Water Intake, Dietary Acid Load, and Body Composition in Aging Females
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Water Intake and Body Composition
3.2. Dietary Acid Load and Body Composition
3.3. Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2020, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Stoś, K.; Rychlik, E.; Woźniak, A.; Ołtarzewski, M.; Jankowski, M.; Gujski, M.; Juszczyk, G. Prevalence and Sociodemographic Factors Associated with Overweight and Obesity among Adults in Poland: A 2019/2020 Nationwide Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 1502. [Google Scholar] [CrossRef] [PubMed]
- Tylutka, A.; Morawin, B.; Walas, Ł.; Michałek, M.; Gwara, A.; Zembron-Lacny, A. Assessment of Metabolic Syndrome Predictors in Relation to Inflammation and Visceral Fat Tissue in Older Adults. Sci. Rep. 2023, 13, 89. [Google Scholar] [CrossRef]
- Roh, E.; Choi, K.M. Health Consequences of Sarcopenic Obesity: A Narrative Review. Front. Endocrinol. 2020, 11, 332. [Google Scholar] [CrossRef]
- Axelrod, C.L.; Dantas, W.S.; Kirwan, J.P. Sarcopenic Obesity: Emerging Mechanisms and Therapeutic Potential. Metabolism 2023, 146, 155639. [Google Scholar] [CrossRef]
- Cannataro, R.; Carbone, L.; Petro, J.L.; Cione, E.; Vargas, S.; Angulo, H.; Forero, D.A.; Odriozola-Martínez, A.; Kreider, R.B.; Bonilla, D.A. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. IJMS 2021, 22, 9724. [Google Scholar] [CrossRef]
- Milewska, M.; Przekop, Z.; Szostak-Węgierek, D.; Chrzanowska, M.; Raciborski, F.; Traczyk, I.; Sińska, B.I.; Samoliński, B. Prevalence of Risk of Sarcopenia in Polish Elderly Population—A Population Study. Nutrients 2022, 14, 3466. [Google Scholar] [CrossRef]
- Jafari Nasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging Human Body: Changes in Bone, Muscle and Body Fat with Consequent Changes in Nutrient Intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef]
- Ishido, M.; Hung, Y.-L.; Machida, S. Aquaporin 4 Expression Level Is Decreased in Skeletal Muscles with Aging. Kobe J. Med. Sci. 2023, 69, E40–E48. [Google Scholar]
- Li, S.; Xiao, X.; Zhang, X. Hydration Status in Older Adults: Current Knowledge and Future Challenges. Nutrients 2023, 15, 2609. [Google Scholar] [CrossRef]
- European Food Safety Association. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific Opinion on Dietary Reference Values for Water. EFS2 2010, 8, 1459. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef]
- Masot, O.; Miranda, J.; Santamaría, A.L.; Paraiso Pueyo, E.; Pascual, A.; Botigué, T. Fluid Intake Recommendation Considering the Physiological Adaptations of Adults Over 65 Years: A Critical Review. Nutrients 2020, 12, 3383. [Google Scholar] [CrossRef]
- Maughan, R.J. Hydration, Morbidity, and Mortality in Vulnerable Populations. Nutr. Rev. 2012, 70, S152–S155. [Google Scholar] [CrossRef]
- Laja García, A.I.; Moráis-Moreno, C.; Samaniego-Vaesken, M.D.L.; Puga, A.M.; Partearroyo, T.; Varela-Moreiras, G. Influence of Water Intake and Balance on Body Composition in Healthy Young Adults from Spain. Nutrients 2019, 11, 1923. [Google Scholar] [CrossRef]
- Clayton, P.; Trak-Fellermeier, M.A.; Macchi, A.; Galván, R.; Bursac, Z.; Huffman-Ercanli, F.; Liuzzi, J.; Palacios, C. The Association between Hydration Status and Body Composition in Healthy Children and Adolescents. J. Pediatr. Endocrinol. Metab. 2023, 36, 470–477. [Google Scholar] [CrossRef]
