Efficacy and Safety of Oral Administration of Wine Lees Extract (WLE)-Derived Ceramides and Glucosylceramides in Enhancing Skin Barrier Function: A Randomized, Double-Blind, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Lees Extract (WLE)
2.2. Identification of Ceramides and Glucosylceramides
2.3. Analysis of Genes Expression in Human Epidermal Keratinocytes (NHEKs)
2.4. Culture of 3D Human Epidermal Equivalents (3DHEEs)
2.5. Quantification of the Ceramide Content in 3DHEEs
2.6. Preparation of WLE for the Clinical Study
2.7. Study Design and Procedures
2.8. Study Participants
2.9. Measurement of TEWL and Water Content
2.10. Safety Assessment of Long-Term Intake of WLE
2.11. Statistical Analysis
3. Results
3.1. Identification of Ceramides and Glucosylceramides Derived from Wine Lees
3.2. In Vitro Evaluation of the Bioactivity of WLE
3.3. Effect of Ceramides and Glucosylceramides Isolated from WLE on the 3DHEE Ceramide Content
3.4. Subject Demographics
3.5. Efficacy Assessment
3.6. Safety Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai-Cheong, J.; McGrath, J.A. Structure and Function of Skin, Hair and Nails. Medicine 2009, 37, 223–226. [Google Scholar] [CrossRef]
- Menon, G.K.; Cleary, G.W.; Lane, M.E. The Structure and Function of the Stratum Corneum. Int. J. Pharm. 2012, 435, 3–9. [Google Scholar] [CrossRef]
- Feingold, K.R.; Elias, P.M. Role of Lipids in the Formation and Maintenance of the Cutaneous Permeability Barrier. Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids 2014, 1841, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fang, H.; Dang, E.; Wang, G. The Role of Ceramides in Skin Homeostasis and Inflammatory Skin Diseases. J. Dermatol. Sci. 2020, 97, 2–8. [Google Scholar] [CrossRef]
- Tessema, E.N.; Gebre-Mariam, T.; Neubert, R.H.H.; Wohlrab, J. Potential Applications of Phyto-Derived Ceramides in Improving Epidermal Barrier Function. Skin Pharmacol. Physiol. 2017, 30, 115–138. [Google Scholar] [CrossRef]
- Sugawara, T.; Kinoshita, M.; Ohnishi, M.; Nagata, J.; Saito, M. Digestion of Maize Sphingolipids in Rats and Uptake of Sphingadienine by CaCo-2 Cells. J. Nutr. 2003, 133, 2777–2782. [Google Scholar] [CrossRef]
- Sullards, M.C.; Lynch, D.V.; Merrill, A.H.; Adams, J. Structure Determination of Soybean and Wheat Glucosylceramides by Tandem Mass Spectrometry. J. Mass Spectrom. 2000, 35, 347–353. [Google Scholar] [CrossRef]
- Takara, T.; Yamamoto, K.; Suzuki, N.; Yamashita, S.-I.; Iio, S.-I.; Noguchi, H.; Kakinuma, T.; Baba, A.; Takeda, S.; Yamada, W.; et al. Oryza Ceramide®, a Rice-Derived Extract Consisting of Glucosylceramides and β-Sitosterol Glucoside, Improves Facial Skin Dehydration in Japanese Subjects. Funct. Foods Health Dis. 2021, 11, 385. [Google Scholar] [CrossRef]
- Venkataramana, S.H.; Puttaswamy, N.; Shyamprasad, K. Potential Benefits of Oral Administration of AMORPHOPHALLUS KONJAC Glycosylceramides on Skin Health—A Randomized Clinical Study. BMC Complement. Med. Ther. 2020, 20, 26. [Google Scholar] [CrossRef]
- Guillou, S.; Ghabri, S.; Jannot, C.; Gaillard, E.; Lamour, I.; Boisnic, S. The Moisturizing Effect of a Wheat Extract Food Supplement on Women’s Skin: A Randomized, Double-blind Placebo-controlled Trial. Int. J. Cosmet. Sci. 2011, 33, 138–143. [Google Scholar] [CrossRef]
- Murakami, M.; Nishi, Y.; Harada, K.; Masuzaki, T.; Minemoto, Y.; Yanagisawa, T.; Shimizu, T.; Tsuboi, A.; Hamada, T.; Nishimura, M. Impact of Oral Intake of Glucosylceramide Extracted from Pineapple on Xerostomia: A Double-Blind Randomized Cross-Over Trial. Nutrients 2019, 11, 2020. [Google Scholar] [CrossRef]
- Ohta, K.; Hiraki, S.; Miyanabe, M.; Ueki, T.; Aida, K.; Manabe, Y.; Sugawara, T. Appearance of Intact Molecules of Dietary Ceramides Prepared from Soy Sauce Lees and Rice Glucosylceramides in Mouse Plasma. J. Agric. Food Chem. 2021, 69, 9188–9198. [Google Scholar] [CrossRef]
- Mukai, K.; Takeuchi, M.; Ohnishi, M.; Kudoh, M.; Imai, H. Characterization of Ceramides and Glucosylceramides of the Satsuma Mandarin (Citrus unshiu) Fruit. J. Oleo Sci. 2022, 71, 535–540. [Google Scholar] [CrossRef]
- Ohta, K.; Hiraki, S.; Miyanabe, M.; Ueki, T.; Manabe, Y.; Sugawara, T. Dietary Ceramide Prepared from Soy Sauce Lees Improves Skin Barrier Function in Hairless Mice. J. Oleo Sci. 2021, 70, 1325–1334. [Google Scholar] [CrossRef]
- Ueda, O.; Uchiyama, T.; Nakashima, M. Distribution and Metabolism of Sphingosine in Skin after Oral Administration to Mice. Drug Metab. Pharmacokinet. 2010, 25, 456–465. [Google Scholar] [CrossRef]
- OIV. 2023 Wine Production First Estimates; OIV: Dijon, France, 2023. [Google Scholar]
- Matos, M.S.; Romero-Díez, R.; Álvarez, A.; Bronze, M.R.; Rodríguez-Rojo, S.; Mato, R.B.; Cocero, M.J.; Matias, A.A. Polyphenol-Rich Extracts Obtained from Winemaking Waste Streams as Natural Ingredients with Cosmeceutical Potential. Antioxidants 2019, 8, 355. [Google Scholar] [CrossRef]
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and Future Strategies for Wine Yeast Lees Valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef]
- Takahashi, K.; Izumi, K.; Nakahata, E.; Hirata, M.; Sawada, K.; Tsuge, K.; Nagao, K.; Kitagaki, H. Quantitation and Structural Determination of Glucosylceramides Contained in Sake Lees. J. Oleo Sci. 2014, 63, 15–23. [Google Scholar] [CrossRef]
- Yamashita, S.; Higaki, C.; Kikuchi, N.; Suzuki, D.; Kinoshita, M.; Miyazawa, T. Sake (Rice Wine) Brewing Hydrolyzes Highly Polar Sphingolipids to Ceramides and Increases Free Sphingoid Bases. J. Oleo Sci. 2021, 70, 1147–1156. [Google Scholar] [CrossRef]
- Tokudome, Y.; Jinno, M.; Todo, H.; Kon, T.; Sugibayashi, K.; Hashimoto, F. Increase in Ceramide Level after Application of Various Sizes of Sphingomyelin Liposomes to a Cultured Human Skin Model. Skin Pharmacol. Physiol. 2011, 24, 218–223. [Google Scholar] [CrossRef]
- Sugawara, T.; Aida, K.; Duan, J.; Hirata, T. Analysis of Glucosylceramides from Various Sources by Liquid Chromatography-Ion Trap Mass Spectrometry. J. Oleo Sci. 2010, 59, 387–394. [Google Scholar] [CrossRef]
- Suzuki, M.; Ohno, Y.; Kihara, A. Whole Picture of Human Stratum Corneum Ceramides, Including the Chain-Length Diversity of Long-Chain Bases. J. Lipid Res. 2022, 63, 100235. [Google Scholar] [CrossRef]
- Ishikawa, J.; Shimotoyodome, Y.; Ito, S.; Miyauchi, Y.; Fujimura, T.; Kitahara, T.; Hase, T. Variations in the Ceramide Profile in Different Seasons and Regions of the Body Contribute to Stratum Corneum Functions. Arch. Dermatol. Res. 2012, 305, 151–162. [Google Scholar] [CrossRef]
- Del Rosso, J.; Zeichner, J.; Alexis, A.F.; Cohen, D.; Berson, D. Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner: Proceedings of an Expert Panel Roundtable Meeting. J. Clin. Aesthetic Dermatol. 2016, 9, S2–S8. [Google Scholar]
- Sun, Q.; Wu, J.; Qian, G.; Cheng, H. Effectiveness of Dietary Supplement for Skin Moisturizing in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 895192. [Google Scholar] [CrossRef]
- Hasegawa, T.; Shimada, H.; Uchiyama, T.; Ueda, O.; Nakashima, M.; Matsuoka, Y. Dietary Glucosylceramide Enhances Cornified Envelope Formation via Transglutaminase Expression and Involucrin Production. Lipids 2011, 46, 529–535. [Google Scholar] [CrossRef]
- Choi, H.K.; Cho, Y.-H.; Lee, E.O.; Kim, J.W.; Park, C.S. Phytosphingosine Enhances Moisture Level in Human Skin Barrier through Stimulation of the Filaggrin Biosynthesis and Degradation Leading to NMF Formation. Arch. Dermatol. Res. 2017, 309, 795–803. [Google Scholar] [CrossRef]
- Takeda, S.; Shimoda, H.; Takarada, T.; Imokawa, G. Strawberry Seed Extract and Its Major Component, Tiliroside, Promote Ceramide Synthesis in the Stratum Corneum of Human Epidermal Equivalents. PLoS ONE 2018, 13, e0205061. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. CDER. 2005. Available online: https://www.fda.gov/media/72309/download (accessed on 4 April 2024).
- Ueda, O.; Hasegawa, M.; Kawa, S. Distribution in Skin of Ceramide after Oral Administration to Rats. Drug Metab. Pharmacokinet. 2009, 24, 180–184. [Google Scholar] [CrossRef]
Nutritional Value per Serving (100 mg) | ||
---|---|---|
Test Supplement | Placebo | |
Carbohydrate (g) | 0.069 | 0.095 |
Protein (g) | 0.002 | 0.000 |
Fat (g) | 0.024 | 0.000 |
Water (g) | 0.004 | 0.000 |
Sodium (mg) | 0.020 | 0.000 |
Ash * (g) | 0.002 | 0.050 |
Energy (kcal) | 0.496 | 0.381 |
Total Ceramides (mg) | 2.000 | 0.000 |
Ceramide Molecular Species | Precursor Ion (Q1) m/z | Product Ion (Q3) m/z | Glucosyl- Ceramide Molecular Species | Precursor Ion (Q1) m/z | Product Ion (Q3) m/z |
---|---|---|---|---|---|
[M+H]⁺ | [M+H]⁺ | ||||
t18:1/h22:0 | 654.6 | 262.3, 280.3, 298.3 | d18:2/c16:1 | 696.7 | 262.3 |
t18:0/h22:0 | 656.7 | 264.3, 282.3, 300.3 | d18:2/h16:0 | 714.5 | 262.3 |
t18:1/h23:0 | 668.6 | 262.3, 280.3, 298.3 | d19:2/h18:1 | 737.5 | 276.3 |
t18:1/h24:0 | 682.7 | 262.3, 280.3, 298.3 | d18:2/c20:1 | 752.5 | 262.3 |
t18:0/h24:0 | 684.7 | 264.3, 282.3, 300.3 | t18:1/h22:0 | 816.6 | 262.3, 280.3 |
t18:1/h25:0 | 696.7 | 262.3, 280.3, 298.3 | d18:1/c26:1 | 838.6 | 264.3 |
t18:1/h26:1 | 710.7 | 262.3, 280.3, 298.3 | t18:1/h24:0 | 844.6 | 262.3, 280.3 |
Normal Range | Placebo (n = 15) | Test (n = 15) | Test vs. Placebo | |||||
---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Mean | ± | SD | p-Value | ||
Age (years) | 38.7 | ± | 9.8 | 37.3 | ± | 8.4 | 0.702 | |
Sex (M/F) | 7 | / | 8 | 8 | / | 7 | 1 | |
Height (cm) | 163.3 | ± | 8.1 | 168 | ± | 5.8 | 0.146 | |
Weight (kg) | 62.7 | ± | 10.6 | 64.7 | ± | 11.2 | 0.633 | |
Body Mass Index (BMI) (kg/m2) | 18.5–24.9 | 23.4 | ± | 2.3 | 22.8 | ± | 3.2 | 0.596 |
SBP (mmHg) | −139 | 121.3 | ± | 12.1 | 121.9 | ± | 12.7 | 0.899 |
DBP (mmHg) | −89 | 73.7 | ± | 9.0 | 77.3 | ± | 9.6 | 0.316 |
Heart rate(bpm) | 60–99 | 72.3 | ± | 10.8 | 68.9 | ± | 7.0 | 0.322 |
TEWL(g/m²·h) | 4.6 | ± | 1.0 | 4.5 | ± | 1.1 | 0.857 | |
Skin Hydration (%) | 27.4 | ± | 6.1 | 27.6 | ± | 4.9 | 0.927 |
Normal Range | Group | 0 w | 4 w | 8 w | 12 w | 16 w | ||
---|---|---|---|---|---|---|---|---|
Height (cm) | Placebo | 163.3 ± 8.1 | ||||||
Test | 167.4 ± 5.5 | |||||||
Weight (kg) | Placebo | 62.7 ± 10.6 | 62.4 ± 10.3 | 62.3 ± 10.4 | 62.1 ± 10.4 | 62.4 ± 10.6 | ||
