Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Shearer, M.J.; Fu, X.; Booth, S.L. Vitamin K nutrition, metabolism, and requirements: Current concepts and future research. Adv. Nutr. 2012, 3, 182–195. [Google Scholar] [CrossRef]
- Hatziparasides, G.; Loukou, I.; Moustaki, M.; Douros, K. Vitamin K and cystic fibrosis: A gordian knot that deserves our attention. Respir. Med. 2019, 155, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Sokol, R.J.; Durie, P.R. Recommendations for management of liver and biliary tract disease in cystic fibrosis. Cystic Fibrosis Foundation Hepatobiliary Disease Consensus Group. J. Pediatr. Gastroenterol. Nutr. 1999, 28, S1–S13. [Google Scholar] [CrossRef] [PubMed]
- Kapple, M.; Espach, C.; Schweiger-Kabesch, A.; Lang, T.; Hartl, D.; Hector, A.; Glasmacher, C.; Griese, M. Ursodeoxycholic acid therapy in cystic fibrosis liver disease-a retrospective long-term follow-up case-control study. Aliment. Pharmacol. Ther. 2012, 36, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Bertolaso, C.; Groleau, V.; Schall, J.I.; Maqbool, A.; Mascarenhas, M.; Latham, N.E.; Dougherty, K.A.; Stallings, V.A. Fat-soluble vitamins in cystic fibrosis and pancreatic insufficiency: Efficacy of a nutrition intervention. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Braegger, C.P.; Colombo, C.; Declercq, D.; Morton, A.; Pancheva, R.; Robberecht, E.; Stern, M.; Strandvik, B.; Wolfe, S.; et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016, 35, 557–577. [Google Scholar] [CrossRef] [PubMed]
- Krzyżanowska, P.; Pogorzelski, A.; Skorupa, W.; Moczko, J.; Grebowiec, P.; Walkowiak, J. Exogenous and endogenous determinants of vitamin K status in cystic fibrosis. Sci. Rep. 2015, 5, srep12000. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; Booth, S.L. Concepts and Controversies in Evaluating Vitamin K Status in Population-Based Studies. Nutrients 2016, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Mosler, K.; von Kries, R.; Vermeer, C.; Saupe, J.; Schmitz, T.; Schuster, A. Assessment of vitamin K deficiency in CF—How much sophistication is useful? J. Cyst. Fibros. 2003, 2, 91–96. [Google Scholar] [CrossRef]
- Choonara, I.A.; Winn, M.J.; Park, B.K. Plasma vitamin K1 concentrations in cystic fibrosis. Arch. Dis. Child. 1989, 64, 732–734. [Google Scholar] [CrossRef]
- Cornelissen, E.A.; van Lieburg, A.F.; Motohara, K.; van Oostrom, C.G. Vitamin K status in cystic fibrosis. Acta Paediatr. 1992, 81, 658–661. [Google Scholar] [CrossRef] [PubMed]
