The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Basic Data Collection
2.3. Anthropometric Measurements
2.4. Laboratory Measurements
2.5. Phospholipidomic Measurement
2.6. Statistical Analysis
3. Results
3.1. Basic Characteristics of Subjects
3.2. Phospholipidomic Characteristics of Subjects
3.3. Association of Plasma Phospholipid Profile with Lipidemic and Glycemic Parameters
3.4. Association of Phospholipid Clusters with Insulin Resistance
3.5. Association of Phospholipid Molecular Species with Insulin Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. 2023, 14, 1149239. [Google Scholar] [CrossRef]
- Winter, P.W.; Van Orden, A.K.; Roess, D.A.; Barisas, B.G. Actin-dependent clustering of insulin receptors in membrane microdomains. Biochim. Biophys. Acta Biomembr. 2012, 1818, 467–473. [Google Scholar] [CrossRef]
- Pilon, M. Revisiting the membrane-centric view of diabetes. Lipids Health Dis. 2016, 15, 167. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.S. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1690–1703. [Google Scholar] [CrossRef]
- Levental, K.R.; Malmberg, E.; Symons, J.L.; Fan, Y.-Y.; Chapkin, R.S.; Ernst, R.; Levental, I. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat. Commun. 2020, 11, 1339. [Google Scholar] [CrossRef]
- Kröger, J.; Jacobs, S.; Jansen, E.H.; Fritsche, A.; Boeing, H.; Schulze, M.B. Erythrocyte membrane fatty acid fluidity and risk of type 2 diabetes in the EPIC-Potsdam study. Diabetologia 2015, 58, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Kröger, J.; Zietemann, V.; Enzenbach, C.; Weikert, C.; Jansen, E.H.; Döring, F.; Joost, H.G.; Boeing, H.; Schulze, M.B. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am. J. Clin. Nutr. 2011, 93, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Borkman, M.; Storlien, L.H.; Pan, D.A.; Jenkins, A.B.; Chisholm, D.J.; Campbell, L.V. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N. Engl. J. Med. 1993, 328, 238–244. [Google Scholar] [CrossRef]
- Funai, K.; Lodhi, I.J.; Spears, L.D.; Yin, L.; Song, H.; Klein, S.; Semenkovich, C.F. Skeletal Muscle Phospholipid Metabolism Regulates Insulin Sensitivity and Contractile Function. Diabetes 2016, 65, 358–370. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, L.; Li, T.; Zuniga, A.; Lopaschuk, G.D.; Li, L.; Jacobs, R.L.; Vance, D.E. Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action. J. Biol. Chem. 2013, 288, 837–847. [Google Scholar] [CrossRef]
- Ferrara, P.J.; Rong, X.; Maschek, J.A.; Verkerke, A.R.P.; Siripoksup, P.; Song, H.; Green, T.D.; Krishnan, K.C.; Johnson, J.M.; Turk, J.; et al. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J. Clin. Investig. 2021, 131, e135963. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Mehta, K.; Jellinek, M.J.; Sun, H.; Lu, W.; Shi, R.; Ingram, K.; Friedline, R.H.; Kim, J.K.; Kemper, J.K.; et al. Hepatic Phospholipid Remodeling Modulates Insulin Sensitivity and Systemic Metabolism. Adv. Sci. 2023, 10, 2300416. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Summers, S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol. 2017, 13, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, M.V.; Lodhi, I.J.; Yin, L.; Malapaka, R.R.; Xu, H.E.; Turk, J.; Semenkovich, C.F. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 2009, 138, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Hatch, G.M.; Wang, Y.; Yu, F.; Wang, M. The relationship between phospholipids and insulin resistance: From clinical to experimental studies. J. Cell. Mol. Med. 2019, 23, 702–710. [Google Scholar] [CrossRef]
- Nestel, P.J.; Straznicky, N.; Mellett, N.A.; Wong, G.; De Souza, D.P.; Tull, D.L.; Barlow, C.K.; Grima, M.T.; Meikle, P.J. Specific plasma lipid classes and phospholipid fatty acids indicative of dairy food consumption associate with insulin sensitivity. Am. J. Clin. Nutr. 2014, 99, 46–53. [Google Scholar] [CrossRef]
- Rauschert, S.; Uhl, O.; Koletzko, B.; Kirchberg, F.; Mori, T.A.; Huang, R.-C.; Beilin, L.J.; Hellmuth, C.; Oddy, W.H. Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults. J. Clin. Endocrinol. Metab. 2016, 101, 871–879. [Google Scholar] [CrossRef]
- Dongmei, Y.; Liyun, Z.; Jian, Z.; Zhenyu, Y.; Lichen, Y.; Jian, H.; Hongyun, F.; Qiya, G.; Xiaoli, X.; Lahong, J.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Fernandez, L.; Jee, P.; Klein, M.-J.; Fischer, P.; Perkins, S.L.; Brooks, S.P.J. A comparison of glucose concentration in paired specimens collected in serum separator and fluoride/potassium oxalate blood collection tubes under survey ‘field’ conditions. Clin. Biochem. 2013, 46, 285–288. [Google Scholar] [CrossRef]
- Dibbasey, M.; Umukoro, S.; Bojang, A. Comparative and stability study of glucose concentrations measured in both sodium fluoride and serum separator tubes. Pract. Lab. Med. 2024, 39, e00360. [Google Scholar] [CrossRef]
- Song, S.; Cheong, L.Z.; Man, Q.Q.; Pang, S.J.; Li, Y.Q.; Ren, B.; Zhang, J. Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids using the HILIC-ESI-IT-TOF-MS system. Anal. Bioanal. Chem. 2018, 410, 2937–2948. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Liu, T.T.; Liang, X.; Liu, Z.Y.; Yishake, D.; Lu, X.T.; Yang, M.T.; Man, Q.Q.; Zhang, J.; Zhu, H.L. Profiling of phospholipid molecular species in human breast milk of Chinese mothers and comprehensive analysis of phospholipidomic characteristics at different lactation stages. Food Chem. 2021, 348, 129091. [Google Scholar] [CrossRef] [PubMed]
- Del Bas, J.M.; Caimari, A.; Rodriguez-Naranjo, M.I.; Childs, C.E.; Paras Chavez, C.; West, A.L.; Miles, E.A.; Arola, L.; Calder, P.C. Impairment of lysophospholipid metabolism in obesity: Altered plasma profile and desensitization to the modulatory properties of n-3 polyunsaturated fatty acids in a randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Tulipani, S.; Palau-Rodriguez, M.; Miñarro Alonso, A.; Cardona, F.; Marco-Ramell, A.; Zonja, B.; Lopez de Alda, M.; Muñoz-Garach, A.; Sanchez-Pla, A.; Tinahones, F.J.; et al. Biomarkers of Morbid Obesity and Prediabetes by Metabolomic Profiling of Human Discordant Phenotypes. Clin. Chim. Acta 2016, 463, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Mundra, P.A.; Wong, G.; Rahman, K.; Huynh, K.; Barlow, C.K.; Duly, A.M.; Haber, P.S.; Whitfield, J.B.; Seth, D. Circulating Lipids Are Associated with Alcoholic Liver Cirrhosis and Represent Potential Biomarkers for Risk Assessment. PLoS ONE 2015, 10, e0130346. [Google Scholar] [CrossRef] [PubMed]
