Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Protocol
2.4. Outcome Measures
2.5. Caffeine and Placebo Gum
2.6. Statistical Analysis
3. Results
3.1. Baseline Parameters
3.2. Off-Ice Tests
3.3. On-Ice Tests
3.4. On-Ice Yo-Yo IR1 Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vigh-Larsen, J.F.; Mohr, M. The physiology of ice hockey performance: An update. Scand. J. Med. Sci. Sports 2024, 34, e14284. [Google Scholar] [CrossRef] [PubMed]
- Thun, E.; Bjorvatn, B.; Flo, E.; Harris, A.; Pallesen, S. Sleep, circadian rhythms, and athletic performance. Sleep Med. Rev. 2015, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.; Newton, M.J.; McGuigan, M.R. Circadian rhythms in exercise performance: Implications for hormonal and muscular adaptation. J. Sports Sci. Med. 2011, 10, 600. [Google Scholar]
- Daan, S.; Beersma, D.; Borbély, A.A. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1984, 246, R161–R183. [Google Scholar] [CrossRef]
- Dial, M.B.; Malek, E.M.; Cooper, A.R.; Neblina, G.A.; Vasileva, N.I.; Hines, D.J.; McGinnis, G.R. Social jet lag impairs exercise volume and attenuates physiological and metabolic adaptations to voluntary exercise training. J. Appl. Physiol. 2024, 136, 996–1006. [Google Scholar] [CrossRef]
- Leota, J.; Hoffman, D.; Czeisler, M.É.; Mascaro, L.; Drummond, S.P.; Anderson, C.; Rajaratnam, S.M.; Facer-Childs, E.R. Eastward jet lag is associated with impaired performance and game outcome in the national basketball association. Front. Physiol. 2022, 13, 892681. [Google Scholar] [CrossRef] [PubMed]
- Forbes-Robertson, S.; Dudley, E.; Vadgama, P.; Cook, C.; Drawer, S.; Kilduff, L. Circadian disruption and remedial interventions: Effects and interventions for jet lag for athletic peak performance. Sports Med. 2012, 42, 185–208. [Google Scholar] [CrossRef]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Wilk, M.; Krzysztofik, M.; Lulińska, E.; Tufano, J.J.; Zajac, A.; Stastny, P.; Del Coso, J. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J. Int. Soc. Sports Nutr. 2021, 18, 25. [Google Scholar] [CrossRef]
- Miller, B.; O’Connor, H.; Orr, R.; Ruell, P.; Cheng, H.L.; Chow, C.M. Combined caffeine and carbohydrate ingestion: Effects on nocturnal sleep and exercise performance in athletes. Eur. J. Appl. Physiol. 2014, 114, 2529–2537. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-S.; Liu, C.-C.; Shiu, Y.-J.; Lan, P.-T.; Wang, A.-Y.; Chiu, C.-H. Caffeinated Chewing Gum Improves Basketball Shooting Accuracy and Physical Performance Indicators of Trained Basketball Players: A Double-Blind Crossover Trial. Nutrients 2024, 16, 1256. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, S.-H.; Shiu, Y.-J.; Yu, S.-Y.; Chiu, C.-H. Acute enhancement of Romanian deadlift performance after consumption of caffeinated chewing gum. Sci. Rep. 2023, 13, 22016. [Google Scholar] [CrossRef] [PubMed]
- Haukali, E.; Tjelta, L.I. Correlation between “off-ice” variables and skating performance among young male ice hockey players. Int. J. Appl. Sports Sci. 2015, 27, 26–32. [Google Scholar] [CrossRef]
- Novák, D.; Lipinska, P.; Roczniok, R.; Spieszny, M.; Stastny, P. Off-ice agility provide motor transfer to on-ice skating performance and agility in adolescent ice hockey players. J. Sports Sci. Med. 2019, 18, 680. [Google Scholar] [PubMed]