- Laja García, A.; Moráis-Moreno, C.; Samaniego-Vaesken, M.; Puga, A.; Varela-Moreiras, G.; Partearroyo, T. Association between Hydration Status and Body Composition in Healthy Adolescents from Spain. Nutrients 2019, 11, 2692. [Google Scholar] [CrossRef]
- Carretero-Krug, A.; Úbeda, N.; Velasco, C.; Medina-Font, J.; Laguna, T.T.; Varela-Moreiras, G.; Montero, A. Hydration Status, Body Composition, and Anxiety Status in Aeronautical Military Personnel from Spain: A Cross-Sectional Study. Military Med. Res. 2021, 8, 35. [Google Scholar] [CrossRef]
- Wieërs, M.L.A.J.; Beynon-Cobb, B.; Visser, W.J.; Attaye, I. Dietary Acid Load in Health and Disease. Pflug. Arch—Eur. J. Physiol. 2024, 476, 427–443. [Google Scholar] [CrossRef]
- Storz, M.A.; Ronco, A.L.; Hannibal, L. Observational and Clinical Evidence That Plant-Based Nutrition Reduces Dietary Acid Load. J. Nutr. Sci. 2022, 11, e93. [Google Scholar] [CrossRef]
- Mozaffari, H.; Siassi, F.; Guilani, B.; Askari, M.; Azadbakht, L. Association of Dietary Acid-Base Load and Psychological Disorders among Iranian Women: A Cross-Sectional Study. Complement. Ther. Med. 2020, 53, 102503. [Google Scholar] [CrossRef] [PubMed]
- Milajerdi, A.; Hassanzadeh Keshteli, A.; Haghighatdoost, F.; Azadbakht, L.; Esmaillzadeh, A.; Adibi, P. Dietary Acid Load in Relation to Depression and Anxiety in Adults. J. Human. Nutr. Diet. 2020, 33, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Bahari, H.; Seifi, N.; Foroumandi, E.; Kourepaz, F.; Shahabi, H.E.; Ervin, K.; Khabari, N.; Ferns, G.A.; Ghayour-Mobarhan, M. Dietary Acid Load, Depression, and Anxiety: Results of a Population-Based Study. BMC Psychiatry 2023, 23, 679. [Google Scholar] [CrossRef]
- The Three-generation Study of Women on Diets and Health Study Group; Kataya, Y.; Murakami, K.; Kobayashi, S.; Suga, H.; Sasaki, S. Higher Dietary Acid Load Is Associated with a Higher Prevalence of Frailty, Particularly Slowness/Weakness and Low Physical Activity, in Elderly Japanese Women. Eur. J. Nutr. 2018, 57, 1639–1650. [Google Scholar] [CrossRef]
- Li, C.-F.; Liu, Y.-P.; Liu, C.-Y.; Zhu, H.-L.; Wu, B.-H.; Li, B.-L.; Chen, Y.-M. Dietary Acid Load Was Positively Associated with the Risk of Hip Fracture in Elderly Adults. Nutrients 2022, 14, 3748. [Google Scholar] [CrossRef]
- García-Gavilán, J.F.; Martínez, A.; Konieczna, J.; Mico-Perez, R.; García-Arellano, A.; Basora, J.; Barrubés, L.; Goday, A.; Canudas, S.; Salas-Salvadó, J.; et al. U-Shaped Association between Dietary Acid Load and Risk of Osteoporotic Fractures in 2 Populations at High Cardiovascular Risk. J. Nutr. 2021, 151, 152–161. [Google Scholar] [CrossRef]
- Hayhoe, R.; Abdelhamid, A.; Luben, R.; Khaw, K.; Welch, A. Dietary Acid–Base Load and Its Association with Risk of Osteoporotic Fractures and Low Estimated Skeletal Muscle Mass. Eur. J. Clin. Nutr. 2020, 74, 33–42. [Google Scholar] [CrossRef]
- Chan, R.; Leung, J.; Woo, J. Association Between Estimated Net Endogenous Acid Production and Subsequent Decline in Muscle Mass Over Four Years in Ambulatory Older Chinese People in Hong Kong: A Prospective Cohort Study. J. Gerontol. Ser. A 2015, 70, 905–911. [Google Scholar] [CrossRef]
- Welch, A.; MacGregor, A.; Skinner, J.; Spector, T.D.; Moayyeri, A.; Cassidy, A. A Higher Alkaline Dietary Load Is Associated with Greater Indexes of Skeletal Muscle Mass in Women. Osteoporos. Int. 2013, 24, 1899–1908. [Google Scholar] [CrossRef]