- Moessinger, C.; Klizaite, K.; Steinhagen, A.; Philippou-Massier, J.; Shevchenko, A.; Hoch, M.; Ejsing, C.S.; Thiele, C. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol. 2014, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; van der Veen, J.N.; Bakala N’Goma, J.C.; Nelson, R.C.; Vance, D.E.; Jacobs, R.L. Hepatic PEMT activity mediates liver health, weight gain, and insulin resistance. FASEB J. 2019, 33, 10986–10995. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, F.; Kerbl-Knapp, J.; Korbelius, M.; Kuentzel, K.B.; Vujić, N.; Akhmetshina, A.; Hörl, G.; Paar, M.; Steyrer, E.; et al. Phosphatidylethanolamine N-Methyltransferase Knockout Modulates Metabolic Changes in Aging Mice. Biomolecules 2022, 12, 1270. [Google Scholar] [CrossRef] [PubMed]
- Funai, K.; Song, H.; Yin, L.; Lodhi, I.J.; Wei, X.; Yoshino, J.; Coleman, T.; Semenkovich, C.F. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J. Clin. Investig. 2013, 123, 1229–1240. [Google Scholar] [CrossRef]
- Kang, S.; Dahl, R.; Hsieh, W.; Shin, A.; Zsebo, K.M.; Buettner, C.; Hajjar, R.J.; Lebeche, D. Small Molecular Allosteric Activator of the Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) Attenuates Diabetes and Metabolic Disorders. J. Biol. Chem. 2016, 291, 5185–5198. [Google Scholar] [CrossRef]
- Renard, K.; Byrne, B. Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Int. J. Mol. Sci. 2021, 22, 9026. [Google Scholar] [CrossRef] [PubMed]
- Fujisaka, S.; Avila-Pacheco, J.; Soto, M.; Kostic, A.; Dreyfuss, J.M.; Pan, H.; Ussar, S.; Altindis, E.; Li, N.; Bry, L.; et al. Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Rep. 2018, 22, 3072–3086. [Google Scholar] [CrossRef]
- Hernández-Corbacho, M.J.; Salama, M.F.; Canals, D.; Senkal, C.E.; Obeid, L.M. Sphingolipids in mitochondria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-W.; Chao, Y.-J.; Chang, W.-H.; Chan, J.-F.; Hsu, Y.-H.H. Phosphatidylglycerol Incorporates into Cardiolipin to Improve Mitochondrial Activity and Inhibits Inflammation. Sci. Rep. 2018, 8, 4919. [Google Scholar] [CrossRef]
- Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 2014, 510, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.C.; Davison, J.M.; Stuckenholz, C.; Lu, L.; Bahary, N. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish. Dis. Models Mech. 2014, 7, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Jain, S.K. Decreased hepatic phosphatidylinositol-3,4,5-triphosphate (PIP3) levels and impaired glucose homeostasis in type 1 and type 2 diabetic rats. Cell Physiol. Biochem. 2012, 30, 1363–1370. [Google Scholar] [CrossRef]
