Is Iron Supplementation Associated with Infant Mortality in Sub-Saharan Africa and Does Birth Weight Modify These Associations?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcomes of the Study
2.2. Exposures
- Iron supplementation during pregnancy, regardless of gestational age: Categorised as yes/no, based on maternal recall.
- Duration of supplementation: Categorised as no supplementation, less than 90 days, or at least 90 days, also based on maternal recall. To remind the participants, data collectors showed sample iron tablets commonly used in the community to those unsure about their supplementation.
2.3. Other Variables
2.4. Data Analysis
3. Results
3.1. Neonatal Mortality
3.2. Post-Neonatal Mortality
4. Discussion
4.1. Neonatal Mortality
4.2. Post-Neonatal Mortality
4.3. Strengths and Limitations
4.4. Implications and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Inter-Agency Group. Levels and Trends in Child Mortality. 2019. Available online: https://data.unicef.org/wp-content/uploads/2019/09/UN-IGME-Child-Mortality-Report-2019-1.pdf (accessed on 14 May 2025).
- Sharrow, D.; Hug, L.; You, D.; Alkema, L.; Black, R.; Cousens, S.; Croft, T.; Gaigbe-Togbe, V.; Gerland, P.; Guillot, M. Global, regional, and national trends in under-5 mortality between 1990 and 2019 with scenario-based projections until 2030: A systematic analysis by the UN Inter-agency Group for Child Mortality Estimation. Lancet Glob. Health 2022, 10, e195–e206. [Google Scholar] [CrossRef]
- Hug, L.; Alexander, M.; You, D.; Alkema, L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: A systematic analysis. Lancet Glob. Health 2019, 7, e710–e720. [Google Scholar] [CrossRef]
- World Health Organization. What Worked? What didn’t? What’s Next? 2023 Progress Report on the Global Action Plan for Healthy Lives and Well-Being for All; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Paulson, K.R.; Kamath, A.M.; Alam, T.; Bienhoff, K.; Abady, G.G.; Abbas, J.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abd-Elsalam, S.M. Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: All-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019. Lancet 2021, 398, 870–905. [Google Scholar] [CrossRef]
- Rosenberg, D.Y. Political economy of infant mortality rate: Role of democracy versus good governance. Int. J. Health Serv. 2018, 48, 435–460. [Google Scholar] [CrossRef]
- Gonzalez, R.M.; Gilleskie, D. Infant mortality rate as a measure of a country’s health: A robust method to improve reliability and comparability. Demography 2017, 54, 701–720. [Google Scholar] [CrossRef]
- Lin, R.-T.; Chien, L.-C.; Chen, Y.-M.; Chan, C.-C. Governance matters: An ecological association between governance and child mortality. Int. Health 2014, 6, 249–257. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, X.; Ran, S.; Wehrmeister, F.C. Social protection and the level and inequality of child mortality in 101 low-and middle-income countries: A statistical modelling analysis. J. Glob. Health 2021, 11, 04067. [Google Scholar] [CrossRef]
- Lassi, Z.S.; Middleton, P.F.; Crowther, C.; Bhutta, Z.A. Interventions to improve neonatal health and later survival: An overview of systematic reviews. EBioMedicine 2015, 2, 985–1000. [Google Scholar] [CrossRef]