- Gholami, F.; Bahrampour, N.; Samadi, M.; Rasaei, N.; Yarizadeh, H.; Naghshi, S.; Mirzaei, K. The Association of Dietary Acid Load (DAL) with Estimated Skeletal Muscle Mass and Bone Mineral Content: A Cross-Sectional Study. BMC Nutr. 2023, 9, 31. [Google Scholar] [CrossRef]
- Faure, A.M.; Fischer, K.; Dawson-Hughes, B.; Egli, A.; Bischoff-Ferrari, H. Gender-Specific Association between Dietary Acid Load and Total Lean Body Mass and Its Dependency on Protein Intake in Seniors. Osteoporos. Int. 2017, 28, 3451–3462. [Google Scholar] [CrossRef] [PubMed]
- Aslani, Z.; Bahreynian, M.; Namazi, N.; Shivappa, N.; Hébert, J.R.; Asayesh, H.; Motlagh, M.E.; Pourmirzaei, M.A.; Kasaeian, A.; Mahdavi-Gorabi, A.; et al. Association of Dietary Acid Load with Anthropometric Indices in Children and Adolescents. Eat. Weight. Disord. 2021, 26, 555–567. [Google Scholar] [CrossRef]
- Mansordehghan, M.; Daneshzad, E.; Basirat, V.; Gargari, B.P.; Rouzitalab, T. The Association between Dietary Acid Load and Body Composition in Physical Education Students Aged 18–25 Years. J. Health Popul. Nutr. 2022, 41, 58. [Google Scholar] [CrossRef] [PubMed]
- Sorraya, N.; Arab, A.; Talebi, S. The Association between Dietary Acid Load and Adiposity Measures among Children and Adolescents. BMC Pediatr. 2022, 22, 484. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Won, C.W. Sex-Different Changes of Body Composition in Aging: A Systemic Review. Arch. Gerontol. Geriatr. 2022, 102, 104711. [Google Scholar] [CrossRef]
- Bennett, E.; Peters, S.A.E.; Woodward, M. Sex Differences in Macronutrient Intake and Adherence to Dietary Recommendations: Findings from the UK Biobank. BMJ Open 2018, 8, e020017. [Google Scholar] [CrossRef]
- D’Amico, D.; Parrott, M.D.; Greenwood, C.E.; Ferland, G.; Gaudreau, P.; Belleville, S.; Laurin, D.; Anderson, N.D.; Kergoat, M.-J.; Morais, J.A.; et al. Sex Differences in the Relationship between Dietary Pattern Adherence and Cognitive Function among Older Adults: Findings from the NuAge Study. Nutr. J. 2020, 19, 58. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology; Oxford University Press: Oxford, UK, 2012; ISBN 978-0-19-975403-8. [Google Scholar]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31 (Suppl. 3), 38–45. [Google Scholar] [CrossRef]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; IŻŻ: Warsaw, Poland, 2000. [Google Scholar]
- Kunachowicz, H.; Nadolna, I.; Przygoda, B.; Iwanow, K. Food Composition Tables; PZWL: Warsaw, Poland, 2017. [Google Scholar]
- Bzikowska-Jura, A.; Sobieraj, P.; Raciborski, F. Low Comparability of Nutrition-Related Mobile Apps against the Polish Reference Method—A Validity Study. Nutrients 2021, 13, 2868. [Google Scholar] [CrossRef]
- Gandy, J. Water Intake: Validity of Population Assessment and Recommendations. Eur. J. Nutr. 2015, 54, 11–16. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and Its Influence on Urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Salamone, L.M.; Fuerst, T.; Visser, M.; Kern, M.; Lang, T.; Dockrell, M.; Cauley, J.A.; Nevitt, M.; Tylavsky, F.; Lohman, T.G. Measurement of Fat Mass Using DEXA: A Validation Study in Elderly Adults. J. Appl. Physiol. 2000, 89, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Fuerst, T.; Lang, T.; Salamone, L.; Harris, T.B.; Health, F.T.; Health, Aging, and Body Composition Study—Dual-Energy X-Ray Absorptiometry and Body Composition Working Group. Validity of Fan-Beam Dual-Energy X-Ray Absorptiometry for Measuring Fat-Free Mass and Leg Muscle Mass. J. Appl. Physiol. 1999, 87, 1513–1520. [Google Scholar] [CrossRef]