- Sharma, S.; Mathre, S.; Ramya, V.; Shinde, D.; Raghu, P. Phosphatidylinositol 5 Phosphate 4-Kinase Regulates Plasma-Membrane PIP(3) Turnover and Insulin Signaling. Cell Rep. 2019, 27, 1979–1990.e1977. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Angelidou, G.; Ni, Z.; Criscuolo, A.; Schiller, J.; Blüher, M.; Fedorova, M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep. Med. 2021, 2, 100407. [Google Scholar] [CrossRef]
- Cho, Y.K.; Lee, S.; Lee, J.; Doh, J.; Park, J.-H.; Jung, Y.-S.; Lee, Y.-H. Lipid remodeling of adipose tissue in metabolic health and disease. Exp. Mol. Med. 2023, 55, 1955–1973. [Google Scholar] [CrossRef]
- Paul, S.; Smith, A.A.T.; Culham, K.; Gunawan, K.A.; Weir, J.M.; Cinel, M.A.; Jayawardana, K.S.; Mellett, N.A.; Lee, M.K.S.; Murphy, A.J.; et al. Shark liver oil supplementation enriches endogenous plasmalogens and reduces markers of dyslipidemia and inflammation. J. Lipid Res. 2021, 62, 100092. [Google Scholar] [CrossRef] [PubMed]
- Kayser, B.D.; Lhomme, M.; Prifti, E.; Da Cunha, C.; Marquet, F.; Chain, F.; Naas, I.; Pelloux, V.; Dao, M.C.; Kontush, A.; et al. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB J. 2019, 33, 4741–4754. [Google Scholar] [CrossRef] [PubMed]
- Torretta, E.; Barbacini, P.; Al-Daghri, N.M.; Gelfi, C. Sphingolipids in Obesity and Correlated Co-Morbidities: The Contribution of Gender, Age and Environment. Int. J. Mol. Sci. 2019, 20, 5901. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean (SD) or Median (Q1, Q3) or n (%) |
---|---|
Gender (male) | 527 (50.1%) |
Age (years) | 53.1 (4.6) |
Educational attainment, | |
≤6 years | 527 (50.1%) |
7–9 years | 370 (35.1%) |
≥10 years | 156 (14.8%) |
Marital status, married or living with a partner | 1003 (95.3%) |
Current smoking | 308 (29.3%) |
Current alcohol drinking | 305 (29.0%) |
Regular physical activity | 309 (29.3%) |
Family history of diabetes | 142 (13.5%) |
BMI (kg/m2) | 24.8 (3.7) |
WC (cm) | 84.5 (9.6) |
TC (mmol/L) | 4.9 (0.9) |
TG (mmol/L) | 1.3 (0.9–1.9) |
LDL-C (mmol/L) | 3.1 (0.8) |
HDL-C (mmol/L) | 1.2 (1.0, 1.5) |
Glu (mmol/L) | 5.6 (1.5) |
Ins (µIU/mL) | 7.8 (5.3, 11.2) |
HbA1c (%) | 5.0 (4.6, 5.5) |
HOMA-IR | 1.8 (1.2, 3.0) |
HOMA-β | 91.2 (59.7, 138.3) |
Classes | Molecular Species (n) | Concentration (mg/L) | ||
---|---|---|---|---|
Median | Q1 | Q3 | ||
PC | 60 | 1412.4 | 1187.6 | 1639.2 |
PE | 53 | 36.6 | 27.0 | 48.4 |
SM | 30 | 346.5 | 295.9 | 399.5 |
PI | 18 | 33.7 | 25.7 | 41.6 |
PG | 5 | 0.5 | 0.4 | 0.8 |
LPC | 22 | 151.1 | 123.7 | 187.4 |
LPE | 11 | 3.4 | 2.5 | 4.3 |
Total | 199 | 2007.2 | 1753.6 | 2280.7 |
Radj2 | SStrace | Pseudo-F Value | p Value | |
---|---|---|---|---|
BMI | 0.118 | 241.19 | 10.18 | <0.001 * |
WC | 0.120 | 92.27 | 3.91 | 0.007 * |
TC | 0.223 | 2892.70 | 138.61 | <0.001 * |
TG | 0.252 | 830.51 | 41.34 | <0.001 * |
LDL-C | 0.266 | 402.66 | 20.42 | <0.001 * |
HDL-C | 0.271 | 175.57 | 8.97 | <0.001 * |
Glu | 0.272 | 37.09 | 1.90 | 0.065 |
Ins | 0.274 | 73.57 | 3.77 | 0.003 * |
HbA1c | 0.275 | 33.19 | 1.70 | 0.106 |
HOMA-IR | 0.276 | 67.20 | 3.46 | 0.002 * |
HOMA-β | 0.276 | 15.07 | 0.78 | 0.531 |
Module | Median (Q1, Q3) | rspearman with HOMA-IR | |||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | ||