- Vigh-Larsen, J.F.; Beck, J.H.; Daasbjerg, A.; Knudsen, C.B.; Kvorning, T.; Overgaard, K.; Andersen, T.B.; Mohr, M. Fitness characteristics of elite and subelite male ice hockey players: A cross-sectional study. J. Strength Cond. Res. 2019, 33, 2352–2360. [Google Scholar] [CrossRef]
- Von Hurst, P.; Conlon, C.; Foskett, A. Vitamin D status predicts hand-grip strength in young adult women living in Auckland, New Zealand. J. Steroid Biochem. Mol. Biol. 2013, 136, 330–332. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 629–634. [Google Scholar] [CrossRef]
- Hopkins, W.G. A scale of magnitudes for effect statistics. A New View Stat. 2002, 502, 321. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Madden, R.F.; Erdman, K.A.; Shearer, J.; Spriet, L.L.; Ferber, R.; Kolstad, A.T.; Bigg, J.L.; Gamble, A.S.; Benson, L.C. Effects of caffeine on exertion, skill performance, and physicality in ice hockey. Int. J. Sports Physiol. Perform. 2019, 14, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Berges, G.; Pantoja, P.; Moradell, A.; Matute-Llorente, A.; Gomez-Bruton, A. Does caffeine supplementation improve physical performance of elite ice hockey players? A randomized, double-blind, placebo-controlled, counterbalanced, cross-over trial. Sci. Sports 2024, 39, 117–123. [Google Scholar] [CrossRef]
- Behm, D.G.; Wahl, M.J.; Button, D.C.; Power, K.E.; Anderson, K.G. Relationship between hockey skating speed and selected performance measures. J. Strength Cond. Res. 2005, 19, 326–331. [Google Scholar] [PubMed]
- Peterson, B.J.; Fitzgerald, J.S.; Dietz, C.C.; Ziegler, K.S.; Baker, S.E.; Snyder, E.M. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J. Strength Cond. Res. 2016, 30, 2375–2381. [Google Scholar] [CrossRef]
- Durocher, J.J.; Guisfredi, A.J.; Leetun, D.T.; Carter, J.R. Comparison of on-ice and off-ice graded exercise testing in collegiate hockey players. Appl. Physiol. Nutr. Metab. 2010, 35, 35–39. [Google Scholar] [CrossRef]
- Saygın, Ö.; Ceylan, H.İ.; Günay, A.R. Time of day effect on repeated sprint ability, aerobic capacity and physiological responses in team-sport athletes. Int. J. Sport Cult. Sci. 2018, 6, 467–484. [Google Scholar] [CrossRef]
- Romdhani, M.; Souissi, N.; Moussa-Chamari, I.; Chaabouni, Y.; Mahdouani, K.; Sahnoun, Z.; Driss, T.; Chamari, K.; Hammouda, O. Caffeine use or napping to enhance repeated sprint performance after partial sleep deprivation: Why not both? Int. J. Sports Physiol. Perform. 2021, 16, 711–718. [Google Scholar] [CrossRef]
CAF | PL | p | |
---|---|---|---|
Sleep time (hours) | 7.4 ± 1.4 | 7.1 ± 1.2 | 0.231 |
Awake time (hours) | 11.5 ± 2.2 | 11.8 ± 2.2 | 0.261 |
RPE before test | 5.7 ± 1.9 | 6.0 ± 1.7 | 0.598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-T.; Shiu, Y.-J.; Ho, C.-C.; Chen, C.-H.; Chiu, C.-H. Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial. Nutrients 2024, 16, 3151. https://doi.org/10.3390/nu16183151
Tsai M-T, Shiu Y-J, Ho C-C, Chen C-H, Chiu C-H. Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial. Nutrients. 2024; 16(18):3151. https://doi.org/10.3390/nu16183151
Chicago/Turabian StyleTsai, Ming-Tsang, Yi-Jie Shiu, Chien-Chang Ho, Che-Hsiu Chen, and Chih-Hui Chiu. 2024. "Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial" Nutrients 16, no. 18: 3151. https://doi.org/10.3390/nu16183151
APA StyleTsai, M.-T., Shiu, Y.-J., Ho, C.-C., Chen, C.-H., & Chiu, C.-H. (2024). Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial. Nutrients, 16(18), 3151. https://doi.org/10.3390/nu16183151