Nutritional Status and Physical Exercise Are Associated with Cognitive Function in Chinese Community-Dwelling Older Adults: The Role of Happiness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Settings
2.2. Measures
2.2.1. Nutritional Status
2.2.2. Physical Exercise
2.2.3. Cognitive Function
2.2.4. Happiness
2.2.5. Covariates
2.3. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Nutrition, Exercise, and Cognitive Decline
3.3. Interaction Effects of Happiness and Age
3.4. Mediation Effects of Happiness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dominguez, L.J.; Veronese, N.; Vernuccio, L.; Catanese, G.; Inzerillo, F.; Salemi, G.; Barbagallo, M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021, 13, 4080. [Google Scholar] [CrossRef]
- Chye, L.; Wei, K.; Nyunt, M.S.Z.; Gao, Q.; Wee, S.L.; Ng, T.-P. Strong Relationship between Malnutrition and Cognitive Frailty in the Singapore Longitudinal Ageing Studies (SLAS-1 and SLAS-2). J. Prev. Alzheimer’s Dis. 2018, 5, 142–148. [Google Scholar] [CrossRef]
- Mantzorou, M.; Vadikolias, K.; Pavlidou, E.; Serdari, A.; Vasios, G.; Tryfonos, C.; Giaginis, C. Nutritional status is associated with the degree of cognitive impairment and depressive symptoms in a Greek elderly population. Nutr. Neurosci. 2020, 23, 201–209. [Google Scholar] [CrossRef]
- Shi, R.; Duan, J.; Deng, Y.; Tu, Q.; Cao, Y.; Zhang, M.; Zhu, Q.; Lü, Y. Nutritional status of an elderly population in Southwest China: A cross-sectional study based on comprehensive geriatric assessment. J. Nutr. Health Aging 2015, 19, 26–32. [Google Scholar] [CrossRef]
- Kishino, Y.; Sugimoto, T.; Kimura, A.; Kuroda, Y.; Uchida, K.; Matsumoto, N.; Saji, N.; Niida, S.; Sakurai, T. Longitudinal association between nutritional status and behavioral and psychological symptoms of dementia in older women with mild cognitive impairment and early-stage Alzheimer’s disease. Clin. Nutr. 2022, 41, 1906–1912. [Google Scholar] [CrossRef]
- Sukik, L.; Liu, J.; Shi, Z. Tea Consumption Is Associated with Reduced Cognitive Decline and Interacts with Iron Intake: A Population-Based Longitudinal Study on 4,820 Old Adults. J. Alzheimer’s Dis. 2022, 90, 271–282. [Google Scholar] [CrossRef]
- Sukik, L.; Liu, J.; Shi, Z. Association between egg consumption and cognitive function among Chinese adults: Long-term effect and interaction effect of iron intake. Br. J. Nutr. 2022, 128, 1180–1189. [Google Scholar] [CrossRef]
- Kim, K.Y.; Yun, J.M. Association between diets and mild cognitive impairment in adults aged 50 years or older. Nutr. Res. Pract. 2018, 12, 415–425. [Google Scholar] [CrossRef]
- Chan, R.; Chan, D.; Woo, J. A cross sectional study to examine the association between dietary patterns and cognitive impairment in older Chinese people in Hong Kong. J. Nutr. Health Aging 2013, 17, 757–765. [Google Scholar] [CrossRef] [PubMed]
- McGrattan, A.M.; McEvoy, C.T.; McGuinness, B.; McKinley, M.C.; Woodside, J.V. Effect of dietary interventions in mild cognitive impairment: A systematic review. Br. J. Nutr. 2018, 120, 1388–1405. [Google Scholar] [CrossRef] [PubMed]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef]
- Gardener, S.L.; Rainey-Smith, S.R. The Role of Nutrition in Cognitive Function and Brain Ageing in the Elderly. Curr. Nutr. Rep. 2018, 7, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.M.; Manosso, L.M.; Yau, S.-Y.; Gil-Mohapel, J.; Brocardo, P.S. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int. J. Mol. Sci. 2021, 22, 5026. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L. Nutrient intake, nutritional status, and cognitive function with aging. Ann. N. Y. Acad. Sci. 2016, 1367, 38–49. [Google Scholar] [CrossRef]