- Beker, L.T.; Ahrens, R.A.; Fink, R.J.; O’Brien, M.E.; Davidson, K.W.; Sokoll, L.J.; Sadowski, J.A. Effect of vitamin K1 supplementation on vitamin K status in cystic fibrosis patients. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Conway, S.P.; Wolfe, S.P.; Brownlee, K.G.; White, H.; Oldroyd, B.; Truscott, J.G.; Harvey, J.M.; Shearer, M.J. Vitamin K status among children with cystic fibrosis and its relationship to bone mineral density and bone turnover. Pediatrics 2005, 115, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Nicolaidou, P.; Stavrinadis, I.; Loukou, I.; Papadopoulou, A.; Georgouli, H.; Douros, K.; Priftis, K.N.; Gourgiotis, D.; Matsinos, Y.G.; Doudounakis, S. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur. J. Pediatr. 2006, 165, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Drury, D.; Grey, V.L.; Ferland, G.; Gundberg, C.; Lands, L.C. Efficacy of high dose phylloquinone in correcting vitamin K deficiency in cystic fibrosis. J. Cyst. Fibros. 2008, 7, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Siwamogsatham, O.; Dong, W.; Binongo, J.N.; Chowdhury, R.; Alvarez, J.A.; Feinman, S.J.; Enders, J.; Tangpricha, V. Relationship Between Fat-Soluble Vitamin Supplementation and Blood Concentrations in Adolescent and Adult Patients With Cystic Fibrosis. Nutr. Clin. Pract. 2014, 29, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, L.; Kaźmierska, K.; Roszkowska, A.; Szlagatys-Sidorkiewicz, A.; Bączek, T. The LC-MS method for the simultaneous analysis of selected fat-soluble vitamins and their metabolites in serum samples obtained from pediatric patients with cystic fibrosis. J. Pharm. Biomed. Anal. 2016, 124, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, C.; Potter, K.J.; Boudreau, V.; Ouliass, B.; Bonhoure, A.; Lacombe, J.; Mailhot, M.; Lavoie, A.; Ferron, M.; Ferland, G.; et al. Low vitamin K status in adults with cystic fibrosis is associated with reduced body mass index, insulin secretion, and increased pseudomonal colonization. Appl. Physiol. Nutr. Metab. 2023, 48, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Hirota, Y.; Tsugawa, N.; Nakagawa, K.; Suhara, Y.; Tanaka, K.; Uchino, Y.; Takeuchi, A.; Sawada, N.; Kamao, M.; Wada, A.; et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J. Biol. Chem. 2013, 288, 33071–33080. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Southern, K.W.; Brownlee, K.; Roelse, J.D.; Duff, A.; Farrell, M.; Mehta, A.; Munck, A.; Pollitt, R.; Sermet-Gaudelus, I.; et al. European best practice guidelines for cystic fibrosis neonatal screening. J. Cyst. Fibros. 2009, 8, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M.; White, T.B.; Ren, C.L.; Hempstead, S.E.; Accurso, F.; Derichs, N.; Howenstine, M.; McColley, S.A.; Rock, M.; Rosenfeld, M.; et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J. Pediatr. 2017, 181S, S4–S15. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, J. Faecal elastase-1: Clinical value in the assessment of exocrine pancreatic function in children. Eur. J. Pediatr. 2000, 159, 869–870. [Google Scholar] [CrossRef]