- Kim, S.; Leng, X.I.; Kritchevsky, S.B. Body Composition and Physical Function in Older Adults with Various Comorbidities. Innov. Aging 2017, 1, igx008. [Google Scholar] [CrossRef]
- Stookey, J.D.; Constant, F.; Popkin, B.M.; Gardner, C.D. Drinking Water Is Associated With Weight Loss in Overweight Dieting Women Independent of Diet and Activity. Obesity 2008, 16, 2481–2488. [Google Scholar] [CrossRef]
- Stookey, J.D.; Constant, F.; Gardner, C.D.; Popkin, B.M. Replacing Sweetened Caloric Beverages with Drinking Water Is Associated with Lower Energy Intake. Obesity 2007, 15, 3013–3022. [Google Scholar] [CrossRef]
- Vij, V.A.; Joshi, A. Effect of Excessive Water Intake on Body Weight, Body Mass Index, Body Fat, and Appetite of Overweight Female Participants. J. Nat. Sc. Biol. Med. 2014, 5, 340. [Google Scholar] [CrossRef]
- Daniels, M.C.; Popkin, B.M. Impact of Water Intake on Energy Intake and Weight Status: A Systematic Review: Nutrition Reviews. Nutr. Rev. 2010, 68, 505–521. [Google Scholar] [CrossRef]
- Çıtar Dazıroğlu, M.E.; Acar Tek, N. Water Consumption: Effect on Energy Expenditure and Body Weight Management. Curr. Obes. Rep. 2023, 12, 99–107. [Google Scholar] [CrossRef]
- Muckelbauer, R.; Sarganas, G.; Grüneis, A.; Müller-Nordhorn, J. Association between Water Consumption and Body Weight Outcomes: A Systematic Review. Am. J. Clin. Nutr. 2013, 98, 282–299. [Google Scholar] [CrossRef]
- Chen, Q.-Y.; Khil, J.; Keum, N. Water Intake and Adiposity Outcomes among Overweight and Obese Individuals: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024, 16, 963. [Google Scholar] [CrossRef] [PubMed]
- Davy, B.M.; Dennis, E.A.; Dengo, A.L.; Wilson, K.L.; Davy, K.P. Water Consumption Reduces Energy Intake at a Breakfast Meal in Obese Older Adults. J. Am. Diet. Assoc. 2008, 108, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Van Walleghen, E.L.; Orr, J.S.; Gentile, C.L.; Davy, B.M. Pre-meal Water Consumption Reduces Meal Energy Intake in Older but Not Younger Subjects. Obesity 2007, 15, 93–99. [Google Scholar] [CrossRef]
- Chang, T.; Ravi, N.; Plegue, M.A.; Sonneville, K.R.; Davis, M.M. Inadequate Hydration, BMI, and Obesity Among US Adults: NHANES 2009–2012. Ann. Fam. Med. 2016, 14, 320–324. [Google Scholar] [CrossRef]
- Maffeis, C.; Tommasi, M.; Tomasselli, F.; Spinelli, J.; Fornari, E.; Scattolo, N.; Marigliano, M.; Morandi, A. Fluid Intake and Hydration Status in Obese vs Normal Weight Children. Eur. J. Clin. Nutr. 2016, 70, 560–565. [Google Scholar] [CrossRef]
- Padrão, P.; Sousa, A.; Guerra, R.; Álvares, L.; Santos, A.; Borges, N.; Afonso, C.; Amaral, T.; Moreira, P. A Cross-Sectional Study on the Association between 24-h Urine Osmolality and Weight Status in Older Adults. Nutrients 2017, 9, 1272. [Google Scholar] [CrossRef]
- Boschmann, M.; Steiniger, J.; Hille, U.; Tank, J.; Adams, F.; Sharma, A.M.; Klaus, S.; Luft, F.C.; Jordan, J. Water-Induced Thermogenesis. J. Clin. Endocrinol. Metab. 2003, 88, 6015–6019. [Google Scholar] [CrossRef]
- Jordan, J.; Shannon, J.R.; Black, B.K.; Ali, Y.; Farley, M.; Costa, F.; Diedrich, A.; Robertson, R.M.; Biaggioni, I.; Robertson, D. The Pressor Response to Water Drinking in Humans: A Sympathetic Reflex? Circulation 2000, 101, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Thornton, S.N. Increased Hydration Can Be Associated with Weight Loss. Front. Nutr. 2016, 3, 18. [Google Scholar] [CrossRef]