- Xie, Y.; Bai, C.; Feng, Q.; Gu, D. Serum Vitamin D3 Concentration, Sleep, and Cognitive Impairment among Older Adults in China. Nutrients 2023, 15, 4192. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, B.; Buttery, A.K.; Finger, J.D.; Wolfsgruber, S.; Wagner, M.; Busch, M.A. Physical exercise and cognitive function across the life span: Results of a nationwide population-based study. J. Sci. Med. Sport 2018, 21, 489–494. [Google Scholar] [CrossRef]
- Falck, R.S.; Landry, G.J.; Best, J.R.; Davis, J.C.; Chiu, B.K.; Liu-Ambrose, T. Cross-Sectional Relationships of Physical Activity and Sedentary Behavior With Cognitive Function in Older Adults With Probable Mild Cognitive Impairment. Phys. Ther. 2017, 97, 975–984. [Google Scholar] [CrossRef]
- Omura, J.D.; Brown, D.R.; McGuire, L.C.; Taylor, C.A.; Fulton, J.E.; Carlson, S.A. Cross-sectional association between physical activity level and subjective cognitive decline among US adults aged ≥45 years, 2015. Prev. Med. 2020, 141, 106279. [Google Scholar] [CrossRef]
- Paulo, T.R.S.; Tribess, S.; Sasaki, J.E.; Meneguci, J.; Martins, C.A.; Freitas, I.F.; Romo-Perez, V.; Virtuoso, J.S. A Cross-Sectional Study of the Relationship of Physical Activity with Depression and Cognitive Deficit in Older Adults. J. Aging Phys. Act. 2016, 24, 311–321. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Best, J.R.; Davis, J.C.; Eng, J.J.; Lee, P.E.; Jacova, C.; Boyd, L.A.; Brasher, P.M.; Munkacsy, M.; Cheung, W. Aerobic exercise and vascular cognitive impairment: A randomized controlled trial. Neurology 2016, 87, 2082–2090. [Google Scholar] [CrossRef]
- Jonasson, L.S.; Nyberg, L.; Kramer, A.F.; Lundquist, A.; Riklund, K.; Boraxbekk, C.-J. Aerobic Exercise Intervention, Cognitive Performance, and Brain Structure: Results from the Physical Influences on Brain in Aging (PHIBRA) Study. Front. Aging Neurosci. 2017, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Zheng, Y.; Xiong, Z.; Ye, B. Effect of Baduanjin exercise on cognitive function in patients with post-stroke cognitive impairment: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.C.W.; Chau, R.C.M.; Wong, B.M.L.; Fung, A.W.T.; Tam, C.W.C.; Leung, G.T.Y.; Kwok, T.C.Y.; Leung, T.Y.S.; Ng, S.P.; Chan, W.M. A 1-Year Randomized Controlled Trial Comparing Mind Body Exercise (Tai Chi) With Stretching and Toning Exercise on Cognitive Function in Older Chinese Adults at Risk of Cognitive Decline. J. Am. Med. Dir. Assoc. 2012, 13, 568.e15–568.e20. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kowal, I.; Yang, Y.; Zhu, Y.; Chen, S.; Perez, A.; Rao, H.; Chinese Older Adult Qigong Exercise Group. Culturally tailored group Qigong exercise in older Chinese immigrants: A feasibility study. Geriatr. Nurs. 2023, 51, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Blondell, S.J.; Hammersley-Mather, R.; Veerman, J.L. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health 2014, 14, 510. [Google Scholar] [CrossRef] [PubMed]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef]
- Lista, I.; Sorrentino, G. Biological Mechanisms of Physical Activity in Preventing Cognitive Decline. Cell. Mol. Neurobiol. 2010, 30, 493–503. [Google Scholar] [CrossRef]
- Séverine, S.; Aline, D.; Jean-François, D.; Jessica, A.; Alexis, E.; Mika, K.; Archana, S.-M. Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. Br. Med. J. 2017, 357, j2709. [Google Scholar] [CrossRef]
- Cherbuin, N.; Anstey, K.J. The Mediterranean diet is not related to cognitive change in a large prospective investigation: The PATH Through Life study. Am. J. Geriatr. Psychiatry 2012, 20, 635–639. [Google Scholar] [CrossRef]
