A Review: The Effect of Bovine Colostrum on Immunity in People of All Ages
Abstract
:1. Introduction
2. Method
3. The Main Nutritional Composition of Bovine Colostrum
4. Immunoactive Substances in Bovine Colostrum
4.1. Immunoglobulins
4.2. Cytokines
4.3. Enzymes
4.4. Other Proteins
5. The Main Factors Affecting the Quality of Bovine Colostrum
5.1. Individual Differences
5.2. Hereditary Factor
5.3. Storage and Processing Methods
5.4. Other Factors
6. Supporting Evidence for Immunity in People of All Ages with Bovine Colostrum
6.1. Colostrum Contributes to the Rapid Construction of Immunity in Preterm Infants
6.2. Bovine Colostrum Helps to Strengthen the Immunity of Adolescents and Children
6.3. Bovine Colostrum Helps Regulate Adult Immunity
6.4. Bovine Colostrum Helps to Improve the Activity of Immune Cells in the Elderly
Subject | Dosages | Cyclicality | In the End | Ref. |
---|---|---|---|---|
≤34 weeks preterm | Slow transition from 10 mL/kg/day to full intake of 200 mL/kg/day | 14 days | CD4+CD25+ FOXP3+ T lymphocytes % (FOXP3 Tregs) had higher levels at follow-up; sepsis severity and mortality tended to be lower in the BC group. | [96] |
Premature pig | 3~15 mL/kg/3 h | 14 days | Body growth, intestinal hexose uptake and transit time were improved, and diarrhea and intestinal permeability were significantly reduced in the BC group of piglets, which also had lower densities of colonic mucosa-associated bacteria and some putative pathogens, as well as higher levels of intestinal villi, mucosal mass, brush border enzyme activity, and colonic short-chain fatty acids, compared to those consuming the formula. | [97] |
Normal baby | 20 mL/d | 2 weeks | Infants who received daily BC containing human rotavirus antibodies did not develop rotavirus-induced diarrhea, whereas all infants who received BC intervention after the onset of symptoms developed diarrhea. Oral BC with human rotavirus antibodies may be an effective and safe method of preventing diarrhea caused by rotavirus infection. | [99] |
Rotavirus-infected mice | 50 μL/d | 1~24 h | In a mouse model of human rotavirus infection, BC feeding containing antibodies to human rotavirus was effective in preventing gastroenteritis in mice. | [99] |
URTI Children | For children under 2 years old 3 g per day, children over 2 years old 6 g per day | 1~6 months | BC is effective in preventing recurrent URTIs and diarrhea and reducing the number of episodes and length of hospital stay due to infection. | [108] |
Children aged 3 to 7 years | Dose 1.0 g/d for the first 15 days and 0.5 g/d for the next 30 days | 6 weeks | BC supplementation in preschool children was well tolerated, safe, and prevented the frequency of URTIs and their severity, with effectiveness lasting up to 21 weeks. | [109] |
adolescents | 20 g/d | 6 weeks | 6 weeks of colostrum supplementation increases sIgA concentrations during adolescent training. | [112] |
Children aged 2 to 6 years | / | 48 h | BC is effective in the treatment of acute diarrhea and can be used as an adjunctive therapy as it reduces the frequency and duration of diarrhea. | [113] |
Footballer | 3.2 g/d | 6 months | BC was able to reduce the expression of inflammatory factor TNF-α during athletes’ training, increase the number of immunoglobulins in the body China, and improve the resistance to infection and immunity. | [120] |
Adults after femur fracture surgery | 45 g | 21 days | BC increases appetite and provides hemoglobin, serum albumin levels and blood lymphocyte counts, suggesting that BC accelerates weight gain and physical function after surgery | [124] |