- Sengenès, C.; Berlan, M.; De Glisezinski, I.; Lafontan, M.; Galitzky, J. Natriuretic Peptides: A New Lipolytic Pathway in Human Adipocytes. FASEB J. 2000, 14, 1345–1351. [Google Scholar] [CrossRef]
- Birkenfeld, A.L.; Budziarek, P.; Boschmann, M.; Moro, C.; Adams, F.; Franke, G.; Berlan, M.; Marques, M.A.; Sweep, F.C.G.J.; Luft, F.C.; et al. Atrial Natriuretic Peptide Induces Postprandial Lipid Oxidation in Humans. Diabetes 2008, 57, 3199–3204. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Magkos, F. Oxytocin and Vasopressin Systems in Obesity and Metabolic Health: Mechanisms and Perspectives. Curr. Obes. Rep. 2019, 8, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Yilmaz, S.; Dincer, N.; Ortiz, A.; Sag, A.A.; Covic, A.; Sánchez-Lozada, L.G.; Lanaspa, M.A.; Cherney, D.Z.I.; Johnson, R.J.; et al. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J. Clin. Endocrinol. Metab. 2019, 104, 5406–5420. [Google Scholar] [CrossRef]
- Geng, J.; Ni, Q.; Sun, W.; Li, L.; Feng, X. The Links between Gut Microbiota and Obesity and Obesity Related Diseases. Biomed. Pharmacother. 2022, 147, 112678. [Google Scholar] [CrossRef]
- Vanhaecke, T.; Bretin, O.; Poirel, M.; Tap, J. Drinking Water Source and Intake Are Associated with Distinct Gut Microbiota Signatures in US and UK Populations. J. Nutr. 2022, 152, 171–182. [Google Scholar] [CrossRef]
- Thornton, S.N. Diabetes and Hypertension, as Well as Obesity and Alzheimer’s Disease, Are Linked to Hypohydration-Induced Lower Brain Volume. Front. Aging Neurosci. 2014, 6, 279. [Google Scholar] [CrossRef]
- Jacques, P.F.; Rogers, G.; Stookey, J.D.; Perrier, E.T. Water Intake and Markers of Hydration Are Related to Cardiometabolic Risk Biomarkers in Community-Dwelling Older Adults: A Cross-Sectional Analysis. J. Nutr. 2021, 151, 3205–3213. [Google Scholar] [CrossRef]
- Gazan, R.; Sondey, J.; Maillot, M.; Guelinckx, I.; Lluch, A. Drinking Water Intake Is Associated with Higher Diet Quality among French Adults. Nutrients 2016, 8, 689. [Google Scholar] [CrossRef]
- Kant, A.K.; Graubard, B.I.; Atchison, E.A. Intakes of Plain Water, Moisture in Foods and Beverages, and Total Water in the Adult US Population—Nutritional, Meal Pattern, and Body Weight Correlates: National Health and Nutrition Examination Surveys 1999–2006. Am. J. Clin. Nutr. 2009, 90, 655–663. [Google Scholar] [CrossRef]
- Kim, J.; Yang, Y.J. Plain Water Intake of Korean Adults According to Life Style, Anthropometric and Dietary Characteristic: The Korea National Health and Nutrition Examination Surveys 2008–2010. Nutr. Res. Pract. 2014, 8, 580. [Google Scholar] [CrossRef]
- Duffey, K.J.; Popkin, B.M. Adults with Healthier Dietary Patterns Have Healthier Beverage Patterns. J. Nutr. 2006, 136, 2901–2907. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chun, O.K. Consumptions of Plain Water, Moisture in Foods and Beverages, and Total Water in Relation to Dietary Micronutrient Intakes and Serum Nutrient Profiles among US Adults. Public Health Nutr. 2015, 18, 1180–1186. [Google Scholar] [CrossRef]
