Prevalence of Malnutrition in a Group of Institutionalized Psychogeriatric Patients Using Different Diagnostic Criteria
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Rodríguez, D.; Marco, E.; Ronquillo-Moreno, N.; Maciel-Bravo, L.; Gonzales-Carhuancho, A.; Duran, X.; Guillén-Solà, A.; Vázquez-Ibar, O.; Escalada, F.; Muniesa, J.M. ASPEN-AND-ESPEN: A postacute-care comparison of the basic definition of malnutrition from the American Society of Parenteral and Enteral Nutrition and Academy of Nutrition and Dietetics with the European Society for Clinical Nutrition and Metabolism definition. Clin. Nutr. 2019, 38, 297–302. [Google Scholar]
- Donini, L.M.; Stephan, B.C.M.; Rosano, A.; Molfino, A.; Poggiogalle, E.; Lenzi, A.; Siervo, A.; Muscaritoli, M. What Are the Risk Factors for Malnutrition in Older-Aged Institutionalized Adults? Nutrients 2020, 12, 2857. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Maeda, K.; Honda, T.; Ishida, Y.; Ueshima, J.; Nagami, S.; Nagano, A.; Inoue, T.; Murotani, K.; Kayashita, J.; et al. Comparison between the Global Leadership Initiative on Malnutrition and the European Society for Clinical Nutrition and Metabolism definitions for the prevalence of malnutrition in geriatric rehabilitation care. Geriatr. Gerontol. Int. 2020, 20, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Wolters, M.; Volkert, D.; Streicher, M.; Kiesswetter, E.; Torbahn, G.; O’Connor, E.M.; O’Keeffe, M.; Kelly, M.; O’Herlihy, E.; O’Toole, P.W.; et al. MaNuEL Consortium. Prevalence of malnutrition using harmonized definitions in older adults from different settings—A MaNuEL Study. Clin. Nutr. 2018, 38, 2389–2398. [Google Scholar] [CrossRef]
- Clark, A.B.; Reijnierse, E.M.; Lim, W.K.; Maier, A.B. Prevalence of malnutrition comparing the GLIM criteria, ESPEN definition and MST malnutrition risk in geriatric rehabilitation patients: RESORT. Clin. Nutr. 2020, 39, 3504–3511. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fergusson, M.E.; Caez-Ramírez, G.R.; Sotelo-Díaz, L.I.; Sánchez-Herrera, B. Nutritional Care for Institutionalized Persons with Dementia: An Integrative Review. Int. J. Environ. Res. Public Health 2023, 20, 6763. [Google Scholar] [CrossRef] [PubMed]
- Arifin, H.; Chen, R.; Banda, K.J.; Kustanti, C.Y.; Chang, C.-Y.; Lin, H.-C.; Liu, D.; Lee, T.-Y.; Chou, K.-R. Meta-analysis and moderator analysis of the prevalence of malnutrition and malnutrition risk among older adults with dementia. Int. J. Nurs. Stud. 2024, 150, 104648. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Chourdakis, M.; Faxen-Irving, G.; Frühwald, T.; Landi, F.; Suominen, M.H.; Vandewoude, M.; Wirth, R.; Schneider, S.M. ESPEN guidelines on nutrition in dementia. Clin. Nutr. 2015, 34, 1052–1073. [Google Scholar] [CrossRef]