- Sangi, R.; Ahsan, A.K.; Khan, A.T.; Aziz, S.N.; Afroze, M.; Jamro, S.; Haque, T.; Zaidi, Z.A.; Tebha, S.S. Evaluating association of maternal nutritional status with neonatal birth weight in term pregnancies: A cross-sectional study with unexpected outcomes. Cureus 2021, 13, e17621. [Google Scholar] [CrossRef]
- Shukla, V.V.; Carlo, W.A. Review of the evidence for interventions to reduce perinatal mortality in low-and middle-income countries. Int. J. Pediatr. Adolesc. Med. 2020, 7, 4–10. [Google Scholar] [CrossRef]
- Van Malderen, C.; Amouzou, A.; Barros, A.J.; Masquelier, B.; Van Oyen, H.; Speybroeck, N. Socioeconomic factors contributing to under-five mortality in sub-Saharan Africa: A decomposition analysis. BMC Public Health 2019, 19, 760. [Google Scholar] [CrossRef]
- Varela, A.R.; Schneider, B.C.; Bubach, S.; Silveira, M.F.; Bertoldi, A.D.; Duarte, L.S.M.; Menezes, A.M.B.; Domingues, M.R.; Bassani, D.G. Fetal, neonatal, and post-neonatal mortality in the 2015 Pelotas (Brazil) birth cohort and associated factors. Cad. Saúde Pública 2019, 35, e00072918. [Google Scholar] [CrossRef]
- Shapiro, S.; McCormick, M.C.; Starfield, B.H.; Krischer, J.P.; Bross, D. Relevance of correlates of infant deaths for significant morbidity at 1 year of age. Am. J. Obstet. Gynecol. 1980, 136, 363–373. [Google Scholar] [CrossRef]
- Araujo Costa, E.; de Paula Ayres-Silva, J. Global profile of anemia during pregnancy versus country income overview: 19 years estimative (2000–2019). Ann. Hematol. 2023, 102, 2025–2031. [Google Scholar] [CrossRef]
- Bekele, Y.; Gallagher, C.; Batra, M.; Vicendese, D.; Buultjens, M.; Erbas, B. Is Oral Iron and Folate Supplementation during Pregnancy Protective against Low Birth Weight and Preterm Birth in Africa? A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 2801. [Google Scholar] [CrossRef]
- Kopeć, Z.; Starzyński, R.R.; Jończy, A.; Mazgaj, R.; Lipiński, P. Role of iron metabolism-related genes in prenatal development: Insights from mouse transgenic models. Genes 2021, 12, 1382. [Google Scholar] [CrossRef]
- Beard, J.L. Does iron deficiency cause low birth weight, prematurity, anemia, and mortality in early infancy? In Micronutrient Deficiencies in the First Months of Life; Karger Publishers: Vevey, Switzerland, 2003; Volume 52, pp. 129–141. [Google Scholar]
- World Health Organization. Sustainable Healthy Diets: Guiding Principles; Food & Agriculture Org.: Rome, Italy, 2019. [Google Scholar]
- Ohanenye, I.C.; Emenike, C.U.; Mensi, A.; Medina-Godoy, S.; Jin, J.; Ahmed, T.; Sun, X.; Udenigwe, C.C. Food fortification technologies: Influence on iron, zinc and vitamin A bioavailability and potential implications on micronutrient deficiency in sub-Saharan Africa. Sci. Afr. 2021, 11, e00667. [Google Scholar] [CrossRef]
- Ba, D.M.; Ssentongo, P.; Kjerulff, K.H.; Na, M.; Liu, G.; Gao, X.; Du, P. Adherence to iron supplementation in 22 sub-Saharan African countries and associated factors among pregnant women: A large population-based study. Curr. Dev. Nutr. 2019, 3, nzz120. [Google Scholar] [CrossRef]
- Huda, T.; Dibley, M. The Effect of Antenatal 60 mg Iron Supplementation on Neonatal Mortality: A Meta-Analysis. Curr. Dev. Nutr. 2020, 4, nzaa053_048. [Google Scholar] [CrossRef]
- Peña-Rosas, J.P.; De-Regil, L.M.; Garcia-Casal, M.N.; Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2015, 7. [Google Scholar] [CrossRef]