- Guelinckx, I.; Tavoularis, G.; König, J.; Morin, C.; Gharbi, H.; Gandy, J. Contribution of Water from Food and Fluids to Total Water Intake: Analysis of a French and UK Population Surveys. Nutrients 2016, 8, 630. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A.; Ronco, A.L. Dietary Acid Load Decreases with Age and Is Associated with Sagittal Abdominal Diameter: A Nationally Representative Quantification Study in US Adults. Aging Clin. Exp. Res. 2023, 35, 2191–2200. [Google Scholar] [CrossRef] [PubMed]
- McMullen, M.K. Many Foods Are More Acid-Forming than Acid-Alkaline Formulas Indicate. Nutr. Health 2024, 30, 419–427. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Milan, A.M.; Mitchell, S.M.; Zeng, N.; Ramzan, F.; Sharma, P.; Knowles, S.O.; Roy, N.C.; Sjödin, A.; Wagner, K.-H.; et al. The Effects of Dietary Protein Intake on Appendicular Lean Mass and Muscle Function in Elderly Men: A 10-Wk Randomized Controlled Trial. Am. J. Clin. Nutr. 2017, 106, 1375–1383. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.; Ma, J.; Li, M.; Chen, Y.; Fang, A.; Zhu, H. Dietary Protein Intake and Changes in Muscle Mass Measurements in Community-Dwelling Middle-Aged and Older Adults: A Prospective Cohort Study. Clin. Nutr. 2023, 42, 2503–2511. [Google Scholar] [CrossRef]
- Li, C.; Fang, A.; Ma, W.; Wu, S.; Li, C.; Chen, Y.; Zhu, H. Amount Rather than Animal vs Plant Protein Intake Is Associated with Skeletal Muscle Mass in Community-Dwelling Middle-Aged and Older Chinese Adults: Results from the Guangzhou Nutrition and Health Study. J. Acad. Nutr. Diet. 2019, 119, 1501–1510. [Google Scholar] [CrossRef]
- Li, S.-Y.; Lu, Z.-H.; Leung, J.C.S.; Kwok, T.C.Y. Association of Dietary Protein Intake, Inflammation with Muscle Mass, Physical Performance and Incident Sarcopenia in Chinese Community-Dwelling Older Adults. J. Nutr. Health Aging 2024, 28, 100163. [Google Scholar] [CrossRef]
- Struijk, E.A.; Hagan, K.A.; Fung, T.T.; Hu, F.B.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Diet Quality and Risk of Frailty among Older Women in the Nurses’ Health Study. Am. J. Clin. Nutr. 2020, 111, 877–883. [Google Scholar] [CrossRef]
- Elstgeest, L.E.; Schaap, L.A.; Heymans, M.W.; Hengeveld, L.M.; Naumann, E.; Houston, D.K.; Kritchevsky, S.B.; Simonsick, E.M.; Newman, A.B.; Farsijani, S.; et al. Sex-and Race-Specific Associations of Protein Intake with Change in Muscle Mass and Physical Function in Older Adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2020, 112, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Bahrampour, N.; Clark, C.C.T. The Relationship between Dietary Acid Load and Intensity of Musculoskeletal Pain Condition: A Population-based Study. Food Sci. Nutr. 2022, 10, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A.; Ronco, A.L. How Well Do Low-PRAL Diets Fare in Comparison to the 2020–2025 Dietary Guidelines for Americans? Healthcare 2023, 11, 180. [Google Scholar] [CrossRef]
- Frampton, J.; Murphy, K.G.; Frost, G.; Chambers, E.S. Higher Dietary Fibre Intake Is Associated with Increased Skeletal Muscle Mass and Strength in Adults Aged 40 Years and Older. J. Cachexia Sarcopenia Muscle 2021, 12, 2134–2144. [Google Scholar] [CrossRef]
- Ravelli, M.N.; Schoeller, D.A. Traditional Self-Reported Dietary Instruments Are Prone to Inaccuracies and New Approaches Are Needed. Front. Nutr. 2020, 7, 90. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Lorenzo, I.; Palomera, E.; Ramírez, S.; Yébenes, J.C. Total Body Water and Intracellular Water Relationships with Muscle Strength, Frailty and Functional Performance in an Elderly Population. A Cross-Sectional Study. J. Nutr. Health Aging 2019, 23, 96–101. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Women | Men |