- Zhu, X.; Luchetti, M.; Aschwanden, D.; Sesker, A.A.; Stephan, Y.; Sutin, A.R.; Terracciano, A. The association between happiness and cognitive function in the UK Biobank. Curr. Psychol. 2023, 17, 757–765. [Google Scholar] [CrossRef]
- Shi, X.; He, X.; Pan, D.; Qiao, H.; Li, J. Happiness, depression, physical activity and cognition among the middle and old-aged population in China: A conditional process analysis. PeerJ 2022, 10, e13673. [Google Scholar] [CrossRef]
- An, H.Y.; Chen, W.; Wang, C.W.; Yang, H.F.; Huang, W.T.; Fan, S.Y. The Relationships between Physical Activity and Life Satisfaction and Happiness among Young, Middle-Aged, and Older Adults. Int. J. Environ. Res. Public Health 2020, 17, 4817. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, W. A Systematic Review of the Relationship Between Physical Activity and Happiness. J. Happiness Stud. 2019, 20, 1305–1322. [Google Scholar] [CrossRef]
- Richards, J.; Jiang, X.; Kelly, P.; Chau, J.; Bauman, A.; Ding, D. Don’t worry, be happy: Cross-sectional associations between physical activity and happiness in 15 European countries. BMC Public Health 2015, 15, 53. [Google Scholar] [CrossRef]
- Wahlin, Å.; MacDonald, S.W.; de Frias, C.M.; Nilsson, L.-G.; Dixon, R.A. How do health and biological age influence chronological age and sex differences in cognitive aging: Moderating, mediating, or both? Psychol. Aging 2006, 21, 318–332. [Google Scholar] [CrossRef]
- Barrenetxea, J.; Pan, A.; Feng, Q.; Koh, W.-P. Factors associated with depression across age groups of older adults: The Singapore Chinese health study. Int. J. Geriatr. Psychiatry 2022, 37, 2. [Google Scholar] [CrossRef]
- Guigoz, Y.; Vellas, B.; Garry, P. Mini Nutritional Assessment: A practical assessment tool for grading the nutritional state of elderly patients. In The Mini Nutritional Assessment: MNA Nutrition in the Elderly; Serdi Publishing Company: New York, NY, USA, 1997; pp. 15–60. [Google Scholar]
- Xu, Y.C.; Vincent, J.I. Clinical measurement properties of malnutrition assessment tools for use with patients in hospitals: A systematic review. Nutr. J. 2020, 19, 106. [Google Scholar] [CrossRef]
- Bleda, M.; Bolibar, I.; Pares, R.; Salvaff, A. Reliability of the Mini Nutritional, Assessment (MNA). J. Nutr. 2002, 6, 134–137. [Google Scholar]
- Zhang, L.; Su, Y.; Wang, C.; Sha, Y.; Zhu, H.; Xie, S.; Kwauk, S.; Zhang, J.; Lin, Y.; Wang, C. Assessing the nutritional status of elderly Chinese lung cancer patients using the Mini-Nutritional Assessment (MNA(®)) tool. Clin. Interv. Aging 2013, 8, 287–291. [Google Scholar] [CrossRef]
- Achenbach, T.M.; Newhouse, P.A.; Rescorla, L.A. Manual for the ASEBA Older Adult Forms & Profiles: For Ages 60–90+: Older Adult Self-Report: Older Adult Behavior Checklist: An Integrated System of Multi-Informant Assessment; ASEBA: Burlington, VT, USA, 2004. [Google Scholar]
- Liu, J.; Lee, C.M.; An, Y.; Sun, Q.; Mei, H.; Shi, S.; Ivanova, M.; Rao, H. Application of the older adult self-report and older adult behavior checklist to Chinese older adults: Syndrome structure and inter-informant agreement. J. Gerontol. Nurs. 2022, 48, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.Y.; Achenbach, T.M.; Rescorla, L.A.; Turner, L.V.; Dumas, J.A.; Almeida, V.; Anafarta-Sendag, M.; Bite, I.; Boomsma, D.I.; Caldas, J.C. The generalizability of Older Adult Self-Report (OASR) syndromes of psychopathology across 20 societies. Int. J. Geriatr. Psychiatry 2020, 35, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Sun, M.A.; Sun, Q.; Mei, H.; Rao, H.; Liu, J. Mental Fatigue Is Associated with Subjective Cognitive Decline among Older Adults. Brain Sci. 2023, 13, 376. [Google Scholar] [CrossRef] [PubMed]
