Associations of Serum Homocysteine with Bone Mineral Density and Osteoporosis Incidence in Chinese Middle-Aged and Older Adults: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Physical Examination
2.4. Biochemical Measurements
2.5. BMD Measurements
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Longitudinal Correlation Between Serum Hcy and Lumbar BMD—Generalized Estimating Equations
3.3. Relationship Between Serum Hcy and Risk of Osteoporosis—Cox Proportional Hazards Models
3.4. Stratified Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The Epidemiology of Osteoporosis. Br. Med. Bull. 2020, 133, 105. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Guo, Y.; Yang, Y.; Fu, D. Advances in Pathogenesis and Therapeutic Strategies for Osteoporosis. Pharmacol. Ther. 2022, 237, 108168. [Google Scholar] [CrossRef]
- Adami, G.; Fassio, A.; Gatti, D.; Viapiana, O.; Benini, C.; Danila, M.I.; Saag, K.G.; Rossini, M. Osteoporosis in 10 Years Time: A Glimpse into the Future of Osteoporosis. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221083541. [Google Scholar] [CrossRef] [PubMed]
- Aibar-Almazán, A.; Voltes-Martínez, A.; Castellote-Caballero, Y.; Afanador-Restrepo, D.F.; Carcelén-Fraile, M.D.C.; López-Ruiz, E. Current Status of the Diagnosis and Management of Osteoporosis. Int. J. Mol. Sci. 2022, 23, 9465. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Kang, W.Y.; Park, H.; Yang, Z.; Lee, J.; Kim, C.; Woo, O.H.; Hong, S.-J. Evaluation of Deep Learning-Based Quantitative Computed Tomography for Opportunistic Osteoporosis Screening. Sci. Rep. 2024, 14, 363. [Google Scholar] [CrossRef] [PubMed]
- Langman, L.J.; Cole, D.E. Homocysteine. Crit. Rev. Clin. Lab. Sci. 1999, 36, 365–406. [Google Scholar] [CrossRef] [PubMed]
- Schneede, J.; Refsum, H.; Ueland, P.M. Biological and Environmental Determinants of Plasma Homocysteine. Semin. Thromb. Hemost. 2000, 26, 263–279. [Google Scholar] [CrossRef]
- Vacek, T.P.; Kalani, A.; Voor, M.J.; Tyagi, S.C.; Tyagi, N. The Role of Homocysteine in Bone Remodeling. Clin. Chem. Lab. Med. 2013, 51, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Marumo, K. The Effects of Homocysteine on the Skeleton. Curr. Osteoporos. Rep. 2018, 16, 554–560. [Google Scholar] [CrossRef]
- Blouin, S.; Thaler, H.W.; Korninger, C.; Schmid, R.; Hofstaetter, J.G.; Zoehrer, R.; Phipps, R.; Klaushofer, K.; Roschger, P.; Paschalis, E.P. Bone Matrix Quality and Plasma Homocysteine Levels. Bone 2009, 44, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Lubec, B.; Fang-Kircher, S.; Lubec, T.; Blom, H.J.; Boers, G.H. Evidence for McKusick’s Hypothesis of Deficient Collagen Cross-Linking in Patients with Homocystinuria. Biochim. Biophys. Acta 1996, 1315, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Koh, J.-M.; Lee, O.; Kim, N.J.; Lee, Y.-S.; Kim, Y.S.; Park, J.-Y.; Lee, K.-U.; Kim, G.S. Homocysteine Enhances Apoptosis in Human Bone Marrow Stromal Cells. Bone 2006, 39, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.-M.; Lee, Y.-S.; Kim, Y.S.; Kim, D.J.; Kim, H.-H.; Park, J.-Y.; Lee, K.