- Titaley, C.R.; Dibley, M.J.; Roberts, C.L.; Agho, K. Combined iron/folic acid supplements and malaria prophylaxis reduce neonatal mortality in 19 sub-Saharan African countries. Am. J. Clin. Nutr. 2010, 92, 235–243. [Google Scholar] [CrossRef]
- Bekele, Y.; Gallagher, C.; Vicendese, D.; Buultjens, M.; Batra, M.; Erbas, B. The Effects of Maternal Iron and Folate Supplementation on Pregnancy and Infant Outcomes in Africa: A Systematic Review. Int. J. Environ. Res. Public Health 2024, 21, 856. [Google Scholar] [CrossRef]
- Titaley, C.R.; Dibley, M.J.; Roberts, C.L.; Hall, J.; Agho, K. Iron and folic acid supplements and reduced early neonatal deaths in Indonesia. Bull. World Health Organ. 2010, 88, 500–508. [Google Scholar] [CrossRef]
- Zeng, L.; Cheng, Y.; Dang, S.; Yan, H.; Dibley, M.J.; Chang, S.; Kong, L. Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: Double blind cluster randomised controlled trial. BMJ 2008, 337, a2001. [Google Scholar] [CrossRef]
- Tirore, L.L.; Areba, A.S.; Tamrat, H.; Habte, A.; Abame, D.E. Determinants of severity levels of anemia among pregnant women in Sub-Saharan Africa: Multilevel analysis. Front. Glob. Women’s Health 2024, 5, 1367426. [Google Scholar] [CrossRef]
- Taabia, F.Z. Household food insecurity in sub-Saharan Africa: A systematic review of associated factors and prevalence during COVID-19 pandemic. Sci. Dev. 2024, 9, 19–41. [Google Scholar]
- Akombi, B.J.; Ghimire, P.R.; Agho, K.E.; Renzaho, A.M. Stillbirth in the African Great Lakes region: A pooled analysis of demographic and health surveys. PLoS ONE 2018, 13, e0202603. [Google Scholar] [CrossRef]
- Upadhyay, R.P.; Martines, J.C.; Taneja, S.; Mazumder, S.; Bahl, R.; Bhandari, N.; Dalpath, S.; Bhan, M.K. Risk of postneonatal mortality, hospitalisation and suboptimal breast feeding practices in low birthweight infants from rural Haryana, India: Findings from a secondary data analysis. BMJ Open 2018, 8, e020384. [Google Scholar] [CrossRef]
- Domellöf, M. Meeting the iron needs of low and very low birth weight infants. Ann. Nutr. Metab. 2017, 71 (Suppl. S3), 16–23. [Google Scholar] [CrossRef]
- Fisher, A.A.; Way, A.A. The demographic and health surveys program: An overview. Int. Fam. Plan. Perspect. 1988, 14, 15–19. [Google Scholar] [CrossRef]
- USAID. The Demographic and Health Surveys Program. Available online: https://dhsprogram.com/ (accessed on 17 March 2025).
- ICF International. Survey Organization Manual for Demographic and Health Surveys; MEASURE DHS; ICF International: Calverton, MD, USA, 2012. [Google Scholar]
- Benjamin, R.H.; Salemi, J.L.; Canfield, M.A.; Nembhard, W.N.; Ganduglia Cazaban, C.; Tsao, K.; Johnson, A.; Agopian, A. Causes of neonatal and postneonatal death among infants with birth defects in Texas. Birth Defects Res. 2021, 113, 665–675. [Google Scholar] [CrossRef]
- Croft, T.N.; Marshall, A.M.; Allen, C.K. Guide to DHS Statistics; ICF: Rockville, MD, USA, 2018. [Google Scholar]
- Textor, J.; Van der Zander, B.; Gilthorpe, M.S.; Liśkiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef]
- VanderWeele, T.J. On the distinction between interaction and effect modification. Epidemiology 2009, 20, 863–871. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software, Release 18; StataCorp LLC: College Station, TX, USA, 2023.