- Lyubomirsky, S.; Lepper, H.S. A measure of subjective happiness: Preliminary reliability and construct validation. Soc. Indic. Res. 1999, 46, 137–155. [Google Scholar] [CrossRef]
- Nan, H.; Ni, M.Y.; Lee, P.H.; Tam, W.W.; Lam, T.H.; Leung, G.M.; McDowell, I. Psychometric evaluation of the Chinese version of the Subjective Happiness Scale: Evidence from the Hong Kong FAMILY Cohort. Int. J. Behav. Med. 2014, 21, 646–652. [Google Scholar] [CrossRef]
- Goodwin, J.S.; Goodwin, J.M.; Garry, P.J. Association Between Nutritional Status and Cognitive Functioning in a Healthy Elderly Population. J. Am. Med. Assoc. 1983, 249, 2917–2921. [Google Scholar] [CrossRef]
- Ikeuchi, T.; Kanda, M.; Kitamura, H.; Morikawa, F.; Toru, S.; Nishimura, C.; Kasuga, K.; Tokutake, T.; Takahashi, T.; Kuroha, Y.; et al. Decreased circulating branched-chain amino acids are associated with development of Alzheimer’s disease in elderly individuals with mild cognitive impairment. Front. Nutr. 2022, 9, 1040476. [Google Scholar] [CrossRef]
- van Uffelen, J.G.; Paw, M.J.C.A.; Hopman-Rock, M.; van Mechelen, W. The Effects of Exercise on Cognition in Older Adults With and Without Cognitive Decline: A Systematic Review. Clin. J. Sport Med. 2008, 18, 486–500. [Google Scholar] [CrossRef]
- Norman, J.E.; Rutkowsky, J.; Bodine, S.; Rutledge, J.C. The Potential Mechanisms of Exercise-induced Cognitive Protection: A Literature Review. Curr. Pharm. Des. 2018, 24, 1827–1831. [Google Scholar] [CrossRef]
- Nijholt, W.; Jager-Wittenaar, H.; Visser, M.; Van Der Schans, C.P.; Hobbelen, J.S.M. Are a healthy diet and physical activity synergistically associated with cognitive functioning in older adults? J. Nutr. Health Aging 2016, 20, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Scarmeas, N.; Luchsinger, J.A.; Schupf, N.; Brickman, A.M.; Cosentino, S.; Tang, M.X.; Stern, Y. Physical Activity, Diet, and Risk of Alzheimer Disease. J. Am. Med. Assoc. 2009, 302, 627–637. [Google Scholar] [CrossRef]
- Feng, L.; Chu, Z.; Quan, X.; Zhang, Y.; Yuan, W.; Yao, Y.; Zhao, Y.; Fu, S. Malnutrition is positively associated with cognitive decline in centenarians and oldest-old adults: A cross-sectional study. eClinicalMedicine 2022, 47, 101336. [Google Scholar] [CrossRef]
- Wheeler, M.J.; Dempsey, P.C.; Grace, M.S.; Ellis, K.A.; Gardiner, P.A.; Green, D.J.; Dunstan, D.W. Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 291–300. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Ivanova, S.A. Circuits Regulating Pleasure and Happiness—Mechanisms of Depression. Front. Hum. Neurosci. 2016, 10, 571. [Google Scholar] [CrossRef]
- Speh, A.; Wang, R.; Winblad, B.; Kramberger, M.G.; Bäckman, L.; Qiu, C.; Laukka, E.J. The Relationship Between Cardiovascular Health and Rate of Cognitive Decline in Young-Old and Old-Old Adults: A Population-Based Study. J. Alzheimer’s Dis. 2021, 84, 1523–1537. [Google Scholar] [CrossRef]
- Yoshimura, K.; Yamada, M.; Kajiwara, Y.; Nishiguchi, S.; Aoyama, T. Relationship between depression and risk of malnutrition among community-dwelling young-old and old-old elderly people. Aging Ment. Health 2013, 17, 456–460. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef]
- Basso, J.C.; Suzuki, W.A. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast. 2017, 2, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Dfarhud, D.; Malmir, M.; Khanahmadi, M. Happiness & Health: The Biological Factors- Systematic Review Article. Iran. J. Public Health 2014, 43, 1468–1477. [Google Scholar]
