Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Protocol
2.4. Outcome Measures
2.5. Caffeine and Placebo Gum
2.6. Statistical Analysis
3. Results
3.1. Baseline Parameters
3.2. Off-Ice Tests
3.3. On-Ice Tests
3.4. On-Ice Yo-Yo IR1 Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vigh-Larsen, J.F.; Mohr, M. The physiology of ice hockey performance: An update. Scand. J. Med. Sci. Sports 2024, 34, e14284. [Google Scholar] [CrossRef] [PubMed]
- Thun, E.; Bjorvatn, B.; Flo, E.; Harris, A.; Pallesen, S. Sleep, circadian rhythms, and athletic performance. Sleep Med. Rev. 2015, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.; Newton, M.J.; McGuigan, M.R. Circadian rhythms in exercise performance: Implications for hormonal and muscular adaptation. J. Sports Sci. Med. 2011, 10, 600. [Google Scholar]
- Daan, S.; Beersma, D.; Borbély, A.A. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1984, 246, R161–R183. [Google Scholar] [CrossRef]
- Dial, M.B.; Malek, E.M.; Cooper, A.R.; Neblina, G.A.; Vasileva, N.I.; Hines, D.J.; McGinnis, G.R. Social jet lag impairs exercise volume and attenuates physiological and metabolic adaptations to voluntary exercise training. J. Appl. Physiol. 2024, 136, 996–1006. [Google Scholar] [CrossRef]
- Leota, J.; Hoffman, D.; Czeisler, M.É.; Mascaro, L.; Drummond, S.P.; Anderson, C.; Rajaratnam, S.M.; Facer-Childs, E.R. Eastward jet lag is associated with impaired performance and game outcome in the national basketball association. Front. Physiol. 2022, 13, 892681. [Google Scholar] [CrossRef] [PubMed]
- Forbes-Robertson, S.; Dudley, E.; Vadgama, P.; Cook, C.; Drawer, S.; Kilduff, L. Circadian disruption and remedial interventions: Effects and interventions for jet lag for athletic peak performance. Sports Med. 2012, 42, 185–208. [Google Scholar] [CrossRef]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Wilk, M.; Krzysztofik, M.; Lulińska, E.; Tufano, J.J.; Zajac, A.; Stastny, P.; Del Coso, J. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J. Int. Soc. Sports Nutr. 2021, 18, 25. [Google Scholar] [CrossRef]
- Miller, B.; O’Connor, H.; Orr, R.; Ruell, P.; Cheng, H.L.; Chow, C.M. Combined caffeine and carbohydrate ingestion: Effects on nocturnal sleep and exercise performance in athletes. Eur. J. Appl. Physiol. 2014, 114, 2529–2537. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-S.; Liu, C.-C.; Shiu, Y.-J.; Lan, P.-T.; Wang, A.-Y.; Chiu, C.-H. Caffeinated Chewing Gum Improves Basketball Shooting Accuracy and Physical Performance Indicators of Trained Basketball Players: A Double-Blind Crossover Trial. Nutrients 2024, 16, 1256. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, S.-H.; Shiu, Y.-J.; Yu, S.-Y.; Chiu, C.-H. Acute enhancement of Romanian deadlift performance after consumption of caffeinated chewing gum. Sci. Rep. 2023, 13, 22016. [Google Scholar] [CrossRef] [PubMed]
- Haukali, E.; Tjelta, L.I. Correlation between “off-ice” variables and skating performance among young male ice hockey players. Int. J. Appl. Sports Sci. 2015, 27, 26–32. [Google Scholar] [CrossRef]
- Novák, D.; Lipinska, P.; Roczniok, R.; Spieszny, M.; Stastny, P. Off-ice agility provide motor transfer to on-ice skating performance and agility in adolescent ice hockey players. J. Sports Sci. Med. 2019, 18, 680. [Google Scholar] [PubMed]