- Tunçalp, Ӧ.; Pena-Rosas, J.P.; Lawrie, T.; Bucagu, M.; Oladapo, O.T.; Portela, A.; Gülmezoglu, A.M. WHO recommendations on antenatal care for a positive pregnancy experience-going beyond survival. Bjog 2017, 124, 860–862. [Google Scholar] [CrossRef]
- Moreno-Fernandez, J.; Ochoa, J.; Latunde-Dada, G.; Diaz-Castro, J. Iron Deficiency and Iron Homeostasis in Low Birth Weight Preterm Infants: A Systematic Review. Nutrients 2019, 11, 1090. [Google Scholar] [CrossRef]
- Oppenheimer, S.J. Iron and its relation to immunity and infectious disease. J. Nutr. 2001, 131, 616S–635S. [Google Scholar] [CrossRef]
- Brock, J.H.; Mulero, V. Cellular and molecular aspects of iron and immune function. Proc. Nutr. Soc. 2000, 59, 537–540. [Google Scholar] [CrossRef]
- Oza, S.; Lawn, J.E.; Hogan, D.R.; Mathers, C.; Cousens, S.N. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bull. World Health Organ. 2014, 93, 19–28. [Google Scholar] [CrossRef]
- Collins, J.W., Jr.; Hawkes, E.K. Racial differences in post-neonatal mortality in Chicago: What risk factors explain the black infant’s disadvantage? Ethn. Health 1997, 2, 117–125. [Google Scholar] [CrossRef]
- Shukla, S.; Das, D.K.; Behera, J.N. Post neonatal under five mortality—A hospital based study. IOSR J. Dent. Med. Sci. 2015, 14, 42–45. [Google Scholar]
- Walker, C.L.F.; Rudan, I.; Liu, L.; Nair, H.; Theodoratou, E.; Bhutta, Z.A.; O’Brien, K.L.; Campbell, H.; Black, R.E. Global burden of childhood pneumonia and diarrhoea. Lancet 2013, 381, 1405–1416. [Google Scholar] [CrossRef]
- Koster, F.; Curlin, G.; Aziz, K.; Haque, A. Synergistic impact of measles and diarrhoea on nutrition and mortality in Bangladesh. Bull. World Health Organ. 1981, 59, 901–908. [Google Scholar]
- Bryce, J.; Boschi-Pinto, C.; Shibuya, K.; Black, R.E. WHO estimates of the causes of death in children. Lancet 2005, 365, 1147–1152. [Google Scholar] [CrossRef]
- Allen, L.H. Biological mechanisms that might underlie iron’s effects on fetal growth and preterm birth. J. Nutr. 2001, 131, 581S–589S. [Google Scholar] [CrossRef]
- Nandi, A.; Shet, A. Why vaccines matter: Understanding the broader health, economic, and child development benefits of routine vaccination. Hum. Vaccines Immunother. 2020, 16, 1900–1904. [Google Scholar] [CrossRef]
- Engelhart, A.; Mason, S.; Nwaozuru, U.; Obiezu-Umeh, C.; Carter, V.; Shato, T.; Gbaja-Biamila, T.; Oladele, D.; Iwelunmor, J. Sustainability of breastfeeding interventions to reduce child mortality rates in low, middle-income countries: A systematic review of randomized controlled trials. Front. Health Serv. 2022, 2, 889390. [Google Scholar] [CrossRef]
- Gatica-Domínguez, G.; Neves, P.A.; Barros, A.J.; Victora, C.G. Complementary feeding practices in 80 low-and middle-income countries: Prevalence of and socioeconomic inequalities in dietary diversity, meal frequency, and dietary adequacy. J. Nutr. 2021, 151, 1956–1964. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Li, P. Ferritin and iron supplements in gestational diabetes mellitus: Less or more? Eur. J. Nutr. 2024, 63, 67–78. [Google Scholar] [CrossRef]