University student | Dose of 1.0 g/d for the first 15 days, 0.5 g/d for the next 30 days, then supplemented at 1.0 g/d for 7 d starting on day 87 | 45 + 7d | Supplementation with BC significantly reduced the incidence of URTI, reduced the severity of URTI symptoms, and did not show any side effects or intestinal discomfort. | [123] |
Older people aged 50–69 | 15 g (contains 150 mg of IgG) | 12 weeks | BC helps to improve weight management, blood pressure, blood cholesterol, verbal memory, lower limb function and potentially immune function in older adults. | [141] |
Older people aged 50–69 | 15 g (contains 150 mg of IgG) | 12 weeks | Skimmed milk from BC may help to reduce the expression levels of various pro-inflammatory mediators, such as CRP, IL-6, and TNF-α, and induce changes in glycerophospholipid metabolism, cysteine, and methionine metabolic pathways, which may improve immune function in the elderly. | [141] |
7. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, P.F.; Greenhill, N.S.; Rowan, A.M.; Schollum, L.M. The safety of New Zealand bovine colostrum: Nutritional and physiological evaluation in rats. Food Chem. Toxicol. 2006, 45, 229–236. [Google Scholar] [CrossRef]
- Hue, D.T.; Skirving, R.; Chen, T.; Williams, J.L.; Bottema, C.D.; Petrovski, K. Colostrum source and passive immunity transfer in dairy bull calves. J. Dairy Sci. 2021, 104, 8164–8176. [Google Scholar] [CrossRef]
- Sangild, P.T.; Vonderohe, C.; Hebib, V.M.; Burrin, D.G. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021, 13, 2551. [Google Scholar] [CrossRef]
- Tripathi, V.; Vashishtha, B. Bioactive Compounds of Colostrum and Its Application. Food Rev. Int. 2006, 22, 225–244. [Google Scholar] [CrossRef]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.H.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2015, 96, 133–158. [Google Scholar] [CrossRef]
- Jenness, R.; Holt, C. Casein and lactose concentrations in milk of 31 species are negatively correlated. Cell. Mol. Life Sci. 1987, 43, 1015–1018. [Google Scholar] [CrossRef]
- Linehan, K.; Ross, R.P.; Stanton, C. Bovine Colostrum for Veterinary and Human Health Applications: A Critical Review. Annu. Rev. Food Sci. Technol. 2023, 14, 387–410. [Google Scholar] [CrossRef]
- Goldman, A.S. Evolution of the Mammary Gland Defense System and the Ontogeny of the Immune System. J. Mammary Gland Biol. Neoplasia 2002, 7, 277–289. [Google Scholar] [CrossRef]
- Uruakpa, F.O.; Ismond, M.A.H.; Akobundu, E.N.T. Colostrum and its benefits: A review. Nutr. Res. 2002, 22, 755–767. [Google Scholar] [CrossRef]
- Gao, X.; Li, Y.; Olin, A.B.; Nguyen, D.N. Fortification With Bovine Colostrum Enhances Antibacterial Activity of Human Milk. J. Parenter. Enter. Nutr. 2020, 45, 1417–1424. [Google Scholar] [CrossRef]
- Kappel, S.S.; Sangild, P.T.; Ahnfeldt, A.M.; Jóhannsdóttir, V.; Soernsen, L.J.; Bak, L.B.; Friborg, C.; Möller, S.; Zachariassen, G.; Aunsholt, L. A Randomized, Controlled Study to Investigate How Bovine Colostrum Fortification of Human Milk Affects Bowel Habits in Preterm Infants (FortiColos Study). Nutrients 2022, 14, 4756. [Google Scholar] [CrossRef]
- Ahnfeldt, A.M.; Aunsholt, L.; Hansen, B.M.; Hoest, B.; Jóhannsdóttir, V.; Kappel, S.S.; Klamer, A.; Möller, S.; Moeller, B.K.; Sangild, P.T.; et al. Bovine colostrum as a fortifier to human milk in very preterm infants—A randomized controlled trial (FortiColos). Clin. Nutr. 2023, 42, 773–783. [Google Scholar] [CrossRef]
- A Awad, H.; Imam, S.S.; Aboushady, N.M.; Ismail, R.I.H.; Abdou, R.M.; Azzam, N.T. Gut priming with oral Bovine Colostrum for preterm neonates: A randomized control trial. QJM Int. J. Med. 2020, 113 (Suppl. 1), hcaa063.025. [Google Scholar] [CrossRef]
- Awad, H.A.; Imam, S.S.; Aboushady, N.M.; Ismail, R.I.H.; Abdou, R.M.; Azzam, N.T. Bovine Colostrum for Prevention Of Late Onset Sepsis in Preterm Neonates: A Randomized Control Trial. QJM Int. J. Med. 2020, 113 (Suppl. 1), hcaa063.013. [Google Scholar] [CrossRef]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutr. 2021, 8, 651721. [Google Scholar] [CrossRef]
