55.15) | |
≥30 years | 235 (43.12) | 59 (43.38) | 115 (42.12) | 61 (44.85) | |
Occupation, n (%) | 0.570 | ||||
Employed | 479 (87.89) | 123 (90.44) | 238 (87.18) | 118 (86.76) | |
Unemployed | 66 (12.11) | 13 (9.56) | 35 (12.82) | 18 (13.24) | |
Pre-pregnancy BMI, n (%) | 0.803 | ||||
<24 kg/m2 | 478 (87.71) | 121 (88.97) | 237 (86.81) | 120 (88.24) | |
≥24 kg/m2 | 67 (12.29) | 15 (11.03) | 36 (13.19) | 16 (11.76) | |
Education, n (%) | 0.692 | ||||
Below high school | 69 (12.66) | 20 (14.71) | 32 (11.72) | 17 (12.50) | |
High school and above | 476 (87.34) | 116 (85.29) | 241 (88.28) | 119 (87.50) | |
Parity, n (%) | 0.322 | ||||
0 | 330 (60.55) | 89 (65.44) | 164 (60.07) | 77 (56.62) | |
≥1 | 215 (39.45) | 47 (34.56) | 109 (39.93) | 59 (43.38) | |
History of adverse pregnancy, n (%) | 0.583 | ||||
No | 324 (59.45) | 86 (63.24) | 159 (58.24) | 79 (58.09) | |
Yes | 221 (40.55) | 50 (36.76) | 114 (41.76) | 57 (41.91) | |
Passive smoking exposure, n (%) | 0.088 | ||||
No | 442 (81.10) | 119 (87.50) | 216 (79.12) | 107 (78.68) | |
Yes | 103 (18.90) | 17 (12.50) | 57 (20.88) | 29 (21.32) | |
Iron supplementation use, n (%) | 0.562 | ||||
Yes | 231 (42.39) | 63 (46.32) | 112 (41.03) | 56 (41.18) | |
No | 314 (57.61) | 73 (53.68) | 161 (58.97) | 80 (58.82) |
Variable | Number of Participants | Number of Cases | Cumulative Incidence (%) | Statistic | p |
---|---|---|---|---|---|
Maternal age | χ2 = 0.13 | 0.721 | |||
<30 years | 310 | 36 | 11.61 | ||
≥30 years | 235 | 25 | 10.64 | ||
Pre-pregnancy BMI | χ2 = 3.47 | 0.063 | |||
<24 | 478 | 58 | 12.13 | ||
≥24 | 67 | 3 | 4.48 | ||
Occupation | χ2 = 0.33 | 0.563 | |||
Employed | 66 | 6 | 11.48 | ||
Unemployed | 479 | 55 | 9.09 | ||
Education | χ2 = 3.47 | 0.063 | |||
Below high school | 67 | 3 | 15.94 | ||
High school and above | 478 | 58 | 10.50 | ||
History of adverse pregnancy | χ2 = 0.39 | 0.531 | |||
No | 324 | 34 | 10.49 | ||
Yes | 221 | 27 | 12.22 | ||
Parity | χ2 = 1.88 | 0.211 | |||
0 | 330 | 32 | 9.70 | ||
≥1 | 215 | 29 | 13.49 | ||
Passive smoking exposure | χ2 = 5.13 | 0.023 | |||
No | 442 | 56 | 12.67 | ||
Yes | 103 | 5 | 4.85 | ||
Iron supplementation use | χ2 = 0.75 | 0.411 | |||
Yes | 314 | 32 | 12.55 | ||
No | 231 | 29 | 10.19 | ||
First–second-trimester average DII | χ2 = 7.67 | 0.022 | |||
Anti-inflammatory diet group | 135 | 7 | 5.19 a | ||
Intermediate group | 275 | 33 | 12.00 a,b | ||
Pro-inflammatory diet group | 135 | 21 | 15.56 b |
Duration of Pregnancy | Model I 1 OR (95% CI) | p | Model II 2 OR (95% CI) | p | Model III 3 OR (95% CI) | p |
---|---|---|---|---|---|---|
First-trimester DII | 1.15 (0.99–1.33) | 0.065 | 1.14 (0.98–1.32) | 0.092 | 1.15 (0.99–1.34) | 0.067 |
Second-trimester DII | 1.23 (1.05–1.44) | 0.009 | 1.23 (1.05–1.45) | 0.009 | 1.26 (1.08–1.48) | 0.004 |
First–second-trimester average DII (groups) | ||||||
Anti-inflammatory diet group (Ref) | 1 | 1 | 1 | |||
Intermediate group | 2.53 (1.09–5.89) | 0.031 | 2.53 (1.09–5.89) | 0.030 | 2.82 (1.20–6.63) | 0.017 |
Pro-inflammatory diet group | 3.37 (1.38–8.21) | 0.008 | 3.37 (1.38–8.21) | 0.009 | 3.73 (1.50–9.25) | 0.005 |
DII Score | Non-Users of Iron Supplement | Users of Iron Supplements | ||
---|---|---|---|---|
aOR 1 (95% CI) | p | aOR 1 (95% CI) | p | |
Second-trimester DII | 1.40 (1.12–1.78) | 0.004 | 1.12 (0.90–1.41) | 0.321 |
First–second-trimester average DII | 1.62 (1.19–2.22) | 0.002 | 1.19 (0.91–1.54) | 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Zhang, Z.; He, J.; Zhong, Z.; Ma, Y.; Huang, X.; Xia, F.; Tan, H.; Deng, J.; Chen, M. First–Second-Trimester Dietary Inflammatory Index and Anemia Risk in the Third Trimester: A Prospective Cohort Study. Nutrients 2025, 17, 1938. https://doi.org/10.3390/nu17111938
Huang C, Zhang Z, He J, Zhong Z, Ma Y, Huang X, Xia F, Tan H, Deng J, Chen M. First–Second-Trimester Dietary Inflammatory Index and Anemia Risk in the Third Trimester: A Prospective Cohort Study. Nutrients. 2025; 17(11):1938. https://doi.org/10.3390/nu17111938
Chicago/Turabian StyleHuang, Cong, Zhitan Zhang, Junwei He, Zixin Zhong, Yuxin Ma, Xun Huang, Fan Xia, Hongzhuan Tan, Jing Deng, and Mengshi Chen. 2025. "First–Second-Trimester Dietary Inflammatory Index and Anemia Risk in the Third Trimester: A Prospective Cohort Study" Nutrients 17, no. 11: 1938. https://doi.org/10.3390/nu17111938
APA StyleHuang, C., Zhang, Z., He, J., Zhong, Z., Ma, Y., Huang, X., Xia, F., Tan, H., Deng, J., & Chen, M. (2025). First–Second-Trimester Dietary Inflammatory Index and Anemia Risk in the Third Trimester: A Prospective Cohort Study. Nutrients, 17(11), 1938. https://doi.org/10.3390/nu17111938