- Peters, R. Ageing and the brain: This article is part of a series on ageing edited by Professor Chris Bulpitt. Postgrad. Med. J. 2006, 82, 84–88. [Google Scholar] [CrossRef]
- Briguglio, M.; Dell’Osso, B.; Panzica, G.; Malgaroli, A.; Banfi, G.; Zanaboni Dina, C.; Galentino, R.; Porta, M. Dietary Neurotransmitters: A Narrative Review on Current Knowledge. Nutrients 2018, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.; Mayer, D.E.; Chen, S.; Mayer, E.A. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl. Psychiatry 2022, 12, 164. [Google Scholar] [CrossRef]
Overall, N = 699 | |
---|---|
Age, mean (SD) | 69.58 (7.46) |
Age group, N (%) | |
Young-old (age < 74) | 524 (75.18) |
Old-old (age ≥ 74) | 173 (24.82) |
Gender, N (%) | |
Male | 313 (44.84) |
Female | 385 (55.24) |
Income, N (%) | |
Low (<1000) | 72 (10.42) |
Middle (1000–3000) | 270 (39.07) |
High (>3000) | 349 (50.51) |
Education, N (%) | |
Below High School | 428 (62.12) |
High School | 182 (26.42) |
College degree or above | 79 (11.47) |
Marital status, N (%) | |
Living with spouse | 500 (71.74) |
Other | 197 (28.26) |
Nutrition score, mean (SD) | 23.47 (3.38) |
Nutritional status | |
Malnutrition | 25 (3.78) |
At risk of malnutrition | 271 (40.94) |
Normal | 366 (55.29) |
Physical activity, N (%) | |
Exercise | 477 (68.73) |
No | 217 (31.27) |
Happiness, mean (SD) | 17.77 (3.13) |
Happiness group, N (%) | |
Happy (happiness ≥ 20) | 202 (29.62) |
Unhappy (happiness < 20) | 480 (70.38) |
Cognitive decline, mean (SD) | 3.02 (3.15) |
Predictors | Overall (N = 699) | Unhappy Group (N = 480) | Happy Group (N = 202) |
---|---|---|---|
β (SE) | β (SE) | β (SE) | |
Nutrition (Normal as reference) | |||
At-risk | 3.10 (0.78) *** | 2.96 (0.95) ** | 2.90 (1.53) † |
Malnutrition | 10.63 (2.09) *** | 11.10 (2.30) *** | 9.05 (5.61) |
Exercise (No as reference) | |||
Yes | −2.13 (0.81) ** | −2.35 (0.96) * | −1.16 (1.64) |
Paths | Difference (95% CI) | Percentage % | p-Value |
---|---|---|---|
Nutrition ⟶ Cognition | |||
Total Effect | −0.78 (−1.00, −0.55) | 100 | <0.001 |
Direct Effect | −0.69 (−0.92, −0.46) | 88.46 | <0.001 |
Indirect Effect (Nutrition → Happiness → Cognition) | −0.09 (−0.16, −0.03) | 11.54 | 0.006 |
Exercise ⟶ Cognition | |||
Total Effect | −2.09 (−3.70, −0.48) | 100 | 0.011 |
Direct Effect | −1.61 (−3.22, −0.003) | 77.03 | 0.050 |
Indirect Effect (Exercise → Happiness → Cognition) | −0.48 (−0.94, −0.15) | 22.97 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Pan, M.; Sun, M.; Shi, H.; Feng, R. Nutritional Status and Physical Exercise Are Associated with Cognitive Function in Chinese Community-Dwelling Older Adults: The Role of Happiness. Nutrients 2024, 16, 203. https://doi.org/10.3390/nu16020203
Liu J, Pan M, Sun M, Shi H, Feng R. Nutritional Status and Physical Exercise Are Associated with Cognitive Function in Chinese Community-Dwelling Older Adults: The Role of Happiness. Nutrients. 2024; 16(2):203. https://doi.org/10.3390/nu16020203
Chicago/Turabian StyleLiu, Jianghong, Michael Pan, McKenna Sun, Haoer Shi, and Rui Feng. 2024. "Nutritional Status and Physical Exercise Are Associated with Cognitive Function in Chinese Community-Dwelling Older Adults: The Role of Happiness" Nutrients 16, no. 2: 203. https://doi.org/10.3390/nu16020203
APA StyleLiu, J., Pan, M., Sun, M., Shi, H., & Feng, R. (2024). Nutritional Status and Physical Exercise Are Associated with Cognitive Function in Chinese Community-Dwelling Older Adults: The Role of Happiness. Nutrients, 16(2), 203. https://doi.org/10.3390/nu16020203