- Kim, S.R.; Kim, J.Y.; Kim, H.Y.; Nho, J.; Kim, Y.H.; Min, S. Factors related to malnutrition in community-dwelling patients with schizophrenia. Perspect. Psychiatr. Care 2019, 55, 415–423. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition e an ESPEN consensus statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition: A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Kaegi-Braun, N.; Boesiger, F.; Tribolet, P.; Gomes, F.; Kutz, A.; Hoess, C.; Pavlicek, V.; Bilz, S.; Sigrist, S.; Brändle, M.; et al. Validation of modified GLIM criteria to predict adverse clinical outcome and response to nutritional treatment: A secondary analysis of a randomized clinical trial. Clin. Nutr. 2022, 41, 795–804. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R. Validity and feasibility of the global leadership initiative on malnutrition diagnostic concept in older people: A literature review from August 2021 to August 2022. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 23–31. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
- Yoo, J.-I.; Ha, Y.-C.; Choi, H.; Kim, K.-H.; Lee, Y.-K.; Koo, K.-H.; Park, K.-S. Malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fracture. Asia Pac. J. Clin. Nutr. 2018, 27, 527–532. [Google Scholar]
- Valencia, V.C.; Rodriguez, O.M.; Sandoval, M.E.V.; Bermúdez, J.A.; Castellanos, S.G.; de la Cruz, C.O.; Córdova, M.A.R. Prevalence of malnutrition-inflammation complex syndrome and its correlation with thyroid hormones in chronic haemodialysis patients. Prevalencia del síndrome complejo de malnutrición e inflamación y su correlación con las hormonas tiroideas en pacientes en hemodiálisis crónica. Nefrologia 2018, 38, 57–63. [Google Scholar]
- Kaluźniak-Szymanowska, A.; Krzymińska-Siemaszko, R.; Deskur-Śmielecka, E.; Lewandowicz, M.; Kaczmarek, B.; Wieczorowska-Tobis, K. Malnutrition, sarcopenia, and malnutrition-sarcopenia syndrome in older adults with COPD. Nutrients 2021, 14, 44. [Google Scholar] [CrossRef]
- Camina Martín, M.A.; Barrera Ortega, S.; Domínguez Rodríguez, L.; Couceiro Muiño, C.; De Mateo Silleras, B.; Redondo del Río, M.P. Presencia de malnutrición y riesgo de malnutrición en ancianos institucionalizados con demencia en función del tipo y estadio evolutivo. Nutr. Hosp. 2012, 27, 424–430. [Google Scholar]
- de Sousa, O.V.; Mendes, J.; Amaral, T.F. Nutritional and functional indicators and their association with mortality among older adults with Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dement. 2020, 35, 1533317520907168. [Google Scholar] [CrossRef]
- Mereu, E.; Succa, V.; Buffa, R.; Sanna, C.; Mereu, R.M.; Catte, O.; Marini, E. Total body and arm bioimpedance in patients with Alzheimer’s disease. Exp. Gerontol. 2018, 102, 145–148. [Google Scholar] [CrossRef]
- Risch, L.; Hotzy, F.; Vetter, S.; Hiller, S.; Wallimann, K.; Seifritz, E.; Mötteli, S. Assessment of nutritional status and risk of malnutrition using adapted standard tools in patients with mental illness and in need of intensive psychiatric treatment. Int. J. Environ. Res. Public Health 2022, 20, 109. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-T.; Chang, T.-H.; Wu, B.-J. Prognostic impact of nutritional risk assessment in patients with chronic schizophrenia. Schizophr. Res. 2018, 192, 137–141. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis, part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis. Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Herpich, C.; Müller-Werdan, U. Role of phase angle in older adults with focus on the geriatric syndromes sarcopenia and frailty. Rev. Endocr. Metab. Disord. 2023, 24, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Bellido, D.; García-García, C.; Talluri, A.; Lukaski, H.C.; García-Almeida, J.M. Future lines of research on phase angle: Strengths and limitations. Rev. Endocr. Metab. Disord. 2023, 24, 563–583. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Kusakabe, T.; Arai, H.; Yamamoto, Y.; Nakao, K.; Ikeue, K.; Ishihara, Y.; Tagami, T.; Yasoda, A.; Ishii, K.; et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. J. Cachexia Sarcopenia Muscle 2022, 13, 180–189. [Google Scholar] [CrossRef]
- American Psychiatric Association (APA). Manual Diagnóstico y Estadístico de los Trastornos Mentales, 5th ed.; DSM-5; Panamericana: Madrid, Spain, 2014. [Google Scholar]
- Organización Mundial de la Salud. CIE 11: Clasificación Internacional de Enfermedades, 11th ed.; Organización Mundial de la Salud: Ginebra, Suiza, 2022. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Canaslan, K.; Bulut, E.A.; Kocyigit, S.E.; Aydin, A.E.; Isik, A.T. Predictivity of the comorbidity indices for geriatric syndromes. BMC Geriatr. 2022, 22, 440. [Google Scholar] [CrossRef]
- Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.; Doehner, W.; Evans, J.; et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Guigoz, Y.; Vellas, B.; Garry, P.J. Assessing the nutritional status of the elderly: The Mini Nutritional Assessment as part of the geriatric evaluation. Nutr. Rev. 1996, 54, S59–S65. [Google Scholar] [CrossRef] [PubMed]
- NHANES; CDC. Anthropometry Procedures Manual; CDC: Atlant, GA, USA, 2007. [Google Scholar]
- WHO. Report of a WHO Expert Committee. Physical Status: The Use and Interpretation of Anthropometry; WHO Technical Report Series; WHO: Geneva, Switzerland, 1995; Volume 854, pp. 321–344. [Google Scholar]
- Wanden-Berghe, C. Valoración antropométrica. In Valoración Nutricional en el Anciano. Recomendaciones Prácticas de los Expertos en Geriatría y Nutrición (SENPE y SEGG); Planas, M., Ed.; Galénitas-Nigra Trea: Madrid, Spain, 2006; pp. 77–96. [Google Scholar]
- WHO. Clasificación Internacional para Adultos de Bajo Peso, Sobrepeso y Obesidad en Relación al IMC; Criterios de la OMS; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Lukaski, H.C. Assessment of body composition using tetrapolar impedance analysis. In New Techniques in Nutritional Research; Whitehead, R.G., Prentice, A., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 303–315. [Google Scholar]