Aged ≥ 65 years | Cancer or dementia |
Free of disease compromising 2-year survival | History of severe heart disease |
Free and independently living | Organ failure (unstable, renal, respiratory, liver) or food allergy/intolerance necessitating a special diet |
Competent to make own decisions | Diabetes mellitus type 1 |
Diabetes mellitus type 2 with insulin therapy | |
Chronic use of corticosteroid medication | |
Change in habitual medication use |
Variable | Water Intake | p Value 2 | PRAL | p Value 2 | ||||
---|---|---|---|---|---|---|---|---|
T I (n = 65) | T II (n = 66) | T III (n = 64) | T I (n = 65) | T II (n = 65) | T III (n = 65) | |||
Age (y) 1 | 71.9 ± 3.7 | 72.7 ± 3.4 | 71.0 ± 3.3 | 0.263 | 72.2 ± 3.5 | 72.5 ± 3.5 | 71.8 ± 3.4 | 0.560 |
Education (y) 1 | 14.6 ± 2.3 | 14.5 ± 2.7 | 14.9 ± 3.0 | 0.040 | 14.8 ± 2.5 | 14.5 ± 2.9 | 14.8 ± 2.7 | 0.733 |
Marital status, n (%) | ||||||||
Single | 5 (8) | 3 (4) | 7 (11) | 0.579 | 7 (11) | 4 (6) | 4 (6) | 0.642 |
Married | 28 (43) | 23 (35) | 21 (33) | 26 (40) | 23 (35) | 23 (35) | ||
Divorced/separated | 10 (15) | 17 (26) | 12 (19) | 9 (14) | 13 (20) | 17 (26) | ||
widow | 22 (34) | 23 (35) | 24 (37) | 23 (35) | 25 (39) | 21 (33) | ||
Physical activity, n (%) | ||||||||
Low | 21 (32) | 31 (47) | 24 (38) | 0.368 | 22 (34) | 26 (40) | 28 (43) | 0.875 |
Moderate | 38 (59) | 28 (42) | 31 (48) | 35 (54) | 32 (49) | 30 (46) | ||
High | 6 (9) | 7 (11) | 9 (14) | 8 (12) | 7 (11) | 7 (11) | ||
Alcohol intake, n (%) | ||||||||
Yes | 54 (83) | 56 (85) | 50 (78) | 0.587 | 58 (89) | 53 (82) | 49 (75) | 0.120 |
No | 11 (17) | 10 (15) | 14 (22) | 7 (11) | 12 (18) | 16 (25) | ||
Current smoker, n (%) | ||||||||
Yes | 5 (8) | 4 (6) | 8 (12) | 0.402 | 7 (11) | 5 (8) | 5 (8) | 0.773 |
No | 60 (92) | 62 (94) | 56 (88) | 58 (89) | 60 (92) | 60 (92) |
Variable | Total (n = 195) | Water Intake | p Value 2 | ||
---|---|---|---|---|---|
T I (n = 65) | T II (n = 66) | T III (n = 64) | |||
Weight (kg) | 72.5 ± 14.6 | 72.4 ± 13.8 | 73.5 ± 14.5 | 71.7 ± 15.6 | 0.577 |
Height (m) | 1.6 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.662 |
BMI (kg/m2) | 27.8 ± 4.6 | 28.1 ± 4.5 | 28.0 ± 4.7 | 27.2 ± 4.6 | 0.516 |
Android (%fat) | 47.4 ± 8.7 | 48.9 ± 8.1 | 49.2 ± 6.9 | 44.2 ± 10.2 | 0.004 |
Gynoid (%fat) | 49.0 ± 6.2 | 51.0 ± 5.7 | 49.5 ± 5.6 | 46.6 ± 6.6 | <0.001 |
TBF (%fat) | 42.8 ± 7.1 | 44.3 ± 6.9 | 43.7 ± 6.2 | 40.3 ± 7.7 | 0.005 |
Lean (kg) | 38.3 ± 4.2 | 37.5 ± 3.4 | 38.0 ± 4.9 | 39.3 ± 4.0 | 0.021 |
ALM (kg/m2) | 6.1 ± 0.9 | 6.1 ± 0.8 | 6.0 ± 1.0 | 6.3 ± 0.8 | 0.215 |
HGS (kg) | 23.0 ± 4.8 | 22.9 ± 4.7 | 22.7 ± 4.2 | 23.5 ± 5.3 | 0.539 |
Water intake (mL /d) | 2441.1 ± 577.7 | 1844.2 ± 257.8 | 2394.3 ± 139.7 | 3095.6 ± 367.1 | <0.001 |
Energy intake (kcal/d) | 1775.3 ± 518.9 | 1721.0 ± 544.3 | 1803.5 ± 527.8 | 1801.2 ± 486.1 | 0.375 |
Protein intake (g/d) | 75.9 ± 22.4 | 72.6 ± 22.0 | 77.1 ± 21.8 | 78.1 ± 23.3 | 0.190 |
Fat intake (g/d) | 68.5 ± 26.4 | 65.6 ± 26.3 | 69.6 ± 27.3 | 70.3 ± 25.8 | 0.523 |
Carbohydrates intake (g/d) | 227.1 ± 74.2 | 223.0 ± 75.5 | 229.6 ± 79.6 | 228.6 ± 67.6 | 0.823 |
Fiber intake (g/d) | 22.3 ± 8.0 | 20.4 ± 7.9 | 22.4 ± 8.0 | 24.1 ± 7.7 | 0.010 |
PRAL, mEq/d | 0.9 ± 14.3 | 1.7 ± 12.5 | 1.5 ± 14.4 | −0.6 ± 16.0 | 0.613 |
Variable | PRAL | p Value 2 | ||
---|---|---|---|---|
T I (n = 65) | T II (n = 65) | T III (n = 65) | ||