- Miranda, C.; Igrejas, G.; Poeta, P. Bovine Colostrum: Human and Animal Health Benefits or Route Transmission of Antibiotic Resistance—One Health Perspective. Antibiotics 2023, 12, 1156. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Kehoe, S.I.; Jayarao, B.M.; Heinrichs, A.J. A Survey of Bovine Colostrum Composition and Colostrum Management Practices on Pennsylvania Dairy Farms1. J. Dairy Sci. 2007, 90, 4108–4116. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, Structure, and Digestive Dynamics of Milk From Different Species—A Review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef] [PubMed]
- Gates, A.; Hair, A.B.; Salas, A.A.; Thompson, A.B.; Stansfield, B.K. Nutrient Composition of Donor Human Milk and Comparisons to Preterm Human Milk. J. Nutr. 2023, 153, 2622–2630. [Google Scholar] [CrossRef]
- Gates, A.; Marin, T.; De Leo, G.; Waller, J.L.; Stansfield, B.K. Nutrient composition of preterm mother’s milk and factors that influence nutrient content. Am. J. Clin. Nutr. 2021, 114, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S.M. Human Milk Proteins: Composition and Physiological Significance. Meet. Micronutr. Requir. Health Dev. 2019, 90, 93–101. [Google Scholar]
- Gates, A.; Marin, T.; De Leo, G.; Waller, J.L.; Stansfield, B.K. Macronutrients in Breastmilk of Mothers of Preterm Infants. Indian Pediatr. 2017, 54, 635–637. [Google Scholar]
- Narang, A.P.S.; Bains, H.S.; Kansal, S.; Singh, D. Serial composition of human milk in preterm and term mothers. Indian J. Clin. Biochem. 2006, 21, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B.; Erdmann, P.; Thakkar, S.K.; Sauser, J.; Destaillats, F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: A developmental perspective. J. Nutr. Biochem. 2016, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haschke, F.; Haiden, N.; Thakkar, S.K. Nutritive and Bioactive Proteins in Breastmilk. Ann. Nutr. Metab. 2017, 69 (Suppl. 2), 16–26. [Google Scholar] [CrossRef] [PubMed]
- Polidori, P.; Rapaccetti, R.; Klimanova, Y.; Zhang, J.J.; Santini, G.; Vincenzetti, S. Nutritional Parameters in Colostrum of Different Mammalian Species. Beverages 2022, 8, 54. [Google Scholar] [CrossRef]
- Klein, L.D.; Huang, J.; Quinn, E.; A Martin, M.; A Breakey, A.; Gurven, M.; Kaplan, H.; Valeggia, C.; Jasienska, G.; Scelza, B.; et al. Variation among populations in the immune protein composition of mother’s milk reflects subsistence pattern. Evol. Med. Public Health 2018, 2018, 230–245. [Google Scholar] [CrossRef]
- Reddy, V.; Bhaskaram, C.; Raghuramulu, N.; Jagadeesan, V. Antimicrobial factors in human milk. Acta Paediatr. 1977, 66, 229–232. [Google Scholar] [CrossRef]
- Gates, A.; Marin, T.; De Leo, G.; Stansfield, B.K. Review of Preterm Human-Milk Nutrient Composition. Nutr. Clin. Pract. 2020, 36, 1163–1172. [Google Scholar] [CrossRef]
- de Ferrer, P.R.; Slobodianik, N.H.; López, N.; Sambucetti, M.E.; Sanahuja, J.C. Immunoglobulin A level in human milk from mothers delivering preterm. Am. J. Clin. Nutr. 1984, 40, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E. Synthesis and distribution of immunoglobulins. J. Am. Vet. Med. Assoc. 1973, 163, 795–798. [Google Scholar]
- Ahnfeldt, A.M.; Hyldig, N.; Li, Y.; Kappel, S.S.; Aunsholdt, L.; Sangild, P.T.; Zachariassen, G. FortiColos—a multicentre study using bovine colostrum as a fortifier to human milk in very preterm infants: Study protocol for a randomised controlled pilot trial. Trials 2019, 20, 279. [Google Scholar] [CrossRef] [PubMed]