- Walkowiak, J. Assessment of maldigestion in cystic fibrosis. J. Pediatr. 2004, 145, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Dunovska, K.; Klapkova, E.; Sopko, B.; Cepova, J.; Prusa, R. LC-MS/MS quantitative analysis of phylloquinone, menaquinone-4 and menaquinone-7 in the human serum of a healthy population. PeerJ 2019, 7, e7695. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Krzyżanowska, P.; Drzymała-Czyż, S.; Pogorzelski, A.; Duś-Żuchowska, M.; Skorupa, W.; Bober, L.; Sapiejka, E.; Oralewska, B.; Rohovyk, N.; Moczko, J.; et al. Vitamin K status in cystic fibrosis patients with liver cirrhosis. Dig. Liver Dis. 2017, 49, 672–675. [Google Scholar] [CrossRef]
- Mahdinia, E.; Demirci, A.; Berenjian, A. Production and application of menaquinone-7 (vitamin K2): A new perspective. World J. Microbiol. Biotechnol. 2017, 33, 2. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, N.; Ajgaonkar, S.; Saha, P.; Gurav, P.; Pandey, A.; Basudkar, V.; Gada, Y.; Panda, S.; Jadhav, S.; Mehta, D.; et al. Molecular Pathways and Roles for Vitamin K2-7 as a Health-Beneficial Nutraceutical: Challenges and Opportunities. Front. Pharmacol. 2022, 13, 896920. [Google Scholar] [CrossRef] [PubMed]
- Forli, L.; Bollerslev, J.; Simonsen, S.; Isaksen, G.A.; Kvamsdal, K.E.; Godang, K.; Gadeholt, G.; Pripp, A.H.; Bjortuft, O. Dietary vitamin K2 supplement improves bone status after lung and heart transplantation. Transplantation 2010, 89, 458–464. [Google Scholar] [CrossRef]
- Rønn, S.H.; Harsløf, T.; Pedersen, S.B.; Langdahl, B.L. Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur. J. Endocrinol. 2016, 175, 541–549. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Duan, L.; Ji, Y.; Yang, S.; Zhang, Y.; Li, H.; Wang, Y.; Wang, P.; Chen, J.; et al. Effect of Low-Dose Vitamin K2 Supplementation on Bone Mineral Density in Middle-Aged and Elderly Chinese: A Randomized Controlled Study. Calcif. Tissue Int. 2020, 106, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Caluwé, R.; Vandecasteele, S.; Van Vlem, B.; Vermeer, C.; De Vriese, A.S. Vitamin K2 supplementation in haemodialysis patients: A randomized dose-finding study. Nephrol. Dial. Transplant. 2014, 29, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Knapen, M.H.; Braam, L.A.; Drummen, N.E.; Bekers, O.; Hoeks, A.P.; Vermeer, C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 2015, 113, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Eelderink, C.; Kremer, D.; Riphagen, I.J.; Knobbe, T.J.; Schurgers, L.J.; Pasch, A.; Mulder, D.J.; Corpeleijn, E.; Navis, G.; Bakker, S.J.L.; et al. Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial. Am. J. Transplant. 2023, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.S.; Alkady, E.A.; Ahmed, S. Menaquinone-7 as a novel pharmacological therapy in the treatment of rheumatoid arthritis: A clinical study. J. Pharmacol. 2015, 761, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, I.; Zhang, H.; Mizuta, T.; Ide, Y.; Eguchi, Y.; Yasutake, T.; Sakamaki, T.; Pestell, R.G.; Yamamoto, K. Menatetrenone, a vitamin K2 analogue, inhibits hepatocellular carcinoma cell growth by suppressing cyclin D1 expression through inhibition of nuclear factor kappaB activation. Clin. Cancer Res. 2007, 13, 2236–2245. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Matsuhashi, S.; Hamajima, H.; Iwane, S.; Takahashi, H.; Eguchi, Y.; Mizuta, T.; Fujimoto, K.; Kuroda, S.; Ozaki, I. The role of PKC isoforms in the inhibition of NF-kappaB activation by vitamin K2 in human hepatocellular carcinoma cells. J. Nutr. Biochem. 2012, 23, 1668–1675. [Google Scholar] [CrossRef] [PubMed]
- Sibayama-Imazu, T.; Fujisawa, Y.; Masuda, Y.; Aiuchi, T.; Nakajo, S.; Itabe, H.; Nakaya, K. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J. Cancer Res. Clin. Oncol. 2008, 134, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Showalter, S.L.; Wang, Z.; Costantino, C.L.; Witkiewicz, A.K.; Yeo, C.J.; Brody, J.R.; Carr, B.I. Naturally occurring K vitamins inhibit pancreatic cancer cell survival through a caspase-dependent pathway. J. Gastroenterol. Hepatol. 2010, 25, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, M.; Tsuchida, A.; Miyazawa, K.; Yokoyama, T.; Kawakita, H.; Tokita, H.; Naito, M.; Itoh, M.; Ohyashiki, K.; Aoki, T. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines. Int. J. Mol. Med. 2007, 20, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Yaguchi, M.; Funato, K.; Gotoh, A.; Kawanishi, Y.; Nishizawa, Y.; You, A.; Ohyashiki, K. Apoptosis/differentiation-inducing effects of vitamin K2 on HL-60 cells: Dichotomous nature of vitamin K2 in leukemia cells. Leukemia 2001, 15, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, E.; Tayarani-Najaran, Z.; Fereidoni, M. Vitamin K2 Protects PC12 Cells against Aβ (1-42) and H2O2-Induced Apoptosis via P38 MAP Kinase Pathway. Nutr. Neurosci. 2020, 23, 343–352. [Google Scholar] [CrossRef]
- Rahimi Sakak, F.; Moslehi, N.; Niroomand, M.; Mirmiran, P. Glycemic control improvement in individuals with type 2 diabetes with vitamin K2 supplementation: A randomized controlled trial. Eur. J. Nutr. 2021, 60, 2495–2506. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.H.; Maresz, K.; Lee, P.S.; Wu, J.C.; Ho, C.T.; Popko, J.; Mehta, D.S.; Stohs, S.J.; Badmaev, V. Inhibition of TNF-α, IL-1α, and IL-1β by Pretreatment of Human Monocyte Derived Macrophages with Menaquinone-7 and Cell Activation with TLR Agonists In Vitro. J. Med. Food 2016, 19, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.S.; Dound, Y.A.; Jadhav, S.S.; Bhave, A.A.; Devale, M.; Vaidya, A.D.B. A Novel Potential Role of Vitamin K2-7 in Relieving Peripheral Neuropathy. J. Pharmacol. Pharmacother. 2018, 9, 180–185. [Google Scholar] [CrossRef]
- Conway, S.P. Vitamin K in cystic fibrosis. J. R. Soc. Med. 2004, 97, 48–51. [Google Scholar] [PubMed]