- Vigh-Larsen, J.F.; Beck, J.H.; Daasbjerg, A.; Knudsen, C.B.; Kvorning, T.; Overgaard, K.; Andersen, T.B.; Mohr, M. Fitness characteristics of elite and subelite male ice hockey players: A cross-sectional study. J. Strength Cond. Res. 2019, 33, 2352–2360. [Google Scholar] [CrossRef]
- Von Hurst, P.; Conlon, C.; Foskett, A. Vitamin D status predicts hand-grip strength in young adult women living in Auckland, New Zealand. J. Steroid Biochem. Mol. Biol. 2013, 136, 330–332. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 629–634. [Google Scholar] [CrossRef]
- Hopkins, W.G. A scale of magnitudes for effect statistics. A New View Stat. 2002, 502, 321. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Madden, R.F.; Erdman, K.A.; Shearer, J.; Spriet, L.L.; Ferber, R.; Kolstad, A.T.; Bigg, J.L.; Gamble, A.S.; Benson, L.C. Effects of caffeine on exertion, skill performance, and physicality in ice hockey. Int. J. Sports Physiol. Perform. 2019, 14, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Berges, G.; Pantoja, P.; Moradell, A.; Matute-Llorente, A.; Gomez-Bruton, A. Does caffeine supplementation improve physical performance of elite ice hockey players? A randomized, double-blind, placebo-controlled, counterbalanced, cross-over trial. Sci. Sports 2024, 39, 117–123. [Google Scholar] [CrossRef]
- Behm, D.G.; Wahl, M.J.; Button, D.C.; Power, K.E.; Anderson, K.G. Relationship between hockey skating speed and selected performance measures. J. Strength Cond. Res. 2005, 19, 326–331. [Google Scholar] [PubMed]
- Peterson, B.J.; Fitzgerald, J.S.; Dietz, C.C.; Ziegler, K.S.; Baker, S.E.; Snyder, E.M. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J. Strength Cond. Res. 2016, 30, 2375–2381. [Google Scholar] [CrossRef]
- Durocher, J.J.; Guisfredi, A.J.; Leetun, D.T.; Carter, J.R. Comparison of on-ice and off-ice graded exercise testing in collegiate hockey players. Appl. Physiol. Nutr. Metab. 2010, 35, 35–39. [Google Scholar] [CrossRef]
- Saygın, Ö.; Ceylan, H.İ.; Günay, A.R. Time of day effect on repeated sprint ability, aerobic capacity and physiological responses in team-sport athletes. Int. J. Sport Cult. Sci. 2018, 6, 467–484. [Google Scholar] [CrossRef]
- Romdhani, M.; Souissi, N.; Moussa-Chamari, I.; Chaabouni, Y.; Mahdouani, K.; Sahnoun, Z.; Driss, T.; Chamari, K.; Hammouda, O. Caffeine use or napping to enhance repeated sprint performance after partial sleep deprivation: Why not both? Int. J. Sports Physiol. Perform. 2021, 16, 711–718. [Google Scholar] [CrossRef]
CAF | PL | p | |
---|---|---|---|
Sleep time (hours) | 7.4 ± 1.4 | 7.1 ± 1.2 | 0.231 |
Awake time (hours) | 11.5 ± 2.2 | 11.8 ± 2.2 | 0.261 |
RPE before test | 5.7 ± 1.9 | 6.0 ± 1.7 | 0.598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-T.; Shiu, Y.-J.; Ho, C.-C.; Chen, C.-H.; Chiu, C.-H. Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial. Nutrients 2024, 16, 3151. https://doi.org/10.3390/nu16183151
Tsai M-T, Shiu Y-J, Ho C-C, Chen C-H, Chiu C-H. Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial. Nutrients. 2024; 16(18):3151. https://doi.org/10.3390/nu16183151
Chicago/Turabian StyleTsai, Ming-Tsang, Yi-Jie Shiu, Chien-Chang Ho, Che-Hsiu Chen, and Chih-Hui Chiu. 2024. "Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial" Nutrients 16, no. 18: 3151. https://doi.org/10.3390/nu16183151
APA StyleTsai, M. -T., Shiu, Y. -J., Ho, C. -C., Chen, C. -H., & Chiu, C. -H. (2024). Effects of Caffeinated Chewing Gum on Ice Hockey Performance after Jet Lag Intervention: Double-Blind Crossover Trial. Nutrients, 16(18), 3151. https://doi.org/10.3390/nu16183151