- Godhia, M.L.; Patel, N. Colostrum—Its Composition, Benefits As A Nutraceutical: A Review. Curr. Res. Nutr. Food Sci. J. 2013, 1, 37–47. [Google Scholar] [CrossRef]
- Mehra, R.; Marnila, P.; Korhonen, H. Milk immunoglobulins for health promotion. Int. Dairy J. 2006, 16, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.W.; Zhang, Y.; Tian, S.N.; Sun, C.S.; Hu, Q.S.; Wang, X.F.; Zhou, L. Research and evaluation of bovine immunoglobulin G detection method based on up-conversion luminescence and quantum dot immunochromatography. J. Heilongjiang Anim. Husb. Vet. Med. 2023, 23, 58–63. [Google Scholar]
- Ulfman, L.H.; Leusen, J.H.W.; Savelkoul, H.F.J.; Warner, J.O.; van Neerven, R.J.J. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front. Nutr. 2018, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Ben-Hur, H.; Gurevich, P.; Elhayany, A.; Avinoach, I.; Schneider, D.F.; Zusman, I. Transport of maternal immunoglobulins through the human placental barrier in normal pregnancy and during inflammation. Int. J. Mol. Med. 2005, 16, 401–407. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, Y.; Bi, J.; Huang, Y.; Cheng, Y.; Li, Y.; Wu, Y.; Cao, G.; Tian, Z. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell. Mol. Immunol. 2022, 19, 192–209. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function. Mediat. Inflamm. 2016, 2016, 1927348. [Google Scholar] [CrossRef]
- Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.K.; Flavell, R.A. Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol. 2006, 24, 99–146. [Google Scholar] [CrossRef] [PubMed]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals 2019, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Starling, S. Innate immunity: A new way out for lysozyme. Nat. Rev. Immunol. 2017, 14, 567. [Google Scholar]
- Ragland, S.A.; Criss, A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017, 13, e1006512. [Google Scholar] [CrossRef] [PubMed]
- Fasse, S.; Alarinta, J.; Frahm, B.; Wirtanen, G. Bovine Colostrum for Human Consumption—Improving Microbial Quality and Maintaining Bioactive Characteristics through Processing. Dairy 2021, 2, 556–575. [Google Scholar] [CrossRef]
- Cutone, A.; Musci, G.; di Patti, M.C.B. Lactoferrin, the Moonlighting Protein of Innate Immunity. Int. J. Mol. Sci. 2023, 24, 15888. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.H.; Chang, C.Y. Antioxidant properties of caseins and whey proteins from colostrums. J. Food Drug Anal. 2020, 13, 6. [Google Scholar] [CrossRef]
- Andres, S.; Tanel, K.; Ivi, J. Bovine colostrum casein: Post-partum dynamics of micelle size, content, and associated traits. Int. Dairy J. 2023, 148, 105791. [Google Scholar]
- Sharma, R.; Shah, N. Health benefits of whey proteins. Nutrafoods 2010, 9, 39–45. [Google Scholar] [CrossRef]
- Walzem, R.L.; Dillard, C.J.; German, J.B. Whey components: Millennia of evolution create functionalities for mammalian nutrition: What we know and what we may be overlooking. Crit. Rev. Food Sci. Nutr. 2002, 42, 353–375. [Google Scholar] [CrossRef]
- McIntosh, G.H.; Royle, P.J.; Le Leu, R.K.; Regester, G.O.; Johnson, M.A.; Grinsted, R.L.; Kenward, R.S.; Smithers, G.W. Whey Proteins as Functional Food Ingredients? Int. Dairy J. 1998, 8, 425–434. [Google Scholar] [CrossRef]
- Costa, A.; Sneddon, N.W.; Goi, A.; Visentin, G.; Mammi, L.M.; Savarino, E.V.; Zingone, F.; Formigoni, A.; Penasa, M.; De Marchi, M. Invited review: Bovine colostrum, a promising ingredient for humans and animals—Properties, processing technologies, and uses. J. Dairy Sci. 2023, 106, 5197–5217. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.; Ashfield, A.; Earley, B.; Welsh, M.; Gordon, A.; Morrison, S.J. Evaluation of factors associated with immunoglobulin G, fat, protein, and lactose concentrations in bovine colostrum and colostrum management practices in grassland-based dairy systems in Northern Ireland. J. Dairy Sci. 2017, 100, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J. Anim. Sci. 2020, 98, skaa237. [Google Scholar] [CrossRef] [PubMed]