- Maqbool, A.; Stallings, V.A. Update on fat-soluble vitamins cystic fibrosis. Curr. Opin. Pulm. Med. 2008, 14, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, D.; Baker, R.D.; Stallings, V. Consensus report on nutrition for paediatric patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2002, 35, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Sinaasappel, M.; Stern, M.; Littlewood, J.; Wolfe, S.; Steinkamp, G.; Heijerman, H.G.; Robberecht, E.; Döring, G. Nutrition in patients with cystic fibrosis: A European Consensus. J. Cyst. Fibros. 2002, 1, 51–75. [Google Scholar] [CrossRef]
- Jagannath, V.A.; Thaker, V.; Chang, A.B.; Price, A.I. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 2020, 6, CD008482. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Durie, P.; Andrew, M.; Kalnins, D.; Shin, J.; Corey, M.; Tullis, E.; Pencharz, P.B. Prevalence of vitamin K deficiency in cystic fibrosis. Am. J. Clin. Nutr. 1999, 70, 378–382. [Google Scholar] [CrossRef] [PubMed]
- van Hoorn, J.H.; Hendriks, J.J.; Vermeer, C.; Forget, P.P. Vitamin K supplementation in cystic fibrosis. Arch. Dis. Child. 2003, 88, 974–975. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, H.H.; Vervoort, L.M.; Schurgers, L.J.; Shearer, M.J. Menadione is a metabolite of oral vitamin K. Br. J. Nutr. 2006, 95, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Okano, T.; Shimomura, Y.; Yamane, M.; Suhara, Y.; Kamao, M.; Sugiura, M.; Nakagawa, K. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 2008, 283, 11270–11279. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Okano, T. Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism. Annu. Rev. Nutr. 2018, 38, 127–151. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, M.S.; Benden, C.; Williams, J.E.; Chomtho, S.; Ginty, F.; Nigdikar, S.V.; Jaffe, A. Undercarboxylated osteocalcin and bone mass in 8-12 year old children with cystic fibrosis. J. Cyst. Fibros. 2008, 7, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, K.A.; Schall, J.I.; Stallings, V.A. Suboptimal vitamin K status despite supplementation in children and young adults with cystic fibrosis. Am. J. Clin. Nutr. 2010, 92, 660–667. [Google Scholar] [CrossRef]
- Krzyżanowska, P.; Drzymala-Czyż, S.; Rohovyk, N.; Bober, L.; Moczko, J.; Rachel, M.; Walkowiak, J. Prevalence of vitamin K deficiency and associated factors in non-supplemented cystic fibrosis patients. Arch. Argent. Pediatr. 2018, 116, e19–e25. [Google Scholar] [CrossRef] [PubMed]
- Hergenroeder, G.E.; Faino, A.; Bridges, G.; Bartlett, L.E.; Cogen, J.D.; Green, N.; McNamara, S.; Nichols, D.P.; Ramos, K.J. The impact of elexacaftor/tezacaftor/ivacaftor on fat-soluble vitamin levels in people with cystic fibrosis. J. Cyst. Fibros. 2023, 22, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Begnel, L.; Wallendorf, M.; Litvin, M. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 265–271. [Google Scholar] [CrossRef]
Clinical Parameters Median (1st–3rd Quartile) | CF Group (N = 63) | Control Group (N = 61) | p | |
---|---|---|---|---|
Gender | Female | 40 (63.5%) | 41 (67.2%) | 0.6634 |
Male | 23 (36.5%) | 20 (32.8%) | ||
