The Power of Databases in Unraveling the Nutrition–Health Connection
Author Contributions
Conflicts of Interest
List of Contributions
- Al Jawaldeh, A.; El Hajj Hassan, O.; Qureshi, A.B.; Zerbo, F.C.; Alahnoumy, S.; Bozo, M.; Al-Halaika, M.; Al-Dakheel, M.H.; Alhamdan, L.; Mujib, S.A.; et al. Qualitative Review of National Nutrition Surveillance Systems in the Eastern Mediterranean Region. Nutrients 2023, 15, 3689. https://doi.org/10.3390/nu15173689.
- Bianco, R.; Marinoni, M.; Coluccia, S.; Carioni, G.; Fiori, F.; Gnagnarella, P.; Edefonti, V.; Parpinel, M. Tailoring the Nutritional Composition of Italian Foods to the US Nutrition5k Dataset for Food Image Recognition: Challenges and a Comparative Analysis. Nutrients 2024, 16, 3339. https://doi.org/10.3390/nu16193339.
- Li, B.; Zhang, F.; Jiang, H.; Wang, C.; Zhao, Q.; Yang, W.; Hu, A. Adequate Intake of Dietary Fiber May Relieve the Detrimental Impact of Blood Lead on Dyslipidemia among US Adults: A Study of Data from the National Health and Nutrition Examination Survey Database. Nutrients 2023, 15, 4434. https://doi.org/10.3390/nu15204434.
- Garcia-Arenas, D.; Barrau-Martinez, B.; Gonzalez-Rodriguez, A.; Llorach, R.; Campistol-Plana, J.; García-Cazorla, A.; Ormazabal, A.; Urpi-Sarda, M. Effect of Special Low-Protein Foods Consumption in the Dietary Pattern and Biochemical Profile of Patients with Inborn Errors of Protein Metabolism: Application of a Database of Special Low-Protein Foods. Nutrients 2023, 15, 3475. https://doi.org/10.3390/nu15153475.
- Lee, S. Association between CLOCK Gene Polymorphisms and Insomnia Risk According to Food Groups: A KoGES Longitudinal Study. Nutrients 2023, 15, 2300. https://doi.org/10.3390/nu15102300.
- Kamioka, H.; Origasa, H.; Tsutani, K.; Kitayuguchi, J.; Yoshizaki, T.; Shimada, M.; Wada, Y.; Takano-Ohmuro, H. A Cross-Sectional Study Based on Forty Systematic Reviews of Foods with Function Claims (FFC) in Japan: Quality Assessment Using AMSTAR 2. Nutrients 2023, 15, 2047. https://doi.org/10.3390/nu15092047.
References
- Tao, D.; Yang, P.; Feng, H. Utilization of text mining as a big data analysis tool for food science and nutrition. Compr. Rev. Food Sci. Food Saf. 2020, 19, 875–894. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data: Production, Management and Use, 2nd ed.; FAO: Rome, Italy, 2003. [Google Scholar]
- Kirk, D.; Kok, E.; Tufano, M.; Tekinerdogan, B.; Feskens, E.J.M.; Camps, G. Machine Learning in Nutrition Research. Adv. Nutr. 2022, 13, 2573–2589. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L. Biomarkers of food intake: Current status and future opportunities. Proc. Nutr. Soc. 2025, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Castellano-Escuder, P.; González-Domínguez, R.; Wishart, D.S.; Andrés-Lacueva, C.; Sánchez-Pla, A. FOBI: An ontology to represent food intake data and associate it with metabolomic data. Database 2020, 2020, baaa033. [Google Scholar] [CrossRef] [PubMed]
- Misra, B.B. New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Kirk, D.; Catal, C.; Tekinerdogan, B. Precision nutrition: A systematic literature review. Comput. Biol. Med. 2021, 133, 104365. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO/INFOODS Food Composition Databases. 2023. Available online: https://www.fao.org/infoods/infoods/en/ (accessed on 19 April 2025).
- Durazzo, A.; Astley, S.; Kapsokefalou, M.; Costa, H.S.; Mantur-Vierendeel, A.; Pijls, L.; Bucchini, L.; Glibetić, M.; Presser, K.; Finglas, P. Food Composition Data and Tools Online and Their Use in Research and Policy: EuroFIR AISBL Contribution in 2022. Nutrients 2022, 14, 4788. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Robinson, E.; Raphaeli, O. The future of artificial intelligence in clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 200–206. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farran-Codina, A.; Urpí-Sardà, M. The Power of Databases in Unraveling the Nutrition–Health Connection. Nutrients 2025, 17, 1725. https://doi.org/10.3390/nu17101725
Farran-Codina A, Urpí-Sardà M. The Power of Databases in Unraveling the Nutrition–Health Connection. Nutrients. 2025; 17(10):1725. https://doi.org/10.3390/nu17101725
Chicago/Turabian StyleFarran-Codina, Andreu, and Mireia Urpí-Sardà. 2025. "The Power of Databases in Unraveling the Nutrition–Health Connection" Nutrients 17, no. 10: 1725. https://doi.org/10.3390/nu17101725
APA StyleFarran-Codina, A., & Urpí-Sardà, M. (2025). The Power of Databases in Unraveling the Nutrition–Health Connection. Nutrients, 17(10), 1725. https://doi.org/10.3390/nu17101725