-U.; Kim, G.S. Homocysteine Enhances Bone Resorption by Stimulation of Osteoclast Formation and Activity through Increased Intracellular ROS Generation. J. Bone Min. Res. 2006, 21, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Auer, J.; Lamm, G.; Eber, B. Homocysteine as a Predictive Factor for Hip Fracture in Older Persons. N. Engl. J. Med. 2004, 351, 1027–1030; author reply 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Cienfuegos, A.; Cantero-Nieto, L.; García-Gomez, J.A.; Callejas-Rubio, J.L.; González-Gay, M.A.; Ortego-Centeno, N. Association Between Homocysteine Serum Level and Bone Mineral Density in Patients with Rheumatoid Arthritis. J. Clin. Densitom. 2020, 23, 561–567. [Google Scholar] [CrossRef]
- Bahtiri, E.; Islami, H.; Rexhepi, S.; Qorraj-Bytyqi, H.; Thaçi, K.; Thaçi, S.; Karakulak, C.; Hoxha, R. Relationship of Homocysteine Levels with Lumbar Spine and Femur Neck BMD in Postmenopausal Women. Acta Reum. Port. 2015, 40, 355–362. [Google Scholar]
- Ebesunun, M.O.; Umahoin, K.O.; Alonge, T.O.; Adebusoye, L.A. Plasma Homocysteine, B Vitamins and Bone Mineral Density in Osteoporosis: A Possible Risk for Bone Fracture. Afr. J. Med. Med. Sci. 2014, 43, 41–47. [Google Scholar] [PubMed]
- Rehackova, P.; Skalova, S.; Kutilek, S. Serum homocysteine levels in children and adolescents with impaired bone health. Rev. Bras. Reum. 2013, 53, 464–468. [Google Scholar] [CrossRef]
- Gjesdal, C.G.; Vollset, S.E.; Ueland, P.M.; Refsum, H.; Drevon, C.A.; Gjessing, H.K.; Tell, G.S. Plasma Total Homocysteine Level and Bone Mineral Density: The Hordaland Homocysteine Study. Arch. Intern. Med. 2006, 166, 88–94. [Google Scholar] [CrossRef]
- Bucciarelli, P.; Martini, G.; Martinelli, I.; Ceccarelli, E.; Gennari, L.; Bader, R.; Valenti, R.; Franci, B.; Nuti, R.; Mannucci, P.M. The Relationship between Plasma Homocysteine Levels and Bone Mineral Density in Post-Menopausal Women. Eur. J. Intern. Med. 2010, 21, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Moon, J.H.; Chung, H.W.; Kong, M.H.; Kim, H.J. Association between Homocysteine and Bone Mineral Density According to Age and Sex in Healthy Adults. J. Bone Metab. 2016, 23, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Périer, M.A.; Gineyts, E.; Munoz, F.; Sornay-Rendu, E.; Delmas, P.D. Homocysteine and Fracture Risk in Postmenopausal Women: The OFELY Study. Osteoporos. Int. 2007, 18, 1329–1336. [Google Scholar] [CrossRef]
- Rumbak, I.; Zižić, V.; Sokolić, L.; Cvijetić, S.; Kajfež, R.; Colić Barić, I. Bone Mineral Density Is Not Associated with Homocysteine Level, Folate and Vitamin B12 Status. Arch. Gynecol. Obs. 2012, 285, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Li, F.-F.; Yuan, S.-Q.; Tang, H.-K.; Zhou, J.-H.; He, Q.-Y.; Baker, J.S.; Dong, Y.-H.; Yang, Y.-D. Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis. Biology 2021, 10, 959. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yu, W.; Yin, X.; Cui, L.; Tang, S.; Jiang, N.; Cui, L.; Zhao, N.; Lin, Q.; Chen, L.; et al. Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Netw. Open 2021, 4, e2121106. [Google Scholar] [CrossRef] [PubMed]
- ISO 15189:2022; Medical Laboratories—Requirements for Quality and Competence. ISO: Geneva, Switzerland, 2022.
- Kanis, J.A.; Melton, L.J.; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The Diagnosis of Osteoporosis. J. Bone Min. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef]
- Saoji, R.; Das, R.S.; Desai, M.; Pasi, A.; Sachdeva, G.; Das, T.K.; Khatkhatay, M.I. Association of High-Density Lipoprotein, Triglycerides, and Homocysteine with Bone Mineral Density in Young Indian Tribal Women. Arch. Osteoporos. 2018, 13, 108. [Google Scholar] [CrossRef]
- Tariq, S.; Tariq, S.; Lone, K.P. Interplay of Vitamin D, Vitamin B(12), Homocysteine and Bone Mineral Density in Postmenopausal Females. Health Care Women Int. 2018, 39, 1340–1349. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Li, X.; Yao, X. Association between Plasma Total Homocysteine Level within Normal Range and Bone Mineral Density in Adults. J. Orthop. Surg. Res. 2020, 15, 475. [Google Scholar] [CrossRef]
- Enneman, A.W.; Swart, K.M.A.; Zillikens, M.C.; van Dijk, S.C.; van Wijngaarden, J.P.; Brouwer-Brolsma, E.M.; Dhonukshe-Rutten, R.A.M.; Hofman, A.; Rivadeneira, F.; van der Cammen, T.J.M.; et al. The Association between Plasma Homocysteine Levels and Bone Quality and Bone Mineral Density Parameters in Older Persons. Bone 2014, 63, 141–146. [Google Scholar] [CrossRef]
- Feng, X.; McDonald, J.M. Disorders of Bone Remodeling. Annu. Rev. Pathol. 2011, 6, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Weitzmann, M.N.; Pacifici, R. Estrogen Deficiency and Bone Loss: An Inflammatory Tale. J. Clin. Investig. 2006, 116, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Prince, R.L. Lifestyle and Osteoporosis. Curr. Osteoporos. Rep. 2015, 13, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Jianbo, L.; Zhang, H.; Yan, L.; Xie, M.; Mei, Y.; Jiawei, C. Homocysteine, an Additional Factor, Is Linked to Osteoporosis in Postmenopausal Women with Type 2 Diabetes. J. Bone Min. Metab. 2014, 32, 718–724. [Google Scholar] [CrossRef]
- Ouzzif, Z.; Oumghar, K.; Sbai, K.; Mounach, A.; Derouiche, E.M.; El Maghraoui, A. Relation of Plasma Total Homocysteine, Folate and Vitamin B12 Levels to Bone Mineral Density in Moroccan Healthy Postmenopausal Women. Rheumatol. Int. 2012, 32, 123–128. [Google Scholar] [CrossRef]
- Faienza, M.F.; Giardinelli, S.; Annicchiarico, A.; Chiarito, M.; Barile, B.; Corbo, F.; Brunetti, G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int. J. Mol. Sci. 2024, 25, 5873. [Google Scholar] [CrossRef]
- Marini, H.R. Mediterranean Diet and Soy Isoflavones for Integrated Management of the Menopausal Metabolic Syndrome. Nutrients 2022, 14, 1550. [Google Scholar] [CrossRef]
- Haroon, N.N.; Marwaha, R.K.; Godbole, M.M.; Gupta, S.K. Role of B₁₂ and Homocysteine Status in Determining BMD and Bone Turnover in Young Indians. J. Clin. Densitom. 2012, 15, 366–373. [Google Scholar] [CrossRef]
- Kaya, B.; Ates, E.; Paydas, S.; Sertdemir, Y.; Balal, M. Evaluation of the Relationship Between Homocysteine, Parathormone, Vitamin D3, and Bone Mineral Densitometry in Recipients of Kidney Transplant. Transpl. Proc. 2019, 51, 2324–2329. [Google Scholar] [CrossRef]
- Marini, H.; Bitto, A.; Altavilla, D.; Burnett, B.P.; Polito, F.; Di Stefano, V.; Minutoli, L.; Atteritano, M.; Levy, R.M.; Frisina, N.; et al. Efficacy of Genistein Aglycone on Some Cardiovascular Risk Factors and Homocysteine Levels: A Follow-up Study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Tajima, A.; Kubo, Y.; Horiguchi, S.; Shoji, K.; Kawabata, T. Relationship between Serum Homocysteine Concentration and Dietary Factors in Young Japanese Women. Nutrients 2023, 15, 4740. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, W.; Isomura, H.; Fujie, K.; Deyama, Y.; Kato, A.; Nishihira, J.; Izumi, H. Homocysteine Attenuates the Expression of Osteocalcin but Enhances Osteopontin in MC3T3-E1 Preosteoblastic Cells. Biochim. Biophys. Acta 2005, 1740, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Behera, J.; George, A.K.; Voor, M.J.; Tyagi, S.C.; Tyagi, N. Hydrogen Sulfide Epigenetically Mitigates Bone Loss through OPG/RANKL Regulation during Hyperhomocysteinemia in Mice. Bone 2018, 114, 90–108. [Google Scholar] [CrossRef]
- Herrmann, M.; Schmidt, J.; Umanskaya, N.; Colaianni, G.; Al Marrawi, F.; Widmann, T.; Zallone, A.; Wildemann, B.; Herrmann, W. Stimulation of Osteoclast Activity by Low B-Vitamin Concentrations. Bone 2007, 41, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.S.; Kim, C.H.; Park, J.Y.; Lee, K.U.; Park, C.S. Effects of Vitamin B12 on Cell Proliferation and Cellular Alkaline Phosphatase Activity in Human Bone Marrow Stromal Osteoprogenitor Cells and UMR106 Osteoblastic Cells. Metabolism 1996, 45, 1443–1446. [Google Scholar] [CrossRef]
- Hou, H.; Zhao, H. Epigenetic Factors in Atherosclerosis: DNA Methylation, Folic Acid Metabolism, and Intestinal Microbiota. Clin. Chim. Acta Int. J. Clin. Chem. 2021, 512, 7–11. [Google Scholar] [CrossRef]
- Sözen, T.; Özışık, L.; Başaran, N.Ç. An Overview and Management of Osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
Sex-Specific Quartiles of Serum Homocysteine | p-Value | ||||
---|---|---|---|---|---|
Q1 (n = 638) | Q2 (n = 637) | Q3 (n = 639) | Q4 (n = 637) | ||
Age, years | 55.0 (52.0, 59.0) | 55.0 (53.0, 60.0) | 55.0 (53.0, 60.0) | 57.0 (53.0, 61.0) | <0.001 |
Women, n (%) | 331 (51.9) | 330 (51.8) | 331 (51.8) | 330 (51.8) | 1 |
Homocysteine, μmol/L | 8.2 (7.4, 9.3) | 10.0 (9.3, 11.3) | 11.9 (10.8, 13.2) | 15.8 (13.7, 18.5) | <0.001 |
Lumbar BMD, g/cm2 | 0.84 (0.76, 0.95) | 0.85 (0.75, 0.94) | 0.85 (0.76, 0.96) | 0.86 (0.77, 0.95) | 0.257 |
Lumbar T-score | −2.1 (−2.8, −1.1) | −2.1 (−2.8, −1.2) | −2.0 (−2.8, −1.0) | −1.9 (−2.7, −1.0) | 0.182 |
BMI, kg/m2 | 23.6 (21.6, 25.8) | 23.5 (21.7, 25.4) | 24.1 (22.2, 26.4) | 24.3 (22.2, 26.1) | <0.001 |
Smoker, n (%) | 208 (32.6) | 196 (30.8) | 219 (34.3) | 221 (34.7) | 0.43 |
Alcohol drinker, n (%) | 175 (27.4) | 165 (25.9) | 171 (26.8) | 172 (27.0) | 0.94 |
Hypertension, n (%) | 104 (16.3) | 119 (18.7) | 138 (21.6) | 175 (27.5) | <0.001 |
Diabetes, n (%) | 43 (6.7) | 43 (6.8) | 40 (6.3) | 50 (7.8) | 0.718 |
Cardiovascular diseases, n (%) | 17 (2.7) | 21 (3.3) | 26 (4.1) | 32 (5.0) | 0.141 |
SBP, mmHg | 128.0 (116.0, 142.0) | 129.0 (117.0, 142.0) | 131.0 (118.0, 145.0) | 133.0 (120.0, 149.0) | <0.001 |
DBP, mmHg | 76.0 (68.0, 85.0) | 77.0 (68.0, 85.0) | 78.0 (69.5, 86.0) | 78.0 (70.0, 86.0) | 0.017 |
Serum calcium, mmol/L | 2.3 (2.3, 2.4) | 2.3 (2.3, 2.4) | 2.4 (2.3, 2.4) | 2.3 (2.3, 2.4) | 0.604 |
Serum phosphorus, mmol/L | 1.1 (1.0, 1.2) | 1.2 (1.0, 1.3) | 1.1 (1.0, 1.2) | 1.1 (1.0, 1.2) | 0.326 |
Uric acid, μmol/L | 314.0 (267.0, 368.0) | 335.0 (277.0, 393.0) | 338.0 (286.0, 405.0) | 341.0 (286.0, 412.0) | <0.001 |
FBG, mmol/L | 5.52 (5.23, 5.94) | 5.53 (5.20, 5.95) | 5.47 (5.17, 5.95) | 5.46 (5.12, 5.90) | 0.017 |
TG, mmol/L | 1.26 (0.95, 1.82) | 1.31 (0.90, 1.95) | 1.32 (0.96, 1.96) | 1.34 (0.97, 1.92) | 0.349 |
TC, mmol/L | 5.30 (4.74, 5.95) | 5.27 (4.68, 5.95) | 5.20 (4.64, 5.88) | 5.02 (4.43, 5.72) | <0.001 |
HDL-C, mmol/L | 1.29 (1.11, 1.52) | 1.28 (1.09, 1.49) | 1.25 (1.07, 1.48) | 1.21 (1.02, 1.44) | <0.001 |
ALP, IU/L | 76.0 (64.0, 89.0) | 77.0 (65.0, 90.0) | 77.0 (67.0, 92.0) | 78.0 (67.0, 91.0) | 0.024 |
ALT, IU/L | 21.0 (16.0, 28.0) | 21.0 (16.0, 29.0) | 21.0 (15.0, 30.0) | 20.0 (15.0, 26.0) | 0.01 |
AST, IU/L | 21.0 (18.0, 25.0) | 21.0 (18.0, 25.0) | 21.0 (18.0, 25.0) | 21.0 (18.0, 25.0) | 0.452 |
Cr, μmol/L | 62.0 (53.0, 74.0) | 65.0 (55.0, 75.0) | 67.0 (57.0, 78.0) | 68.0 (58.0, 82.0) | <0.001 |
BUN, mmol/L | 4.9 (4.2, 5.8) | 4.9 (4.1, 5.9) | 4.9 (4.1, 6.0) | 5.2 (4.1, 6.3) | 0.126 |
GGT, IU/L | 21.8 (15.9, 32.7) | 22.3 (16.2, 37.0) | 22.0 (15.8, 36.0) | 20.4 (14.5, 30.7) | 0.003 |
Total bilirubin, μmol/L | 11.8 (9.6, 14.3) | 11.4 (9.4, 14.3) | 11.5 (9.2, 14.3) | 11.4 (9.0, 14.3) | 0.451 |
Sex-Specific Quartiles of Serum Homocysteine | ||||||
---|---|---|---|---|---|---|
Q1 (n = 638) | Q2 (n = 637) | Q3 (n = 639) | Q4 (n = 637) | p-Trend * | Per-SD Increase in lg (Hcy Levels) | |
Lumbar BMD | ||||||
Model 1 | Ref. | −0.002 (−0.005, 0.001) | −0.002 (−0.004, 0.001) | −0.003 (−0.006, −0.001) | 0.016 | −0.001 (−0.002, −0.0005) |
Model 2 | Ref. | −0.002 (−0.005, 0.001) | −0.002 (−0.005, 0.001) | −0.004 (−0.006, −0.001) | 0.007 | −0.002 (−0.003, −0.001) |
Model 3 | Ref. | −0.002 (−0.005, 0.0005) | −0.002 (−0.005, 0.001) | −0.004 (−0.007, −0.001) | 0.006 | −0.002 (−0.003, −0.001) |
T-score | ||||||
Model 1 | Ref. | −0.018 (−0.043, 0.006) | −0.015 (−0.039, 0.009) | −0.032 (−0.054, −0.009) | 0.015 | −0.013 (−0.022, −0.004) |
Model 2 | Ref. | −0.018 (−0.042, 0.006) | −0.017 (−0.041, 0.007) | −0.034 (−0.057, −0.011) | 0.006 | −0.014 (−0.023, −0.006) |
Model 3 | Ref. | −0.020 (−0.044, 0.005) | −0.018 (−0.042, 0.006) | −0.037 (−0.060, −0.013) | 0.005 | −0.015 (−0.024, −0.006) |
n | Sex-Specific Quartiles of Serum Homocysteine | p-Interaction a | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||
Gender | ||||||
Lumbar BMD | 0.022 | |||||
Men | 1229 | Ref. | −0.002 (−0.005, 0.002) | −0.003 (−0.007, 0.001) | −0.006 (−0.010, −0.002) | |
Women | 1322 | Ref. | −0.004 (−0.007, 0.0003) | −0.002 (−0.005, 0.002) | −0.002 (−0.006, 0.001) | |
T-score | 0.014 | |||||
Men | 1229 | Ref. | −0.014 (−0.048, 0.020) | −0.030 (−0.064, 0.004) | −0.060 (−0.095, −0.025) | |
Women | 1322 | Ref. | −0.032 (−0.064, 0.003) | −0.015 (−0.048, 0.018) | −0.017 (−0.049, 0.014) | |
Age, years | ||||||
Lumbar BMD | 0.475 | |||||
≤55 | 1290 | Ref. | −0.002 (−0.005, 0.002) | −0.001 (−0.005, 0.002) | −0.002 (−0.006, 0.002) | |
>55 | 1261 | Ref. | −0.003 (−0.007, 0.001) | −0.003 (−0.006, 0.001) | −0.005 (−0.009, −0.002) | |
T-score | 0.483 | |||||
≤55 | 1290 | Ref. | −0.015 (−0.048, 0.017) | −0.013 (−0.047, 0.021) | −0.019 (−0.055, 0.016) | |
>55 | 1261 | Ref. | −0.025 (−0.061, 0.010) | −0.024 (−0.057, 0.009) | −0.048 (−0.079, −0.017) | |
Smoker | ||||||
Lumbar BMD | 0.040 | |||||
No | 1707 | Ref. | −0.003 (−0.006, 0.001) | −0.001 (−0.005, 0.002) | −0.002 (−0.005, 0.001) | |
Yes | 844 | Ref. | −0.002 (−0.007, 0.002) | −0.003 (−0.008, 0.001) | −0.007 (−0.012, −0.003) | |
T-score | 0.025 | |||||
No | 1707 | Ref. | −0.024 (−0.052, 0.005) | −0.012 (−0.042, 0.019) | −0.018 (−0.046, 0.011) | |
Yes | 844 | Ref. | −0.018 (−0.060, 0.023) | −0.033 (−0.071, 0.005) | −0.070 (−0.113, −0.026) | |
Alcohol drinker | ||||||
Lumbar BMD | 0.486 | |||||
No | 1868 | Ref. | −0.002 (−0.005, 0.001) | −0.001 (−0.005, 0.002) | −0.003 (−0.006, −0.0002) | |
Yes | 683 | Ref. | −0.004 (−0.009, 0.001) | −0.004 (−0.009, 0.001) | −0.006 (−0.012, −0.001) | |
T-score | 0.371 | |||||
No | 1868 | Ref. | −0.019 (−0.046, 0.008) | −0.013 (−0.041, 0.015) | −0.026 (−0.052, 0.0003) | |
Yes | 683 | Ref. | −0.030 (−0.077, 0.018) | −0.036 (−0.080, 0.007) | −0.062 (−0.113, −0.011) | |
BMI, kg/m2 | ||||||
Lumbar BMD | 0.422 | |||||
BMI < 25 | 1639 | Ref. | −0.004 (−0.007, −0.0004) | −0.001 (−0.004, 0.002) | −0.003 (−0.006, 0.0003) | |
BMI ≥ 25 | 912 | Ref. | 0.001 (−0.004, 0.006) | −0.004 (−0.009, 0.001) | −0.005 (−0.009, 0.0001) | |
T-score | 0.446 | |||||
BMI < 25 | 1639 | Ref. | −0.032 (−0.061, −0.003) | −0.008 (−0.036, 0.020) | −0.027 (−0.055, 0.001) | |
BMI ≥ 25 | 912 | Ref. | 0.007 (−0.036, 0.050) | −0.038 (−0.082, 0.007) | −0.043 (−0.087, 0.0003) |
Sex-Specific Quartiles of Serum Homocysteine | ||||||
---|---|---|---|---|---|---|
Q1 (n = 419) | Q2 (n = 426) | Q3 (n = 432) | Q4 (n = 438) | p-Trend * | Per-SD Increase in lg (Hcy Levels) | |
Median (IQR), μmol/L | 8.20 (7.41, 9.42) | 10.65 (9.40, 11.41) | 12.40 (10.86, 13.29) | 16.03 (14.12, 18.62) | ||
Case, n | 37 | 45 | 50 | 43 | ||
Model 1 | Reference | 1.33 (0.86, 2.06) | 1.42 (0.92, 2.18) | 1.80 (1.14, 2.83) | 0.012 | 1.34 (1.14, 1.57) |
Model 2 | Reference | 1.32 (0.85, 2.06) | 1.43 (0.93, 2.20) | 1.76 (1.11, 2.79) | 0.015 | 1.34 (1.13, 1.58) |
Model 3 | Reference | 1.31 (0.83, 2.06) | 1.37 (0.87, 2.14) | 1.70 (1.05, 2.76) | 0.034 | 1.33 (1.12, 1.58) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Shu, M.; Chen, J.; Wusiman, M.; Ye, J.; Yang, S.; Chen, S.; Huang, Z.; Huang, B.; Fang, A.; et al. Associations of Serum Homocysteine with Bone Mineral Density and Osteoporosis Incidence in Chinese Middle-Aged and Older Adults: A Retrospective Cohort Study. Nutrients 2025, 17, 192. https://doi.org/10.3390/nu17010192
Zou J, Shu M, Chen J, Wusiman M, Ye J, Yang S, Chen S, Huang Z, Huang B, Fang A, et al. Associations of Serum Homocysteine with Bone Mineral Density and Osteoporosis Incidence in Chinese Middle-Aged and Older Adults: A Retrospective Cohort Study. Nutrients. 2025; 17(1):192. https://doi.org/10.3390/nu17010192
Chicago/Turabian StyleZou, Jiupeng, Mi Shu, Jiedong Chen, Maierhaba Wusiman, Jialu Ye, Sishi Yang, Si Chen, Zihui Huang, Bixia Huang, Aiping Fang, and et al. 2025. "Associations of Serum Homocysteine with Bone Mineral Density and Osteoporosis Incidence in Chinese Middle-Aged and Older Adults: A Retrospective Cohort Study" Nutrients 17, no. 1: 192. https://doi.org/10.3390/nu17010192
APA StyleZou, J., Shu, M., Chen, J., Wusiman, M., Ye, J., Yang, S., Chen, S., Huang, Z., Huang, B., Fang, A., & Zhu, H. (2025). Associations of Serum Homocysteine with Bone Mineral Density and Osteoporosis Incidence in Chinese Middle-Aged and Older Adults: A Retrospective Cohort Study. Nutrients, 17(1), 192. https://doi.org/10.3390/nu17010192