Age [years] | 23.1 (19.4−29.4) | 22.5 (21.4−23.4) | 0.4656 | |
Body weight [kg] | 59.0 (51.5−66.5) | 60.0 (55.0−68.5) | 0.1844 | |
Body height [cm] | 168 (161−174) | 168 (163−176) | 0.5402 | |
BMI [kg/m2] | 20.9 (19.7−22.2) | 21.6 (20.4−22.7) | 0.0829 |
Median (1st–3rd Quartile) | CF all (N = 63) | CF with K1 Supplementation (N = 37) | CF with K1 and MK-7 Supplementation (N = 19) | CF without Any Supplementation (N = 7) | Healthy Adults (N = 61) | p |
---|---|---|---|---|---|---|
K1 [ng/mL] | 0.315 (0.169−0.532) | 0.407 (0.225–0.573) | 0.270 (0.145–0.396) | 0.093 (0.066–0.298) | 0.274 (0.203–0.387) | 0.3526 a 0.0453 b |
MK-4 [ng/mL] | 0.778 (0.589−1.086) | 0.782 (0.600–1.163) | 0.748 (0.587–1.029) | 0.671 (0.533–0.840) | 0.349 (0.256–0.469) | <0.0001 a 0.4219 b |
MK-7 [ng/mL] | 0.150 (0.094–0.259) | 0.140 ** (0.095–0.188) | 0.259 *,** (0.178–0.464) | 0.093 * (0.068–0.137) | 0.231 (0.191–0.315) | 0.0007 a 0.0063 b |
PIVKA-II [ng/mL] | 1.78 (0.86−3.25) | 1.16 (0.73–2.18) | 2.47 (1.38–3.67) | 3.37 (2.07–3.97) | 1.63 (0.74–2.64) | 0.5671 a 0.0606 b |
Vitamin K1 [mg/kg/day] | 0.03 (0.01–0.06) | 0.06 (0.03–0.08) | 0.01 (0.01–0.02) | - | - | <0.0001 c |
MK-7 [µg/kg/day] | 0 (0–1.57) | - | 2.08 (1.74–3.03) | - | - | - |
Mean ± SD | CF with K1 Supplementation (N = 37) | CF with K1 and MK-7 Supplementation (N = 19) | Cohen’s D index |
---|---|---|---|
K1 [ng/mL] | 0.986 ± 1.769 | 0.556 ± 1.009 | 0.299 |
MK-4 [ng/mL] | 0.901 ± 0.450 | 0.899 ± 0.525 | 0.004 |
MK-7 [ng/mL] | 0.294 ± 0.805 | 0.464 ± 0.497 | 0.254 |
CF with K1 Supplementation (N = 37) | CF without any Supplementation (N = 7) | Cohen’s D index | |
K1 [ng/mL] | 0.986 ± 1.769 | 0.245 ± 0.293 | 0.584 |
MK-4 [ng/mL] | 0.901 ± 0.450 | 0.636 ± 0.257 | 1.711 |
MK-7 [ng/mL] | 0.294 ± 0.805 | 0.115 ± 0.095 | 0.312 |
CF with K1 and MK-7 Supplementation (N = 19) | CF without any Supplementation (N = 7) | Cohen’s D index | |
K1 [ng/mL] | 0.556 ± 1.009 | 0.245 ± 0.293 | 0.419 |
MK-4 [ng/mL] | 0.899 ± 0.525 | 0.636 ± 0.257 | 0.636 |
MK-7 [ng/mL] | 0.464 ± 0.497 | 0.115 ± 0.095 | 0.975 |
Clinical Parameters | Study Subgroups | K1 [ng/mL] | MK-4 [ng/mL] | MK-7 [ng/mL] | |||
---|---|---|---|---|---|---|---|
Rho | p | rho | p | rho | p | ||
Age [years] | I | 0.1241 | 0.3325 | 0.0988 | 0.4411 | −0.0678 | 0.5976 |
II | 0.2160 | 0.1991 | 0.2067 | 0.2198 | 0.1123 | 0.5082 | |
III | −0.0650 | 0.7916 | −0.1027 | 0.6756 | −0.0720 | 0.7696 | |
Body weight [kg] | I | −0.2556 | 0.0431 | −0.0664 | 0.6053 | −0.1632 | 0.2013 |
II | −0.1293 | 0.4458 | −0.2276 | 0.1756 | −0.2004 | 0.2344 | |
III | −0.3038 | 0.2061 | 0.2283 | 0.3472 | −0.1466 | 0.5492 | |
Body height [cm] | I | −0.1677 | 0.1890 | 0.0179 | 0.8896 | −0.0576 | 0.6537 |
II | −0.0084 | 0.9605 | −0.0970 | 0.5679 | −0.0714 | 0.6742 | |
III | −0.3008 | 0.2108 | 0.2348 | 0.3332 | 0.0897 | 0.7149 | |
BMI [kg/m2] | I | −0.2007 | 0.1147 | −0.0896 | 0.4850 | −0.2240 | 0.0776 |