- Zentrich, E.; Iwersen, M.; Wiedrich, M.-C.; Drillich, M.; Klein-Jöbstl, D. Short communication: Effect of barn climate and management-related factors on bovine colostrum quality. J. Dairy Sci. 2019, 102, 7453–7458. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Tyler, J.W.; Chigerwe, M.; Dawes, M.E.; Middleton, J.R. Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. J. Am. Vet. Med. Assoc. 2005, 226, 1375–1377. [Google Scholar] [CrossRef] [PubMed]
- Morin, D.E.; Nelson, S.V.; Reid, E.D.; Nagy, D.W.; Dahl, G.E.; Constable, P.D. Effect of colostral volume, interval between calving and first milking, and photoperiod on colostral IgG concentrations in dairy cows. J. Am. Vet. Med. Assoc. 2010, 237, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Van Hese, I.; Goossens, K.; Ampe, B.; Haegeman, A.; Opsomer, G. Exploring the microbial composition of Holstein Friesian and Belgian Blue colostrum in relation to the transfer of passive immunity. J. Dairy Sci. 2022, 105, 7623–7641. [Google Scholar] [CrossRef] [PubMed]
- Stojić, M.; Ilić, V.; Kovačić, M.; Gvozdić, D.; Stajković, S.; Vejnović, B.; Savić, O.; Fratrić, N. Effects of oral supplementation with organically modified clinoptilolite during prepartum period on colostrum quality in primiparous dairy cows. J. Dairy Res. 2020, 87, 429–435. [Google Scholar] [CrossRef]
- Kekana, T.W.; Marume, U.; Nherera-Chokuda, F.V. Prepartum supplementation of Moringa oleifera leaf meal: Effects on health of the dam, colostrum quality, and acquisition of immunity in the calf. J. Dairy Sci. 2022, 105, 5813–5821. [Google Scholar] [CrossRef]
- Aragona, K.; Chapman, C.; Pereira, A.; Isenberg, B.; Standish, R.; Maugeri, C.; Cabral, R.; Erickson, P. Prepartum supplementation of nicotinic acid: Effects on health of the dam, colostrum quality, and acquisition of immunity in the calf. J. Dairy Sci. 2016, 99, 3529–3538. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Goi, A.; Penasa, M.; Nardino, G.; Posenato, L.; De Marchi, M. Variation of immunoglobulins G, A, and M and bovine serum albumin concentration in Holstein cow colostrum. Animal 2021, 15, 100299. [Google Scholar] [CrossRef] [PubMed]
- Strekozov, N.I.; Motova, E.N.; Fedorov, Y.N. Evaluation of the chemical composition and immunological properties of colostrum of cows’ first milk yield. Russ. Agric. Sci. 2008, 34, 259–260. [Google Scholar] [CrossRef]
- Auchtung, T.; Rius, A.; Kendall, P.; McFadden, T.; Dahl, G. Effects of photoperiod during the dry period on prolactin, prolactin receptor, and milk production of dairy cows. J. Dairy Sci. 2004, 88, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Stanisiewski, E.P.; Chapin, L.T.; Ames, N.K.; Zinn, S.A.; Tucker, H.A. Melatonin and prolactin concentrations in blood of cattle exposed to 8, 16 or 24 hours of daily light. J. Anim. Sci. 1988, 66, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Dahl, G.; Elsasser, T.; Capuco, A.; Erdman, R.; Peters, R. Effects of a long daily photoperiod on milk yield and circulating concentrations of insulin-like growth factor-1. J. Dairy Sci. 1997, 80, 2784–2789. [Google Scholar] [CrossRef] [PubMed]
- Gavin, K.; Neibergs, H.; Hoffman, A.; Kiser, J.; Cornmesser, M.; Haredasht, S.A.; Martínez-López, B.; Wenz, J.; Moore, D. Low colostrum yield in Jersey cattle and potential risk factors. J. Dairy Sci. 2018, 101, 6388–6398. [Google Scholar] [CrossRef] [PubMed]
- Connor, A.; Alward, K.; Duncan, J.; Cockrum, R. PSII-A-10 Impact of Altered Photoperiod on Colostral IgA and Lactoferrin in Dairy Cattle. J. Anim. