Is Maternal Selenium Status Associated with Pregnancy Outcomes in Physiological and Complicated Pregnancy?
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants
2.3. Blood Samples
2.4. Biochemical Measurements
Glutathione Peroxidase (GPX)
2.5. Selenium Intake
2.6. Serum Selenium Determination
2.7. Pregnancy Outcome Data
2.8. Statistical Analysis
3. Results
3.1. Participant Baseline Characteristics (Table 1 and Table 2)
3.2. Selenium Status during Gestation (Table 3)
T I n = 27 | T II n = 27 | T III n = 27 | p-Value | |
---|---|---|---|---|
Se intake [µg/day] | 56.30 (37.42–58.97) | 58.31 (43.24–73.95) | 55.60 (41.54–62.99) | NS |
Se intake [µg/1000 kcal] | 26.05 (21.00–31.71) | 30.49 (20.71–34.43) | 24.71 (20.76–31.10) | NS |
Se serum [µg/L] | 43.98 (39.05–48.05) | 41.97 (33.22–49.56) | 41.90 (37.7–48.14) | NS |
GPX [U/L] | 217 (200–242) | 233 (207–257) | 231 (195–255) | NS |
3.3. Mean Values of Neonatal Outcome Measurements and Selenium Status in Normal and Complicated Pregnancy (Table 4)
Physiological Pregnancy n = 12 | Pregnancy Complications n = 15 | p-Value | |
---|---|---|---|
Se intake [µg/day] | 55.57 (41.15–59.86) | 55.60 (41.54–62.99) | NS |
Se intake [µg/1000 kcal] | 25.26 (22.02–31.42) | 25.98 (20.71–35.11) | NS |
Se serum [µg/L] | 43.97 (40.76–49.80) | 40.19 (34.84–46.54) | 0.029 |
GPX [U/L] | 226 (199–233) | 234 (209–260) | NS |
Body length [cm] | 53 (52–55) | 54 (52–54) | NS |
Chest circumference [cm] | 33 (32–34) | 34 (33–34) | NS |
Head circumference [cm] | 33 (31.5–34) | 34 (33–34) | NS |
Birth weight [g] | 3355 (2815–3765) | 3500 (3350–3600) | NS |
APGAR score at 1 min | 10 (9.5–10) | 10 (9–10) | NS |
APGAR score at 5 min | 10 (10–10) | 10 (10–10) | NS |
Gestational age at birth [weeks] | 39 (37.5–39.5) | 40 (40–41) | 0.005 |
3.4. Correlations Observed between Selenium Status Parameters and Neonatal Outcome Measurements during Normal and Complicated Pregnancy (Table 5)
Correlations | T I | T II | T III | |||
---|---|---|---|---|---|---|
R | p-Value | R | p-Value | R | p-Value | |
Physiological pregnancy | ||||||
Se intake vs. body length | 0.481 | 0.019 | 0.090 | 0.748 | 0.047 | 0.884 |
Se intake vs. birth weight | 0.472 | 0.022 | 0.017 | 0.949 | 0.316 | 0.315 |
Se intake vs. chest circumference | 0.379 | 0.074 | −0.060 | 0.830 | −0.071 | 0.825 |
Se intake vs. head circumference | 0.247 | 0.255 | −0.247 | 0.374 | 0.111 | 0.730 |
Se intake vs. APGAR score at 1 min. | 0.090 | 0.680 | 0.680 | 0.005 | 0.658 | 0.019 |
Se intake vs. APGAR score at 5 min. | 0.119 | 0.586 | 0.551 | 0.033 | 0.573 | 0.051 |
Se intake vs. gestational age | 0.093 | 0.671 | −0.153 | 0.584 | −0.279 | 0.379 |
Se intake/1000 kcal vs. body length | 0.500 | 0.015 | 0.014 | 0.963 | −0.075 | 0.815 |
Se intake/1000 kcal vs. birth weight | 0.382 | 0.071 | 0.043 | 0.886 | 0.272 | 0.391 |
Se intake/1000 kcal vs. chest circumference | 0.550 | 0.006 | 0.014 | 0.963 | −0.060 | 0.852 |
Se intake/1000 kcal vs. head circumference | 0.372 | 0.079 | −0.353 | 0.235 | 0.169 | 0.598 |
Se intake/1000 kcal vs. APGAR score at 1 min. | −0.321 | 0.135 | 0.301 | 0.316 | 0.685 | 0.013 |
Se intake/1000 kcal vs. APGAR score at 5 min. | −0.368 | 0.083 | 0.231 | 0.446 | 0.499 | 0.097 |
Se intake/1000 kcal vs. gestational age | 0.466 | 0.024 | −0.205 | 0.501 | −0.212 | 0.507 |
Se serum vs. body length | 0.046 | 0.832 | −0.064 | 0.819 | 0.285 | 0.367 |
Se serum vs. birth weight | 0.033 | 0.878 | 0.078 | 0.779 | 0.239 | 0.453 |
Se serum vs. chest circumference | −0.018 | 0.931 | −0.027 | 0.922 | 0.203 | 0.524 |
Se serum vs. head circumference | 0.216 | 0.321 | −0.122 | 0.663 | 0.200 | 0.532 |
Se serum vs. APGAR score at 1 min. | 0.150 | 0.494 | 0.212 | 0.447 | 0.496 | 0.100 |
Se serum vs. APGAR score at 5 min. | 0.122 | 0.578 | −0.133 | 0.635 | 0.286 | 0.365 |
Se serum vs. gestational age | −0.108 | 0.622 | −0.035 | 0.900 | −0.213 | 0.504 |
GPX vs. body length | 0.318 | 0.138 | 0.243 | 0.381 | 0.231 | 0.469 |
GPX vs. birth weight | 0.155 | 0.478 | 0.334 | 0.222 | 0.598 | 0.039 |
GPX vs. chest circumference | −0.008 | 0.970 | −0.022 | 0.936 | 0.225 | 0.481 |
GPX vs. head circumference | 0.212 | 0.329 | 0.173 | 0.537 | 0.155 | 0.628 |
GPX vs. APGAR score at 1 min. | 0.132 | 0.545 | 0.650 | 0.008 | 0.055 | 0.863 |
GPX vs. APGAR score at 5 min. | −0.033 | 0.880 | 0.497 | 0.058 | −0.108 | 0.737 |
GPX vs. gestational age | −0.182 | 0.404 | −0.116 | 0.679 | 0.025 | 0.937 |
Complicated pregnancy | ||||||
Se intake vs. body length | x | x | −0.281 | 0.375 | −0.133 | 0.634 |
Se intake vs. birth weight | x | x | −0.394 | 0.204 | −0.322 | 0.240 |
Se intake vs. chest circumference | x | x | −0.400 | 0.197 | −0.134 | 0.633 |
Se intake vs. head circumference | x | x | −0.102 | 0.752 | −0.168 | 0.548 |
Se intake vs. APGAR score at 1 min. | x | x | −0.142 | 0.658 | 0.142 | 0.611 |
Se intake vs. APGAR score at 5 min. | x | x | −0.091 | 0.777 | −0.012 | 0.965 |
Se intake vs. gestational age | x | x | −0.618 | 0.032 | −0.083 | 0.766 |
Se intake/1000 kcal vs. body length | x | x | −0.337 | 0.259 | −0.135 | 0.630 |
Se intake/1000 kcal vs. birth weight | x | x | −0.381 | 0.198 | −0.458 | 0.085 |
Se intake/1000 kcal vs. chest circumference | x | x | −0.252 | 0.405 | −0.231 | 0.407 |
Se intake/1000 kcal vs. head circumference | x | x | −0.121 | 0.691 | −0.060 | 0.830 |
0Se intake/1000 kcal vs. APGAR score at 1 min. | x | x | −0.178 | 0.558 | −0.124 | 0.658 |
Se intake/1000 kcal vs. APGAR score at 5 min. | x | x | −0.069 | 0.820 | −0.060 | 0.830 |
Se intake/1000 kcal vs. gestational age | x | x | −0.531 | 0.061 | −0.218 | 0.433 |
Se serum vs. body length | x | x | 0.060 | 0.851 | −0.045 | 0.871 |
Se serum vs. birth weight | x | x | 0.309 | 0.327 | 0.039 | 0.889 |
Se serum vs. chest circumference | x | x | 0.392 | 0.206 | 0.272 | 0.326 |
Se serum vs. head circumference | x | x | 0.510 | 0.089 | 0.587 | 0.021 |
Se serum vs. APGAR score at 1 min. | x | x | 0.046 | 0.887 | −0.096 | 0.731 |
Se serum vs. APGAR score at 5 min. | x | x | 0.252 | 0.428 | 0.211 | 0.449 |
Se serum vs. gestational age | x | x | 0.058 | 0.857 | 0.142 | 0.612 |
GPX vs. body length | x | x | 0.068 | 0.833 | 0.004 | 0.987 |
GPX vs. birth weight | x | x | −0.078 | 0.809 | −0.053 | 0.848 |
GPX vs. chest circumference | x | x | 0.056 | 0.861 | 0.051 | 0.855 |
GPX vs. head circumference | x | x | 0.051 | 0.873 | 0.225 | 0.418 |
GPX vs. APGAR score at 1 min. | x | x | −0.194 | 0.544 | −0.108 | 0.700 |
GPX vs. APGAR score at 5 min. | x | x | −0.092 | 0.776 | −0.145 | 0.606 |
GPX vs. gestational age | x | x | 0.066 | 0.837 | 0.395 | 0.144 |
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
DNA | deoxyribonucleic acid |
FFQ | food frequency questionnaire |
fT3 | free triiodothyronine |
fT4 | free thyroxine |
GPX | glutathione peroxidase |
IGF | insulin-like growth factor |
NADPH | nicotinamide adenine dinucleotide phosphate |
Se | selenium |
TH | thyroid hormones |
TPOAb | thyroid peroxidase antibody |
TSH | thyroid stimulating Hormone |
TT4 | total thyroxine |
WHO | World Health Organization |
References
- Kuršvietienė, L.; Mongirdienė, A.; Bernatonienė, J.; Šulinskienė, J.; Stanevičienė, I. Selenium anticancer properties and impact on cellular redox status. Antioxidants 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, L.; Song, A.; Zhang, C. Selenium status and its antioxidant role in metabolic diseases. Oxid. Med. Cell Longev. 2022, 2022, 7009863. [Google Scholar] [CrossRef] [PubMed]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium-a fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef]
- Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W.G. Selenium status in UK pregnant women and its relationship with hypertensive conditions of pregnancy. Br. J. Nutr. 2015, 113, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Pieczyńska, J.; Płaczkowska, S.; Sozański, R.; Orywal, K.; Mroczko, B.; Grajeta, H. Is maternal dietary selenium intake related to antioxidant status and the occurrence of pregnancy complications? J. Trace Elemen. Med. Biol. 2019, 54, 110–117. [Google Scholar] [CrossRef]
- Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elemen. Med. Biol. 2015, 29, 31–38. [Google Scholar] [CrossRef]
- Filipowicz, D.; Szczepanek-Parulska, E.; Kłobus, M.; Szymanowski, K.; Chillon, T.S.; Asaad, S.; Sun, Q.; Mikulska-Sauermann, A.A.; Karaźniewicz-Łada, M.; Główka, F.K.; et al. Selenium Status and Supplementation Effects in Pregnancy—A Study on Mother–Child Pairs from a Single-Center Cohort. Nutrients 2022, 14, 3082. [Google Scholar] [CrossRef]
- Holmquist, E.; Brantsæter, A.L.; Meltzer, H.M.; Jacobsson, B.; Barman, M.; Sengpiel, V. Maternal selenium intake and selenium status during pregnancy in relation to preeclampsia and pregnancy-induced hypertension in a large Norwegian Pregnancy Cohort Study. Sci. Total Environ. 2021, 798, 149271. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Y.; Chang, Q.; Zhang, B.; Liu, X.; Zeng, L.; Yan, H.; Dang, S. Maternal zinc, copper, and selenium intakes during pregnancy and congenital heart defects. Nutrients 2022, 14, 1055. [Google Scholar] [CrossRef]
- Sun, J.-W.; Shu, X.-O.; Li, H.-L.; Zhang, W.; Gao, J.; Zhao, L.-G.; Zheng, W.; Xiang, Y.-B. Dietary selenium intake and mortality in two population-based cohort studies of 133,957 Chinese men and women. Public Health Nutr. 2016, 19, 2991–2998. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Liang, K.; Hu, Z.; Sun, X.; Fang, Y.; Mei, X.; Yin, H.; Liu, X.; Lu, B. Determination of selenium in common and selenium-rich rice from different areas in China and assessment of their dietary intake. Int. J. Environ. Res. Public Health 2020, 17, 4596. [Google Scholar] [CrossRef] [PubMed]
- Westermarck, T.W. Consequences of low selenium intake for man. Trace Elem. Anal. Chem. Med. Biol. 2021, 3, 49–70. [Google Scholar]
- Huguenin, G.V.; Oliveira, G.M.; Moreira, A.S.; Saint’Pierre, T.D.; Gonçalves, R.A.; Pinheiro-Mulder, A.R.; Teodoro, A.J.; Luiz, R.R.; Rosa, G. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr. J. 2015, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Rocourt, C.R.; Cheng, W.H. Selenium supranutrition: Are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients 2013, 5, 1349–1365. [Google Scholar] [CrossRef]
- Zachara, B.A. Selenium in complicated pregnancy. A review. Adv. Clin. Chem. 2018, 86, 157–178. [Google Scholar]
- Molnar, J.; Garamvolgyi, Z.; Herold, M.; Adanyi, N.; Somogyi, A.; Rigo, J. Serum selenium concentrations correlate significantly with inflammatory biomarker high-sensitive CRP levels in Hungarian gestational diabetic and healthy pregnant women at mid-pregnancy. Biol. Trace Elem. Res. 2008, 121, 16–22. [Google Scholar] [CrossRef]
- Onat, T.; Demir Caltekin, M.; Turksoy, V.A.; Baser, E.; Aydogan Kirmizi, D.; Kara, M.; Yalvac, E.S. The relationship between heavy metal exposure, trace element level, and monocyte to HDL cholesterol ratio with gestational diabetes mellitus. Biol. Trace Elem. Res. 2021, 199, 1306–1315. [Google Scholar] [CrossRef]
- Mihailović, M.; Cvetković, M.; Ljubić, A.; Kosanović, M.; Nedeljković, S.; Jovanović, I.; Pešut, O. Selenium and malondialdehyde content and glutathione peroxidase activity in maternal and umbilical cord blood and amniotic fluid. Biol. Trace Elem. Res. 2000, 73, 47–54. [Google Scholar] [CrossRef]
- Kálló, K.; Lehóczki, S.; Just, Z.; Gyurkovits, Z.; Pálfi, G.; Orvos, H. A cross-sectional study of newborns over a 20-year period in Szeged, Hungary. J. Mater. Fetal Neonat. Med. 2015, 28, 540–543. [Google Scholar] [CrossRef]
- Wierzejska, R.; Jarosz, M.; Siuba-Strzelińska, M. Maternal and cord blood vitamin D status and anthropometric measurements in term newborns at birth. Front. Endocrinol. 2018, 9, 326389. [Google Scholar] [CrossRef]
- Hesse, V.; Schnabel, O.; Judis, E.; Cammann, H.; Hinkel, J.; Weissenborn, J. Longitudinal study of the growth of German children aged 0 to 6 years: Part 2: Longitudinal age-related development of head circumference, growth rate of head circumference, head circumference/body height ratios, as well as chest circumference, width, and depth and elbow width, frame index, and metric index. Monatsschr. Kinderheilkd. 2016, 164, 892–912. [Google Scholar]
- Santos, C.; García-Fuentes, E.; Callejón-Leblic, B.; García-Barrera, T.; Gómez-Ariza, J.L.; Rayman, M.P.; Velasco, I. Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth. Br. J. Nutr. 2017, 117, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Woynarowska, B.; Palczewska, I.; Oblacińska, A. WHO child standards for children 0–5 years. Percentile charts of length/hight, weight, Body Mass Index and head circumference. Med. Wieku Rozw. 2012, 16, 232–239. [Google Scholar]
- Barman, M.; Brantsæter, A.L.; Nilsson, S.; Haugen, M.; Lundh, T.; Combs, G.F.; Zhang, G.; Muglia, L.J.; Meltzer, H.M.; Jacobsson, B.; et al. Maternal dietary selenium intake is associated with increased gestational length and decreased risk of preterm delivery. Br. J. Nutr. 2020, 123, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Xaverius, P.K.; Salas, J.; Woolfolk, C.L.; Leung, F.; Yuan, J.; Chang, J.J. Predictors of size for gestational age in St. Louis City and County. BioMed Res. Int. 2014, 2014, 515827. [Google Scholar] [CrossRef]
- Bhattacharya, N.; Stubblefield, P. Human Fetal Growth and Development: First and Second Trimesters. In Human Fetal Growth and Development; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Mistry, H.D.; Williams, P.J. The importance of antioxidant micronutrients in pregnancy. Oxid. Med. Cell Longev. 2011, 2011, 841749. [Google Scholar] [CrossRef]
- Mendes, S.; Timóteo-Ferreira, F.; Almeida, H.; Silva, E. New insights into the process of placentation and the role of oxidative uterine microenvironment. Oxid. Med. Cell Longev. 2019, 2019, 9174521. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Nogales, F.; Ojeda, M.L.; Fenutría, M.; Murillo, M.L.; Carreras, O. Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reproduction 2013, 146, 659–667. [Google Scholar] [CrossRef]
- Hofstee, P.; Bartho, L.A.; McKeating, D.R.; Radenkovic, F.; McEnroe, G.; Fisher, J.J.; Holland, O.J.; Vanderlelie, J.J.; Perkins, A.V.; Cuffe, J.S. Maternal selenium deficiency during pregnancy in mice increases thyroid hormone concentrations, alters placental function and reduces fetal growth. J. Physiol. 2019, 597, 5597–5617. [Google Scholar] [CrossRef]
- Delgado, M.J.; Nogales, F.; Ojeda, M.L.; Murillo, M.L.; Carreras, O. Effect of dietary selenite on development and intestinal absorption in offspring rats. Life Sci. 2011, 88, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H. Selenium and at-risk pregnancy: Challenges and controversies. Thyroid. Res. 2020, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Bogden, J.D.; Kemp, F.W.; Chen, X.; Stagnaro-Green, A.; Stein, T.P.; Scholl, T.O. Low-normal serum selenium early in human pregnancy predicts lower birth weight. Nutr. Res. 2006, 26, 497–502. [Google Scholar] [CrossRef]
- Lewandowska, M.; Sajdak, S.; Lubiński, J. The role of early pregnancy maternal selenium levels on the risk for small-for-gestational age newborns. Nutrients 2019, 11, 2298. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Kurlak, L.O.; Young, S.D.; Briley, A.L.; Broughton Pipkin, F.; Baker, P.N.; Poston, L. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Mater. Child. Nutr. 2014, 10, 327–334. [Google Scholar] [CrossRef]
- Oghagbon, S.E.; Agu, K.C.; Omorowa, F.E.; Okolie, N.P.; Okwumabua, M.; Omo-Erhabor, J.A. Oxidative stress parameters as markers of the different trimesters in normal pregnancy. J. Appl. Sci. Environ. Manag. 2016, 20, 567–571. [Google Scholar] [CrossRef]
- Little, R.E.; Gladen, B.C. Levels of lipid peroxides in uncomplicated pregnancy: A review of the literature. Reprod. Toxicol. 1999, 13, 347–352. [Google Scholar] [CrossRef]
- Manzano, E.C.; Postigo, O.E.; Osorio, J.C.; León, M. Maternal oxidant and antioxidant status in the third trimester of gestation and its relation to the birthweight. Obstert Gynecol. An. Int. J. 2015, 2015, 858253. [Google Scholar] [CrossRef]
- El-Abd Ahmed, A.; Abd-Elmawgood, E.A.; Hassan, M.H. Circulating protein carbonyls, antioxidant enzymes and related trace minerals among preterms with respiratory distress syndrome. J. Clin. Diag. Res. JCDR 2017, 11, BC17. [Google Scholar]
- Horan, M.K.; McGowan, C.A.; Gibney, E.R.; Donnelly, J.M.; McAuliffe, F.M. The association between maternal dietary micronutrient intake and neonatal anthropometry–secondary analysis from the ROLO study. Nutr. J. 2015, 14, 105. [Google Scholar] [CrossRef]
- Bizerea-Moga, T.O.; Pitulice, L.; Bizerea-Spiridon, O.; Angelescu, C.; Mărginean, O.; Moga, T.V. Selenium status in term neonates, according to birth weight and gestational age, in relation to maternal hypertensive pathology. Front. Pediatr. 2023, 11, 1157689. [Google Scholar] [CrossRef] [PubMed]
- Grzesik-Gąsior, J.; Sawicki, J.; Pieczykolan, A.; Bień, A. Content of selected heavy metals in the umbilical cord blood and anthropometric data of mothers and newborns in Poland: Preliminary data. Sci. Rep. 2023, 13, 14077. [Google Scholar] [CrossRef] [PubMed]
- Lozano, M.; Murcia, M.; Soler-Blasco, R.; Iñiguez, C.; Irizar, A.; Lertxundi, A.; Basterrechea, M.; Marina, L.S.; Amorós, R.; Broberg, K.; et al. Prenatal Se concentrations and anthropometry at birth in the INMA study (Spain). Environ. Res. 2020, 181, 108943. [Google Scholar] [CrossRef] [PubMed]
- Monangi, N.; Xu, H.; Khanam, R.; Khan, W.; Deb, S.; Pervin, J.; Price, J.T.; Kennedy, S.H.; Al Mahmud, A.; Fan, Y.; et al. Association of maternal prenatal selenium concentration and preterm birth: A multicountry meta-analysis. BMJ Glob. Health 2021, 6, e005856. [Google Scholar] [CrossRef]
Demographics | T I | T II | T III |
---|---|---|---|
Pregnancy complications n (% of group) | |||
No | 23 (85.2%) | 15 (55.6%) | 12 (44.4%) |
Yes | 4 (14.8%) | 12 (44.4%) | 15 (55.6%) |
Hypothyroidism * | 2 (7.4%) | 4 (14.8%) | 5 (18.5%) |
Gestational diabetes mellitus ** | 1 (3.7%) | 1 (3.7%) | 3 (11.1%) |
Urinary tract infections *** | 1 (3.7%) | 5 (18.5%) | 3 (11.1%) |
Anemia **** | - | 2 (7.4%) | 4 (14.8%) |
Pregnancy (weeks) Median (Q1–Q3) | 11 (9–12) | 21 (17–23) | 34 (29–36) |
Weight gain (kg) Median (Q1–Q3) | 2.64 (1.87–2.73) | 6.18 (4.48–7.67) | 5.58 (4.12–6.83) |
Physical activity | |||
Sedentary | 23 (85.2%) | 19 (70.4) | 26 (69.3%) |
Moderately active | 4 (14.8%) | 8 (29.6%) | 1 (3.7%) |
Vigorously active | 0 (0%) | 0 (0%) | 0 (0%) |
Physiological Pregnancy n = 12 | Pregnancy Complications n = 15 | p-Value | |
---|---|---|---|
Mean age (year) | 30.0 ± 4.78 | 29.93 ± 4.95 | 0.314 |
Delivery n (% of group) | |||
Term delivery | 12 (100%) | 14 (93.3%) | 1.000 |
Preterm delivery | 0 (0%) | 1 (6.7%) | |
Mode of delivery n (% of group) | |||
Cesarean delivery | 5 (42%) | 2 (13%) | 0.219 |
Vaginal delivery | 7 (58%) | 13 (87%) | |
Birth weight | |||
<2500 g | 2 (16.7%) | 0 (0%) | 0.188 |
>2500 g | 10 (83.3%) | 15 (100%) | |
Education n (% of group) | |||
Elementary school | 1 (8.3%) | 0 (0%) | 0.700 |
High school | 0 (0%) | 1 (6.7%) | |
Academic | 11 (91.7%) | 14 (93.3%) | |
Place of residence n (% of group) | |||
Urban | 12 (100%) | 14 (93.3%) | 1.000 |
Rural | 0 (0%) | 1 (6.7%) | |
Smoking cigarettes n (% of group) | 1.000 | ||
Current smoker | 0 (0%) | 0 (0%) | |
Quit smoking | 3 (25%) | 3 (20%) | |
Never smoked | 9 (75%) | 12 (80%) | |
Pre-pregnancy BMI n (% of group) | |||
BMI < 18.5 | 1(8.3%) | 2 (13.3%) | 0.034 |
BMI 18.6–24.9 | 11(91.7%) | 8 (53.4%) | |
BMI > 25 | 0 (0%) | 5 (33.3%) | |
Prenatal vitamin/mineral intake n (% of group) | |||
Vitamin/mineral supplements without Se | 10 (83.3%) | 9 (60%) | 0.236 |
Vitamin/mineral supplements with Se | 2 (16.7%) | 6 (40%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieczyńska, J.; Płaczkowska, S.; Sozański, R.; Grajeta, H. Is Maternal Selenium Status Associated with Pregnancy Outcomes in Physiological and Complicated Pregnancy? Nutrients 2024, 16, 2873. https://doi.org/10.3390/nu16172873
Pieczyńska J, Płaczkowska S, Sozański R, Grajeta H. Is Maternal Selenium Status Associated with Pregnancy Outcomes in Physiological and Complicated Pregnancy? Nutrients. 2024; 16(17):2873. https://doi.org/10.3390/nu16172873
Chicago/Turabian StylePieczyńska, Joanna, Sylwia Płaczkowska, Rafał Sozański, and Halina Grajeta. 2024. "Is Maternal Selenium Status Associated with Pregnancy Outcomes in Physiological and Complicated Pregnancy?" Nutrients 16, no. 17: 2873. https://doi.org/10.3390/nu16172873
APA StylePieczyńska, J., Płaczkowska, S., Sozański, R., & Grajeta, H. (2024). Is Maternal Selenium Status Associated with Pregnancy Outcomes in Physiological and Complicated Pregnancy? Nutrients, 16(17), 2873. https://doi.org/10.3390/nu16172873