II | −0.1011 | 0.5515 | −0.2382 | 0.1558 | −0.2344 | 0.1627 | |
III | −0.1140 | 0.6420 | 0.1228 | 0.6165 | −0.2754 | 0.2537 | |
FEV1 [s] | I | 0.0075 | 0.9538 | 0.1099 | 0.3950 | −0.0401 | 0.7571 |
II | 0.0302 | 0.8590 | 0.0977 | 0.5650 | −0.1945 | 0.2487 | |
III | 0.0279 | 0.9125 | 0.0386 | 0.8752 | −0.1203 | 0.6238 | |
Vitamin K1 dose [mg/kg/day] | II | 0.3788 | 0.0208 | 0.2619 | 0.1174 | 0.1203 | 0.4781 |
III | −0.0053 | 0.9829 | −0.0754 | 0.7589 | −0.0579 | 0.8139 | |
MK-7 dose [µg/kg/day] | III | 0.1580 | 0.5184 | 0.0570 | 0.8166 | 0.1071 | 0.6626 |
PIVKA-II [ng/mL] | I | −0.0877 | 0.4943 | 0.0383 | 0.7658 | −0.1018 | 0.4274 |
II | −0.0598 | 0.7248 | 0,0149 | 0.9301 | −0.1494 | 0.3776 | |
III | 0.2982 | 0.2149 | 0.1614 | 0.5092 | 0.0351 | 0.8866 |
Clinical Parameters Median (1st–3rd Quartile) | K1 [ng/mL] | |||
---|---|---|---|---|
0.115 (0.069–0.166) (N = 21) | 0.763 (0.545–1.571) (N = 21) | p | ||
Age [years] | 22.1 (20.8–26.0) | 23.8 (20.4–31.5) | 0.5629 | |
BMI [kg/m2] | 21.4 (20.4–22.0) | 20.6 (19.1–21.6) | 0.0919 | |
FEV1 [s] | 59.8 (45.4–79.0) | 64.0 (55.0–85.1) | 0.7444 | |
Vitamin K1 dose [mg/kg/day] | 0.023 (0.008–0.054) | 0.058 (0.020–0.081) | 0.0414 | |
PIVKA-II [ng/mL] | 1.97 (0.95–3.37) | 1.41 (0.82–3.46) | 0.8999 | |
Gender [%] | Female | 14 (66.7) | 12 (57.1) | 0.3757 |
Male | 7 (33.3) | 9 (42.9) | ||
CFLD [%] | Yes | 11 (52.4) | 10 (47.6) | 0.5000 |
No | 10 (47.6) | 11 (52.4) | ||
Diabetes [%] | Yes | 2 (9.5) | 6 (28.6) | 0.1190 |
No | 19 (90.5) | 15 (71.4) | ||
Ps. aeruginosa colonization [%] | Yes | 13 (61.9) | 14 (66.7) | 0.5000 |
No | 8 (38.1) | 7 (33.3) | ||
CFTR gene mutations [%] | F508del/F508del | 13 (61.9) | 7 (33.3) | 0.0607 |
F508/other or other/other | 8 (38.1) | 14 (66.7) | ||
Supplementation of vitamin MK-7 [%] | Yes | 7 (33.3) | 4 (19.0) | 0.2420 |
No | 14 (66.7) | 17 (81.0) |
Clinical Parameters Median (1st–3rd Quartile) | MK-4 [ng/mL] | MK-7 [ng/mL] | |||||
---|---|---|---|---|---|---|---|
0.459 (0.327–0.585) (N = 21) | 1.306 (1.104–1.594) (N = 21) | p | 0.084 (0.070–0.093) (N = 21) | 0.386 (0.259–0.506) (N = 21) | p | ||
Age [years] | 22.1 (18.9–23.8) | 26.1 (18.7–31.5) | 0.4504 | 23.4 (21.9–29.3) | 21.3 (18.7–26.8) | 0.1218 | |
BMI [kg/m2] | 21.4 (20.4–22.0) | 20.5 (18.8–22.3) | 0.1743 | 21.3 (20.3–22.4) | 20.3 (18.5–22.0) | 0.0663 | |
FEV1 [s] | 71.0 (53.7–80.5) | 71.0 (56.0–85.1) | 0.6294 | 64.0 (45.4–79.0) | 65.6 (57.0–76.0) | 0.6765 | |
Vitamin K1 dose [mg/kg/day] | 0.043 (0.009–0.061) | 0.054 (0.018–0.081) | 0.2224 | 0.043 (0.007–0.074) | 0.016 (0.010–0.030) | 0.5044 | |
PIVKA-II [ng/mL] | 1.34 (0.61–2.19) | 1.41 (0.74–3.14) | 0.6689 | 2.61 (0.90–4.08) | 1.78 (0.82–3.46) | 0.3786 | |
Gender [%] | Female | 15 (71.4) | 14 (66.7) | 0.5000 | 13 (61.9) | 13 (61.9) | 0.6243 |
Male | 6 (28.6) | 7 (33.3) | 8 (38.1) | 8 (38.1) | |||
CFLD [%] | Yes | 13 (61.9) | 7 (33.3) | 0.0607 | 7 (33.3) | 9 (42.9) | 0.3757 |