- Zhao, L.; Lian, J.; Tian, J.; Shen, Y.; Ping, Z.; Fang, X.; Min, J.; Wang, F. Dietary intake of heme iron and body iron status are associated with the risk of gestational diabetes mellitus: A systematic review and meta-analysis. Asia Pac. J. Clin. Nutr. 2017, 26, 1092–1106. [Google Scholar]
- Valadbeigi, T.; ArabAhmadi, A.; Dara, N.; Tajalli, S.; Hosseini, A.; Etemad, K.; Zolfizadeh, F.; Piri, N.; Afkar, M.; Taherpour, N. Evaluating the association between neonatal mortality and maternal high blood pressure, heart disease and gestational diabetes: A case control study. J. Res. Med. Sci. 2020, 25, 23. [Google Scholar]
Variable | Neonatal Death (n = 287,642) | p-Value | Post-Neonatal Death (n = 279,819) | p-Value | |||
---|---|---|---|---|---|---|---|
Yes (%) | No (%) | Yes (%) | No (%) | ||||
Iron supplementation. n = 188,990 | Yes | 2760 (1.8) | 149,120 (98.18) | <0.001 * | 1730 (1.16) | 147,390 (98.84) | <0.001 * |
No | 914 (2.46) | 36,196 (97.54) | 603 (1.67) | 35,593 (98.33) | |||
Duration of iron supplementation n = 183,381 | No | 914 (2.46) | 36,196 (97.54) | <0.001 * | 603 (1.67) | 35,593 (98.33) | <0.001 * |
<90 days | 1430 (1.90) | 73,701 (98.10) | 944 (1.26) | 72,757 (98.72) | |||
≥90 days | 1120 (1.70) | 64,913 (98.30) | 637 (0.98) | 64,276 (99.02) | |||
Age n = 287,642 | 15–19 | 624 (3.67) | 16,371 (96.33) | <0.001 * | 369 (2.25) | 16,002 (97.75) | <0.001 * |
20–24 | 1776 (2.76) | 62,594 (97.24) | 1144 (1.83) | 61,449 (98.17) | |||
25–29 | 1775 (2.35) | 73,910 (97.65) | 1221 (1.65) | 72,689 (98.35) | |||
30–34 | 1515 (2.49) | 59,265 (97.51) | 917 (1.55) | 58,348 (98.45) | |||
35–39 | 1249 (2.87) | 42,299 (97.13) | 742 (1.75) | 41,557 (98.25) | |||
40–44 | 619 (3.09) | 19,411 (96.91) | 405 (2.09) | 19,006 (97.91) | |||
45–49 | 260 (4.17) | 5974 (95.83) | 182 (3.05) | 5791 (96.95) | |||
Educational status n = 287,642 | Illiterate | 3164 (2.87) | 107,247 (97.13) | <0.001 * | 2377 (2.22) | 104,870 (97.78) | <0.001 * |
Primary | 2517 (2.73) | 89,558 (97.27) | 1506 (1.68) | 88,050 (98.32) | |||
Secondary | 1884 (2.58) | 71,045 (97.42) | 989 (1.39) | 70,054 (98.61) | |||
Higher | 253 (2.07) | 11,973 (97.93) | 108 (0.90) | 11,865 (99.10) | |||
Wealth index n = 287,642 | Poorest | 2132 (2.83) | 73,251 (97.17) | <0.001 * | 1577 (2.15) | 71,673 (97.85) | <0.001 * |
Poorer | 1781 (2.83) | 61,056 (97.17) | 1304 (2.14) | 59,752 (97.86) | |||
Middle | 1592 (2.77) | 55,860 (97.23) | 969 (1.73) | 54,889 (98.27) | |||
Richer | 1328 (2.66) | 48,634 (97.34) | 678 (1.39) | 47,955 (98.61) | |||
Richest | 985 (2.34) | 41,023 (97.66) | 452 (1.10) | 40,570 (98.90) | |||
ANC n = 189,619 | Yes | 3102 (1.81) | 168,056 (98.19) | <0.001 * | 1962 (1.17) | 166,094 (98.83) | <0.001 * |
No | 592 (3.21) | 17,869 (96.79) | 386 (2.16) | 17,483 (97.84) | |||
Low birth weight n = 149,346 | Yes | 695 (4.46) | 14,891 (95.54) | <0.001 * | 346 (2.32) | 14,545 (97.68) | <0.001 * |