Test | 64.3 ± 11.5 | 64 ± 10.8 | 63.9 ± 10.7 | 63.8 ± 10.8 | 62.9 ± 11.4 | |||
BMI (kg/m2) | 18.5–24.9 | Placebo | 23.4 ± 2.3 | 23.3 ± 2.3 | 23.2 ± 2.3 | 23.2 ± 2.3 | 23.2 ± 2.4 | |
Test | 22.8 ± 3.3 | 22.7 ± 3.1 | 22.7 ± 3.1 | 22.6 ± 3.1 | 22.4 ± 3.4 | |||
SBP (mmHg) | −139 | Placebo | 121.3 ± 12.1 | 121.5 ± 12.4 | 119.3 ± 11.0 | 117.7 ± 8.5 | 117.1 ± 12.1 | |
Test | 120.4 ± 11.8 | 117.5 ± 9.2 | 121.1 ± 10.6 | 119.16 ± 11.2 | 118.8 ± 11.0 | |||
DBP (mmHg) | −89 | Placebo | 73.7 ± 9.0 | 75.1 ± 8.9 | 74.8 ± 8.4 | 73.7 ± 7.0 | 71.3 ± 10.4 | |
Test | 76.1 ± 8.7 | 77 ± 9.0 | 75.8 ± 7.3 | 73.0 ± 6.4 | 74.0 ± 8.6 | |||
Heart rate (bpm) | 60–99 | Placebo | 72.3 ± 10.8 | 68.6 ± 7.8 | 72.3 ± 8.5 | 70.9 ± 11.7 | 71.9 ± 9.8 | |
Test | 68.5 ± 7.1 | 70.6 ± 9.6 | 70.4 ± 8.5 | 71.5 ± 8.4 | 77.6 ± 7.7 | # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjaya, A.; Ishida, A.; Li, X.; Kim, Y.; Yamada, H.; Kometani, T.; Yamashita, Y.; Kim, Y.-i. Efficacy and Safety of Oral Administration of Wine Lees Extract (WLE)-Derived Ceramides and Glucosylceramides in Enhancing Skin Barrier Function: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2024, 16, 2100. https://doi.org/10.3390/nu16132100
Sanjaya A, Ishida A, Li X, Kim Y, Yamada H, Kometani T, Yamashita Y, Kim Y-i. Efficacy and Safety of Oral Administration of Wine Lees Extract (WLE)-Derived Ceramides and Glucosylceramides in Enhancing Skin Barrier Function: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2024; 16(13):2100. https://doi.org/10.3390/nu16132100
Chicago/Turabian StyleSanjaya, Angga, Akiko Ishida, Xuan Li, Yugweng Kim, Hiroaki Yamada, Takashi Kometani, Yusuke Yamashita, and Young-il Kim. 2024. "Efficacy and Safety of Oral Administration of Wine Lees Extract (WLE)-Derived Ceramides and Glucosylceramides in Enhancing Skin Barrier Function: A Randomized, Double-Blind, Placebo-Controlled Study" Nutrients 16, no. 13: 2100. https://doi.org/10.3390/nu16132100
APA StyleSanjaya, A., Ishida, A., Li, X., Kim, Y., Yamada, H., Kometani, T., Yamashita, Y., & Kim, Y. -i. (2024). Efficacy and Safety of Oral Administration of Wine Lees Extract (WLE)-Derived Ceramides and Glucosylceramides in Enhancing Skin Barrier Function: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients, 16(13), 2100. https://doi.org/10.3390/nu16132100