Module blue | 0.21 (0.12,0.31) | −0.202 * | −0.201 * | −0.145 * | −0.200 * |
Module tan | 0.25 (0.09,0.39) | −0.115 * | −0.113 * | −0.019 | 0.010 |
Module green-yellow | 0.22 (0.09,0.34) | −0.148 * | −0.146 * | −0.065 * | −0.039 |
Module purple | 0.28 (0.13,0.49) | −0.142 * | −0.140 * | −0.054 | −0.010 |
Module black | 0.37 (0.25,0.47) | −0.043 | −0.041 | 0.028 | 0.019 |
Module brown | 0.31 (0.15,0.50) | −0.047 | −0.046 | 0.038 | 0.026 |
Module magenta | 0.26 (0.11,0.46) | −0.165 * | −0.164 * | −0.051 | −0.010 |
Module cyan | 0.23 (0.14,0.35) | −0.130 * | −0.125 * | −0.080 * | −0.068 |
Module green | 0.38 (0.26,0.47) | −0.020 | −0.018 | 0.008 | 0.034 |
Module yellow | 0.27 (0.18,0.43) | −0.052 | −0.050 | −0.055 | −0.051 |
Module salmon | 0.23 (0.06,0.34) | −0.072 * | −0.070 * | −0.066 * | −0.094 * |
Module pink | 0.37 (0.24,0.46) | 0.093 * | 0.094 * | 0.147 * | 0.081 * |
Module red | 0.33 (0.25,0.51) | 0.125 * | 0.125 * | 0.132 * | −0.024 |
No. | Name | rspearman with HOMA-IR | No. | Name | rspearman with HOMA-IR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | |||||
1 | PC(30:0) | 0.13 * | 0.13 * | 0.06 | −0.01 | 42 | SM(d34:0) | −0.16 * | −0.16 * | −0.08 * | −0.05 | |
2 | PC(32:1) | 0.14 * | 0.15 * | 0.12 * | 0.03 | 43 | SM(d34:1) | −0.16 * | −0.16 * | −0.06 | <0.01 | |
3 | PC(32:2) | 0.20 * | 0.20 * | 0.14 * | 0.06 | 44 | SM(d38:3) | −0.10 * | −0.10 * | −0.08 * | −0.07 | |
4 | PC(35:2) | −0.10 * | −0.10 * | −0.08 * | −0.08 * | 45 | SM(d42:2) | −0.13 * | −0.12 * | −0.06 | −0.05 | |
5 | PC(36:5) | 0.13 * | 0.13 * | 0.11 * | 0.07 | 46 | SM(d42:3) | −0.15 * | −0.15 * | −0.09 * | −0.07 | |
6 | PC(37:2) | −0.15 * | −0.15 * | −0.12 * | −0.14 * | 47 | PI(32:1) | 0.23 * | 0.23 * | 0.19 * | 0.14 * | |
7 | PC(40:6) | −0.12 * | −0.12 * | −0.16 * | −0.10 * | 48 | PI(36:4) | 0.10 * | 0.10 * | 0.11 * | 0.02 | |
8 | PC(42:4) | −0.14 * | −0.14 * | −0.12 * | −0.16 * | 49 | PG(34:1) | 0.13 * | 0.13 * | 0.15 * | −0.07 | |
9 | PC(42:7) | −0.10 * | −0.10 * | −0.08 * | −0.09 * | 50 | PG(34:2) | 0.24 * | 0.23 * | 0.22 * | 0.06 | |
10 | PC(P-34:1) | −0.24 * | −0.24 * | −0.15 * | −0.08 * | 51 | PG(36:1) | 0.30 * | 0.30 * | 0.24 * | 0.03 | |
11 | PC(P-34:2) | −0.19 * | −0.19 * | −0.14 * | −0.08 * | 52 | PG(36:2) | 0.27 * | 0.27 * | 0.23 * | 0.01 | |
12 | PC(P-36:2) | −0.22 * | −0.22 * | −0.14 * | −0.09 * | 53 | LPC(14:0) | 0.13 * | 0.13 * | 0.07 | −0.02 | |
13 | PC(P-40:7) | −0.11 * | −0.10 * | <0.01 | 0.04 | 54 | LPC(16:1) | −0.10 * | −0.10 * | −0.10 * | −0.16 * | |
14 | PC(P-42:4) | −0.14 * | −0.14 * | −0.05 | −0.02 | 55 | LPC(17:0) | −0.17 * | −0.17 * | −0.16 * | −0.19 * | |
15 | PC(P-42:5) | −0.14 * | −0.13 * | −0.08 * | −0.06 | 56 | LPC(18:0) | −0.13 * | −0.13 * | −0.11 * | −0.16 * | |
16 | PC(P-44:5) | −0.14 * | −0.14 * | −0.09 * | −0.07 | 57 | LPC(18:1) | −0.29 * | −0.28 * | −0.21 * | −0.24 * | |
17 | PC(P-44:6) | −0.12 * | −0.12 * | −0.06 | −0.03 | 58 | LPC(18:2) | −0.24 * | −0.24 * | −0.14 * | −0.13 * | |
18 | PC(P-44:7) | −0.14 * | −0.14 * | −0.05 | −0.03 | 59 | LPC(18:3) | −0.19 * | −0.19 * | −0.16 * | −0.21 * | |
19 | PC(P-46:6) | −0.15 * | −0.15 * | −0.08 * | −0.05 | 60 | LPC(19:0) | −0.25 * | −0.25 * | −0.19 * | −0.21 * | |
20 | PC(P-46:7) | −0.15 * | −0.15 * | −0.05 | −0.02 | 61 | LPC(20:0) | −0.26 * | −0.26 * | −0.18 * | −0.20 * | |
21 | PE(34:1) | 0.20 * | 0.20 * | 0.17 * | 0.01 | 62 | LPC(20:1) | −0.27 * | −0.27 * | −0.20 * | −0.22 * | |
22 | PE(34:2) | 0.21 * | 0.21 * | 0.18 * | 0.03 | 63 | LPC(20:2) | −0.27 * | −0.27 * | −0.21 * | −0.24 * | |
23 | PE(34:3) | 0.12 * | 0.12 * | 0.08 * | −0.06 | 64 | LPC(20:4) | −0.15 * | −0.15 * | −0.10 * | −0.10 * | |
24 | PE(36:1) | 0.20 * | 0.20 * | 0.17 * | 0.02 | 65 | LPC(22:0) | −0.13 * | −0.12 * | −0.10 * | −0.10 * | |
25 | PE(36:2) | 0.19 * | 0.19 * | 0.17 * | 0.01 | 66 | LPC(22:4) | −0.18 * | −0.18 * | −0.14 * | −0.18 * | |
26 | PE(36:4) | 0.15 * | 0.15 * | 0.16 * | 0.04 | 67 | LPC(22:5) | −0.16 * | −0.16 * | −0.10 * | −0.14 * | |
27 | PE(38:3) | 0.13 * | 0.13 * | 0.15 * | 0.02 | 68 | LPC(22:6) | −0.14 * | −0.14 * | −0.08 * | −0.08 * | |
28 | PE(38:4) | 0.14 * | 0.14 * | 0.15 * | 0.02 | 69 | LPC(24:0) | −0.22 * | −0.22 * | −0.12 * | −0.13 * | |
29 | PE(38:6) | 0.16 * | 0.16 * | 0.18 * | 0.09 * | 70 | LPC(P-16:0) | −0.17 * | −0.17 * | −0.12 * | −0.10 * | |
30 | PE(40:6) | 0.24 * | 0.24 * | 0.23 * | 0.11 * | 71 | LPC(P-18:0) | −0.14 * | −0.14 * | −0.13 * | −0.17 * | |
31 | PE(P-36:1) | −0.11 * | −0.11 * | −0.05 | 0.01 | 72 | LPE(14:0) | 0.14 * | 0.15 * | 0.12 * | 0.03 | |
32 | PE(P-36:2) | −0.10 * | −0.10 * | −0.02 | 0.04 | 73 | LPE(16:0) | −0.10 * | −0.10 * | −0.08 * | −0.14 * | |
33 | PE(P-42:5) | −0.11 * | −0.10 * | −0.02 | 0.02 | 74 | LPE(18:0) | −0.13 * | −0.13 * | −0.08 * | −0.19 * | |
34 | PE(P-44:4) | −0.11 * | −0.12 * | −0.03 | −0.01 | 75 | LPE(24:0) | −0.16 * | −0.16 * | −0.09 * | −0.10 * | |
35 | PE(P-44:5) | −0.16 * | −0.15 * | −0.07 * | −0.05 | |||||||
36 | PE(P-44:6) | −0.14 * | −0.14 * | −0.04 | 0.01 | |||||||
37 | PE(P-44:7) | −0.15 * | −0.15 * | −0.04 | <0.01 | |||||||
38 | PE(P-44:8) | −0.12 * | −0.12 * | −0.02 | 0.02 | |||||||
39 | PE(P-46:6) | −0.18 * | −0.18 * | −0.07 | −0.03 | |||||||
40 | PE(P-46:7) | −0.18 * | −0.17 * | −0.07 | −0.03 | |||||||
41 | PE(P-46:8) | −0.17 * | −0.17 * | −0.06 | −0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, S.-J.; Liu, T.-T.; Pan, J.-C.; Man, Q.-Q.; Song, S.; Zhang, J. The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance. Nutrients 2024, 16, 1205. https://doi.org/10.3390/nu16081205
Pang S-J, Liu T-T, Pan J-C, Man Q-Q, Song S, Zhang J. The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance. Nutrients. 2024; 16(8):1205. https://doi.org/10.3390/nu16081205
Chicago/Turabian StylePang, Shao-Jie, Ting-Ting Liu, Jian-Cun Pan, Qing-Qing Man, Shuang Song, and Jian Zhang. 2024. "The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance" Nutrients 16, no. 8: 1205. https://doi.org/10.3390/nu16081205
APA StylePang, S. -J., Liu, T. -T., Pan, J. -C., Man, Q. -Q., Song, S., & Zhang, J. (2024). The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance. Nutrients, 16(8), 1205. https://doi.org/10.3390/nu16081205