No | 1732 (1.29) | 132,028 (98.71) | 1564 (1.18) | 130,463 (98.82) |
Neonatal Death | |||||
---|---|---|---|---|---|
Exposure | cOR (95% CI) | p-value | aOR (95% CI) | p-value | |
Iron supplementation (n = 188,990) | Yes | 1 | 1 | ||
No | 1.37 (1.24, 1.52) | <0.001 * | 1.07 (0.86, 1.34) | 0.53 | |
Duration of iron supplementation (n = 188,990) | ≥90 days | 0.68 (0.60, 0.76) | <0.001 * | 0.95 (0.74, 1.22) | 0.71 |
<90 days | 0.76 (0.69, 0.85) | <0.001 * | 0.92 (0.73, 1.15) | 0.46 | |
No | 1 | 1 | |||
Post-Neonatal Death | |||||
Exposure | cOR (95% CI) | p-value | aOR (95% CI) | p-value | |
Iron supplementation (n = 185,316) | Yes | 1 | 1 | 0.04 * | |
No | 1.47 (1.32, 1.65) | <0.001 * | 1.25 (1.01, 1.56) | ||
Duration of iron supplementation (n = 185,316) | ≥90 days | 0.58 (0.51, 0.66) | <0.001 * | 0.73 (0.57, 0.93) | 0.01 * |
<90 days | 0.75 (0.66, 0.85) | <0.001 * | 0.85 (0.67, 1.08) | 0.19 | |
No | 1 | 1 |
Neonatal death | ||||||
LBW (birth weight < 2500 g) (n = 8839) | No LBW (birth weight ≥ 2500 g) (n = 8554) | Interaction p-value | ||||
Exposure | aOR (95% CI) | p-value | aOR (95% CI) | p-value | ||
Iron supplementation | Yes | 1 | 0.01 * | 1 | 0.38 | 0.04 |
No | 1.68 (1.14, 2.47) | 0.88 (0.68, 1.15) | ||||
Duration of iron supplementation | ≥90 days | 0.55 (0.36, 0.87) | 0.01 * | 1.18 (0.88, 1.58) | 0.27 | 0.02 |
<90 days | 0.62 (0.41, 0.94) | 0.02 * | 1.10 (0.84, 1.44) | 0.50 | 0.09 | |
No | 1 | 1 | ||||
Post-neonatal death | ||||||
LBW (birth weight < 2500 g) (n = 85,381) | No LBW (birth weight ≥ 2500 g) (n = 84,631) | |||||
Exposure | aOR (95% CI) | p-value | aOR (95% CI) | p-value | p-value | |
Iron supplementation | Yes | 1 | 0.75 | 1 | 0.04 | 0.35 |
No | 1.09 (0.65, 1.81) | 1.29 (1.02, 1.65) | ||||
Duration of iron supplementation | ≥90 days | 0.78 (0.44, 1.38) | 0.40 | 0.72 (0.55, 0.93) | 0.01 | 0.52 |
<90 days | 1.04 (0.60, 1.78) | 0.90 | 0.81 (0.62, 1.06) | 0.13 | 0.26 | |
No | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekele, Y.; Erbas, B.; Batra, M. Is Iron Supplementation Associated with Infant Mortality in Sub-Saharan Africa and Does Birth Weight Modify These Associations? Nutrients 2025, 17, 1696. https://doi.org/10.3390/nu17101696
Bekele Y, Erbas B, Batra M. Is Iron Supplementation Associated with Infant Mortality in Sub-Saharan Africa and Does Birth Weight Modify These Associations? Nutrients. 2025; 17(10):1696. https://doi.org/10.3390/nu17101696
Chicago/Turabian StyleBekele, Yibeltal, Bircan Erbas, and Mehak Batra. 2025. "Is Iron Supplementation Associated with Infant Mortality in Sub-Saharan Africa and Does Birth Weight Modify These Associations?" Nutrients 17, no. 10: 1696. https://doi.org/10.3390/nu17101696
APA StyleBekele, Y., Erbas, B., & Batra, M. (2025). Is Iron Supplementation Associated with Infant Mortality in Sub-Saharan Africa and Does Birth Weight Modify These Associations? Nutrients, 17(10), 1696. https://doi.org/10.3390/nu17101696