No | 8 (38.1) | 14 (66.7) | 14 (66.7) | 12 (57.1) | |||
Diabetes [%] | Yes | 2 (9.5) | 4 (19.0) | 0.3314 | 1 (4.8) | 3 (14.3) | 0.3030 |
No | 19 (90.5) | 17 (81.0) | 20 (95.2) | 18 (85.7) | |||
Ps. aeruginosa colonization [%] | Yes | 15 (71.4) | 12 (57.1) | 0.2602 | 13 (61.9) | 12 (57.1) | 0.5000 |
No | 6 (28.6) | 9 (42.9) | 8 (38.1) | 9 (42.9) | |||
CFTR gene mutations [%] | F508del/F508del | 12 (57.1) | 7 (33.3) | 0.1073 | 10 (47.6) | 11 (52.4) | 0.5000 |
F508/other or other/other | 9 (42.9) | 14 (66.7) | 11 (52.4) | 10 (47.6) | |||
Supplementation of vitamin MK-7 [%] | Yes | 6 (28.6) | 6 (28.6) | 0.6331 | 4 (19.0) | 12 (57.1) | 0.0123 |
No | 15 (71.4) | 15 (71.4) | 17 (81.0) | 9 (42.9) |
r | β | SE | t | p | |
---|---|---|---|---|---|
Age [years] | −0.0002 | −0.0043 | 0.1291 | −0.0328 | 0.9740 |
BMI [kg/m2] | −0.0280 | −0.1911 | 0.1267 | −1.5078 | 0.1369 |
FEV1 [s] | −0.0014 | −0.0976 | 0.1296 | −0.7533 | 0.4546 |
Vitamin K1 dose [mg/kg/day] | −1.6735 | −0.2193 | 0.1260 | −1.7411 | 0.0868 |
Vitamin MK-7 dose [µg/kg/day] | 0.1237 | 0.4623 | 0.1145 | 4.0387 | 0.0002 |
Gender a | 0.0231 | 0.0708 | 0.1288 | 0.5500 | 0.5843 |
CFLD b | −0.0317 | −0.1007 | 0.1284 | −0.7839 | 0.4362 |
Diabetes c | 0.0356 | 0.0865 | 0.1286 | 0.6728 | 0.5037 |
Pseudomonas aeruginosa colonization | −0.0406 | −0.1247 | 0.1281 | −0.9738 | 0.3340 |
Clinical Parameters | MK-7 [ng/mL] |
---|---|
p model | 0.0005 |
R2 for model | 0.2266 |
Adjusted R2 for model | 0.2004 |
Vitamin K1 dose [mg/kg/day] | 0.326196 {−0.116650 ± 0.117823} 1 |
Vitamin MK-7 dose [µg/kg/day] | 0.000491 {0.434790 ± 0.117823} |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyżanowska-Jankowska, P.; Nowak, J.; Karaźniewicz-Łada, M.; Jamka, M.; Klapkova, E.; Kurek, S.; Drzymała-Czyż, S.; Lisowska, A.; Wojsyk-Banaszak, I.; Skorupa, W.; et al. Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study. Nutrients 2024, 16, 1337. https://doi.org/10.3390/nu16091337
Krzyżanowska-Jankowska P, Nowak J, Karaźniewicz-Łada M, Jamka M, Klapkova E, Kurek S, Drzymała-Czyż S, Lisowska A, Wojsyk-Banaszak I, Skorupa W, et al. Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study. Nutrients. 2024; 16(9):1337. https://doi.org/10.3390/nu16091337
Chicago/Turabian StyleKrzyżanowska-Jankowska, Patrycja, Jan Nowak, Marta Karaźniewicz-Łada, Małgorzata Jamka, Eva Klapkova, Szymon Kurek, Sławomira Drzymała-Czyż, Aleksandra Lisowska, Irena Wojsyk-Banaszak, Wojciech Skorupa, and et al. 2024. "Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study" Nutrients 16, no. 9: 1337. https://doi.org/10.3390/nu16091337
APA StyleKrzyżanowska-Jankowska, P., Nowak, J., Karaźniewicz-Łada, M., Jamka, M., Klapkova, E., Kurek, S., Drzymała-Czyż, S., Lisowska, A., Wojsyk-Banaszak, I., Skorupa, W., Szydłowski, J., Prusa, R., & Walkowiak, J. (2024). Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study. Nutrients, 16(9), 1337. https://doi.org/10.3390/nu16091337