- Kyle, U.G.; Genton, L.; Slosman, D.O.; Pichard, C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition 2001, 17, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R.; Charlier, R.; Caspers, M.; Knaeps, S.; Mertens, E.; Lambrechts, D.; Lefevre, J.; et al. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Barbat-Artigas, S.; Rolland, Y.; Zamboni, M.; Aubertin-Leheudre, M. How to assess functional status: A new muscle quality index. J. Nutr. Health Aging 2012, 16, 67–77. [Google Scholar] [CrossRef]
- Janssen, I.; Baumgartner, R.N.; Ross, R.; Rosenberg, I.H.; Roubenoff, R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 2004, 159, 413–421. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- de van der Schueren, M.A.E.; Keller, H.; Cederholm, T.; Barazzoni, R.; Compher, C.; Correia, M.; Gonzalez, M.C.; Jager-Wittenaar, H.; Pirlich, M.; Steiber, A.; et al. Global Leadership Initiative on Malnutrition (GLIM): Guidance on validation of the operational criteria for the diagnosis of protein-energy malnutrition in adults. Clin. Nutr. 2020, 39, 2872–2880. [Google Scholar] [CrossRef]
- Sanz-Paris, A.; Fernández, M.G.; Perez-Nogueras, J.; Serrano-Oliver, A.; Torres-Anoro, E.; Sanz-Arque, A.; Arbones-Mainar, J.M. Prevalence of Malnutrition and 1-Year All-Cause Mortality in Institutionalized Elderly Patients Comparing Different Combinations of the GLIM Criteria. J. Parenter. Enter. Nutr. 2021, 45, 1164–1171. [Google Scholar] [CrossRef]
- Blauwhoff-Buskermolen, S.; Langius, J.A.; Becker, A.; Verheul, H.M.; de van der Schueren, M.A. The influence of different muscle mass measurements on the diagnosis of cancer cachexia. J. Cachexia Sarcopenia Muscle 2017, 8, 615–622. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R. A year with the GLIM diagnosis of malnutrition—Does it work for older persons? Cur. Opin. Clin. Nutr. Metab. Care 2021, 24, 4–9. [Google Scholar] [CrossRef]
- Pourhassan, M.; Cederholm, T.; Trampisch, U.; Volkert, D.; Wirth, R. Inflammation as a diagnostic criterion in the GLIM definition of malnutrition-what CRP-threshold relates to reduced food intake in older patients with acute disease? Eur. J. Clin. Nutr. 2022, 76, 397–400. [Google Scholar] [CrossRef]
- Kaluźniak-Szymanowska, A.; Krzymińska-Siemaszko, R.; Wieczorowska-Tobis, K.; Deskur-Śmielecka, E. Optimal assessment of nutritional status in older subjects with the Chronic Obstructive Pulmonary Disease-A comparison of three screening tools used in the GLIM diagnostic algorithm. Int. J. Environ. Res. Public Health 2022, 19, 1025. [Google Scholar] [CrossRef]
- Huo, Z.; Chong, F.; Yin, L.; Lu, Z.; Liu, J.; Xu, H. Accuracy of the GLIM criteria for diagnosing malnutrition: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1208–1217. [Google Scholar] [CrossRef]
- Ohta, M.; Imamura, Y.; Chebib, N.; Schulte-Eickhoff, R.M.; Allain, S.; Genton, L.; Mojon, P.; Graf, C.; Ueda, T.; Müller, F. Oral function and nutritional status in non-acute hospitalised elders. Gerodontology 2022, 39, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Sobestiansky, S.; Åberg, A.C.; Cederholm, T. Sarcopenia and malnutrition in relation to mortality in hospitalised patients in geriatric care—Predictive validity of updated diagnoses. Clin. Nutr. ESPEN 2021, 45, 442–448. [Google Scholar] [CrossRef]