Weight (kg) | 69.1 ± 12.3 | 72.7 ± 14.8 | 75.8 ± 15.9 | 0.052 |
Height (m) | 1.6 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.358 |
BMI (kg/m2) | 26.8 ± 3.7 | 28.1 ± 5.2 | 28.4 ± 4.6 | 0.087 |
Android (%fat) | 47.1 ± 8.0 | 47.3 ± 10.0 | 47.9 ± 8.1 | 0.758 |
Gynoid (%fat) | 48.1 ± 5.5 | 49.0 ± 7.0 | 50.0 ± 6.0 | 0.134 |
TBF (%fat) | 42.1 ± 6.2 | 43.0 ± 8.2 | 43.3 ± 6.9 | 0.375 |
Lean (kg) | 38.7 ± 4.2 | 38.3 ± 4.3 | 37.9 ± 4.2 | 0.505 |
ALM (kg/m2) | 6.3 ± 0.8 | 6.1 ± 0.8 | 6.0 ± 1.1 | 0.127 |
HGS (kg) | 23.2 ± 5.1 | 23.0 ± 4.7 | 22.8 ± 4.5 | 0.919 |
Water intake (mL/d) | 2505.8 ± 561.9 | 2456.3 ± 683.8 | 2361.2 ± 466.1 | 0.494 |
Energy intake (kcal/d) | 1745.2 ± 505.5 | 1640.7 ± 408.5 | 1939.9 ± 589.1 | 0.013 |
Protein intake (g/d) | 69.5 ± 19.0 | 70.4 ± 15.8 | 87.9 ± 26.2 | <0.001 |
Fat intake (g/d) | 62.3 ± 25.5 | 64.4 ± 21.3 | 78.8 ± 29.1 | <0.001 |
Carbohydrates intake (g/d) | 242.3 ± 68.9 | 205.5 ± 56.6 | 233.4 ± 89.3 | 0.017 |
Fiber intake (g/d) | 24.8 ± 7.2 | 20.4 ± 6.7 | 21.6 ± 9.2 | 0.001 |
PRAL, mEq/d | −14.6 ± 8.5 | 1.2 ± 3.0 | 15.9 ± 8.2 | <0.001 |
Variables | Water Intake | PRAL | ||
---|---|---|---|---|
Crude | Partial a | Crude | Partial a | |
Android (%fat) | −0.22 p = 0.002 | −0.22 p = 0.001 | 0.04 p = 0.565 | 0.05 p = 0.526 |
Gynoid (%fat) | −0.29 p = 0.000 | −0.29 p = 0.000 | 0.13 p = 0.065 | 0.13 p = 0.066 |
TBF (%fat) | −0.23 p = 0.001 | −0.26 p = 0.002 | 0.08 p = 0.249 | 0.08 p = 0.252 |
Lean (kg) | 0.19 p = 0.006 | 0.19 p = 0.007 | −0.07 p = 0.304 | −0.07 p = 0.312 |
ALM (kg/m2) | 0.06 p = 0.379 | 0.05 p = 0.520 | −0.17 p = 0.019 | −0.16 p = 0.021 |
HGS (kg) | 0.05 p = 0.507 | 0.05 p = 0.494 | −0.05 p = 0.490 | −0.06 p = 0.436 |
Variable | Cluster | p Value 2 | |
---|---|---|---|
Cluster 1 Low-PRAL Diet (n = 117) | Cluster 2 High-PRAL Diet (n = 78) | ||
Age (years) | 72.2 ± 3.8 | 72.1 ± 3.0 | 0.896 |
Energy intake (kcal/d) | 1545.9 ± 374.9 | 2119.3 ± 516.6 | <0.001 |
Water intake (mL/d) | 2432.8 ± 557.7 | 2453.5 ± 609.9 | 0.566 |
PP ratio | 0.62 ± 0.24 | 0.44 ± 0.19 | <0.001 |
PRAL, mEq/d | −5.7 ± 11.9 | 10.7 ± 11.8 | <0.001 |
Protein intake (g/d) | 63.3 ± 17.5 | 94.8 ± 19.7 | <0.001 |
Fat intake (g/d) | 57.0 ± 19.4 | 85.7 ± 26.4 | <0.001 |
Carbohydrates intake (g/d) | 207.2 ± 56.7 | 256.9 ± 86.7 | <0.001 |
Fiber intake (g/d) | 21.0 ± 7.0 | 24.1 ± 8.9 | 0.029 |
BMI (kg/m2) | 27.3 ± 4.1 | 28.5 ± 5.1 | 0.192 |
Android (%fat) | 47.5 ± 8.9 | 47.4 ± 8.6 | 0.892 |
Gynoid (%fat) | 48.9 ± 6.3 | 49.2 ± 6.2 | 0.784 |
TBF (%fat) | 42.7 ± 7.2 | 42.9 ± 7.0 | 0.979 |
Lean (kg) | 38.5 ± 4.4 | 37.9 ± 3.8 | 0.263 |
ALM (kg/m2) | 6.2 ± 0.8 | 6.0 ± 0.9 | 0.045 |
HGS (kg) | 23.0 ± 5.0 | 23.0 ± 4.4 | 0.931 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januszko, O.; Białecka-Dębek, A. Water Intake, Dietary Acid Load, and Body Composition in Aging Females. Nutrients 2025, 17, 1808. https://doi.org/10.3390/nu17111808
Januszko O, Białecka-Dębek A. Water Intake, Dietary Acid Load, and Body Composition in Aging Females. Nutrients. 2025; 17(11):1808. https://doi.org/10.3390/nu17111808
Chicago/Turabian StyleJanuszko, Olga, and Agata Białecka-Dębek. 2025. "Water Intake, Dietary Acid Load, and Body Composition in Aging Females" Nutrients 17, no. 11: 1808. https://doi.org/10.3390/nu17111808
APA StyleJanuszko, O., & Białecka-Dębek, A. (2025). Water Intake, Dietary Acid Load, and Body Composition in Aging Females. Nutrients, 17(11), 1808. https://doi.org/10.3390/nu17111808