- González-Fernández, M.; Perez-Nogueras, J.; Serrano-Oliver, A.; Torres-Anoro, E.; Sanz-Arque, A.; Arbones-Mainar, J.M.; Sanz-Paris, A. Masseter Muscle Thickness Measured by Ultrasound as a Possible Link with Sarcopenia, Malnutrition and Dependence in Nursing Homes. Diagnostics 2021, 11, 1587. [Google Scholar] [CrossRef]
- Borda, M.G.; Hassan, E.B.; Weon, J.H.; Wakabayashi, H.; Tovar-Rios, D.A.; Oppedal, K.; Aarsland, D.; Duque, G. Muscle volume and intramuscular fat of the tongue evaluated with MRI predict malnutrition in people living with dementia: A 5-year follow-up study. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 228–234. [Google Scholar] [CrossRef]
- Speranza, E.; Santarpia, L.; Marra, M.; Di Vincenzo, O.; Naccarato, M.; De Caprio, C.; Morlino, D.; D’Onofrio, G.; Contaldo, F.; Pasanisi, F. Nutritional screening and anthropometry in patients admitted from the Emergency Department. Front. Nutr. 2022, 9, 816167. [Google Scholar] [CrossRef]
- Mattiello, R.; Amaral, M.A.; Mundstock, E.; Ziegelmann, P.K. Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clin. Nutr. 2020, 39, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Gould, H.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Pasco, J.A. Total and appendicular lean mass reference ranges for Australian men and women: The Geelong osteoporosis study. Calcif. Tissue Int. 2014, 94, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Silva-Fhon, J.R.; Rojas-Huayta, V.M.; Aparco-Balboa, J.P.; Céspedes-Panduro, B.; Partezani-Rodrigues, R.A. Sarcopenia and blood albumin: A systematic review with meta-analysis. Sarcopenia y albúmina sanguínea: Revisión sistemática con metaanálisis. Biomedica 2021, 41, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Cabrerizo, S.; Cuadras, D.; Gómez-Busto, F.; Artaza-Artabe, I.; Martín Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and metaanalysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- van Atteveld, V.A.; Van Ancum, J.M.; Reijnierse, E.M.; Trappenburg, M.C.; Meskers, C.G.M.; Maier, A.B. Erythrocyte sedimentation rate and albumin as markers of inflammation are associated with measures of sarcopenia: A cross-sectional study. BMC Geriatr. 2019, 19, 233. [Google Scholar] [CrossRef]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef]
- Covinsky, K.E.; Covinsky, M.H.; Palmer, R.M.; Sehgal, A.R. Serum albumin concentration and clinical assessments of nutritional status in hospitalized older people: Different sides of different coins? J. Am. Geriatr. Soc. 2002, 50, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [PubMed]
- Koyama, A.; Hashimoto, M.; Tanaka, H.; Fujise, N.; Matsushita, M.; Miyagawa, Y.; Hatada, Y.; Fukuhara, R.; Hasegawa, N.; Todani, S.; et al. Malnutrition in Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration: Comparison using serum albumin, total protein, and hemoglobin level. PLoS ONE 2016, 11, e0157053. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis, part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.; Cavalier, E.; Bruyère, O.; Beaudart, C. Mortality in malnourished older adults diagnosed by ESPEN and GLIM criteria in the SarcoPhAge study. J. Cachexia Sarcopenia Muscle 2020, 11, 1200–1211. [Google Scholar] [CrossRef]
Variables | Total Sample | Men | Women |
---|---|---|---|
BMI (kg/m2) | 22.5 (4.7) | 22.5 (3.9) | 22.5 (5.6) |
WC (cm) | 93.3 (10.4) | 95.0 (9.1) | 91.0 (11.6) |
FFM (kg) | 39.8 (8.0) | 44.4 (5.9) | 34.0 (6.6) * |
FM (kg) | 16.7 (8.4) | 14.7 (7.8) | 19.7 (8.4) * |
FFMI (kg/m2) | 15.7 (2.4) | 16.8 (1.7) | 14.3 (2.4) * |
FMI (kg/m2) | 6.8 (3.5) | 5.6 (2.9) | 8.3 (3.6) * |
ASMM (kg) | 15.0 (3.3) | 16.7 (2.5) | 12.6 (2.8) * |
ASMMI (kg/m2) | 5.9 (1.0) | 6.3 (0.7) | 5.3 (1.0) * |
SMM (kg) | 19.5 (5.6) | 23.0 (3.8) | 14.7 (3.9) * |
SMMI (kg/m2) | 7.6 (1.7) | 8.7 (1.1) | 6.2 (1.4) * |
BMI (kg/m2) | 22.5 (4.7) | 22.5 (3.9) | 22.5 (5.6) |
WC (cm) | 93.3 (10.4) | 95.0 (9.1) | 91.0 (11.6) |
FFM (kg) | 39.8 (8.0) | 44.4 (5.9) | 34.0 (6.6) * |
FM (kg) | 16.7 (8.4) | 14.7 (7.8) | 19.7 (8.4) * |
FFMI (kg/m2) | 15.7 (2.4) | 16.8 (1.7) | 14.3 (2.4) * |
FMI (kg/m2) | 6.8 (3.5) | 5.6 (2.9) | 8.3 (3.6) * |
ASMM (kg) | 15.0 (3.3) | 16.7 (2.5) | 12.6 (2.8) * |
SMM (kg) | 19.5 (5.6) | 23.0 (3.8) | 14.7 (3.9) * |
SMMI (kg/m2) | 7.6 (1.7) | 8.7 (1.1) | 6.2 (1.4) * |
Variables | ESPEN | GLIM 1 (FFMI) | GLIM 2 (ASMMI) | GLIM 3 (SMMI) | mGLIM | |||||
---|---|---|---|---|---|---|---|---|---|---|
MN (n = 23) | Non-MN (n = 71) | MN (n = 31) | Non-MN (n = 61) | MN (n = 35) | Non-MN (n = 57) | MN (n = 38) | Non-MN (n = 54) | MN (n = 37) | Non-MN (n = 55) | |
Age (years.) | 78.4 (10.5) | 79.7 (9.9) | 78.6 (10.8) | 79.0 (10.5) | 80.5 (9.1) | 79.6 (10.1) | 79.0 (10.2) | 79.6 (10.2) | 78.7 (10.2) | 79.8 (10.2) |
LOS (years) | 10.8 (14.5) | 17.8 (21.6) | 10.9 (15.7) | 18.5 (21.8) * | 12.4 (17.4) | 18.1 (21.6) | 12.5 (16.8) | 18.3 (22.0) | 12.7 (16.9) | 18.1 (21.9) |
BMI (kg/m2) | 18.1 (2.2) | 24.0 (4.3) * | 20.8 (3.5) | 23.4 (4.9) * | 21.2 (3.7) | 23.3 (5.0) * | 21.7 (3.9) | 23.1 (5.1) | 21.7 (4.0) | 23.1 (5.0) |
WC (cm) | 86.3 (9.5) | 95.7 (9.6) * | 91.6 (9.0) | 94.2 (11.0) | 92.3 (10.0) | 93.9 (10.7) | 92.9 (9.9) | 93.6 (10.8) | 92.9 (10.1) | 93.6 (10.7) |
FFM (kg) | 36.0 (6.4) | 41.3 (8.2) * | 40.0 (7.4) | 39.7 (8.4) | 40.9 (7.4) | 39.2 (8.4) | 40.5 (7.5) | 39.4 (8.4) | 40.7 (7.5) | 39.2 (8.4) |
FFMI (kg/m2) | 14.2 (1.9) | 16.3 (2.3) * | 15.0 (2.1) | 16.1 (2.4) * | 15.4 (2.2) | 15.9 (2.4) | 15.5 (2.2) | 15.9 (2.5) | 15.6 (2.3) | 15.9 (2.5) |
FM (kg) | 9.7 (5,7) | 19.1 (7.8) * | 15,1 (7.5) | 17.5 (8.5) | 15.3 (7.9) | 17.6 (8.6) | 16.0 (8.0) | 17.3 (8.7) | 15.8 (8.0) | 17.4 (8.6) |
FMI (kg/m2) | 3.9 (2.5) | 7.7 (3.3) * | 5.8 (2.8) | 7.3 (3.7) * | 5.8 (2.9) | 7.4 (3.8) * | 6.2 (3.1) | 7.2 (3.8) | 6.1 (3.1) | 7.2 (3.7) |
ASMM (kg) | 13.4 (2.6) | 15.5 (3.6) * | 15.0 (3.0) | 14.9 (3.4) | 15.3 (3.0) | 14.7 (3.5) | 15.2 (3.0) | 14.8 (3.5) | 15.3 (3.0) | 14.7 (3.5) |
ASMMI (kg/m2) | 5.3 (0.8) | 6.1 (0.9) * | 5.6 (0.9) | 6.0 (1.0) * | 5.8 (0.9) | 6.0 (1.0) | 5.8 (0.9) | 6.0 (1.0) | 5.8 (0.9) | 6.0 (1.0) |
SMM (kg) | 18.3 (5.3) | 20.0 (5.7) * | 20.0 (5.6) | 19.2 (5.6) | 20.6 (5.3) | 18.8 (5.7) | 20.2 (5.5) | 19.0 (5.7) | 20.4 (5.4) | 18.9 (5.7) |
SMMI (kg/m2) | 7.1 (1.8) | 7.8 (1.7) | 7.5 (1.8) | 7.7 (1.7) | 7.8 (1.7) | 7.6 (1.7) | 7.7 (1.8) | 7.6 (1.7) | 7.8 (1.7) | 7.6 (1.7) |
MQI | 0.31 (0.49) | 0.43 (0.39) | 0.30 (0.38) | 0.45 (0.43) | 0.30 (0.37) | 0.46 (0.44) | 0.30 (0.36) | 0.46 (0.45) | 0.29 (0.35) | 0.47 (0.45) * |
HS (kg) | 5.7 (9.1) | 8.7 (8.6) | 6.6 (9.1) | 8.5 (8.6) | 6.7 (8.7) | 8.6 (8.8) | 6.6 (8.4) | 8.8 (8.9) | 6.5 (8.5) | 8.8 (8.8) |
Albumin (g/dL) | 2.73 (0.36) | 3.16 (0.36) * | 2.87 (0.40) | 3.13 (0.38) * | 2.96 (0.45) | 3.10 (0.37) | 2.96 (0.44) | 3.11 (0.37) | 2.96 (0.44) | 3.11 (0.37) |
PCR (mg/L) | 5.84 (4.66) | 7.43 (12.9) | 15.56 (16.2) | 2.95 (3.9) * | 14.6 (15.3) | 2.37 (3.2) * | 14.2 (14.8) | 2.02 (2.9) * | 13.4 (14.2) | 2.74 (6.1) * |
MNA (points) | 13.3 (4.0) | 17.9 (3.4) * | 15.4 (4.3) | 17.5 (3.8) * | 15.7 (4.3) | 17.5 (3.8) * | 16.0 (4.3) | 17.4 (3.8) | 16.0 (4.4) | 17.4 (3.8) * |
PhA (º) | 4.06 (1.08) | 4.06 (0.76) | 3.86 (0.63) | 4.19 (0.93) * | 3.87 (0.63) | 4.20 (0.94) | 3.91 (0.63) | 4.19 (0.96) | 3.91 (0.63) | 4.18 (0.96) |
Cohen’s Kappa Coefficient | ESPEN | GLIM 1 (FFMI) | GLIM 2 (ASMMI) | GLIM 3 (SMMI) | mGLIM |
---|---|---|---|---|---|
ESPEN | 1.000 | 0.169 | 0.111 | 0.071 | 0.084 |
GLIM 1 (FFMI) | 0.169 | 1.000 | 0.859 | 0.839 | 0.814 |
GLIM 2 (ASMMI) | 0.111 | 0.859 | 1.000 | 0.932 | 0.909 |
GLIM 3 (SMMI) | 0.071 | 0.839 | 0.932 | 1.000 | 0.977 |
mGLIM | 0.084 | 0.814 | 0.909 | 0.977 | 1.000 |
Criteria | Variables | Prevalence [n (%)] | |
---|---|---|---|
Etiological | Reduced food intake (>50%) | 9 (9.8) | |
Inflammation | Clinical judgment of specialists | 23 (25.0) | |
CRP > 5 mg/L | 37 (40.2) | ||
Phenotypic | UWL > 10% over the last 6 months | 10 (10.9) | |
BMI | Very low (<18.5 kg/m2) | 19 (20.7) | |
Low (<20 kg/m2 if <70 years, or <22 kg/m2 if ≥70 years) | 40 (43.5) | ||
Low MM | FFMI | 56 (60.9) | |
ASMMI | 69 (75.0) | ||
SMMI | 79 (85.9) | ||
Low HS | 66 (71.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Mateo Silleras, B.; Barrera Ortega, S.; Carreño Enciso, L.; de la Cruz Marcos, S.; Redondo del Río, P. Prevalence of Malnutrition in a Group of Institutionalized Psychogeriatric Patients Using Different Diagnostic Criteria. Nutrients 2024, 16, 1116. https://doi.org/10.3390/nu16081116
de Mateo Silleras B, Barrera Ortega S, Carreño Enciso L, de la Cruz Marcos S, Redondo del Río P. Prevalence of Malnutrition in a Group of Institutionalized Psychogeriatric Patients Using Different Diagnostic Criteria. Nutrients. 2024; 16(8):1116. https://doi.org/10.3390/nu16081116
Chicago/Turabian Stylede Mateo Silleras, Beatriz, Sara Barrera Ortega, Laura Carreño Enciso, Sandra de la Cruz Marcos, and Paz Redondo del Río. 2024. "Prevalence of Malnutrition in a Group of Institutionalized Psychogeriatric Patients Using Different Diagnostic Criteria" Nutrients 16, no. 8: 1116. https://doi.org/10.3390/nu16081116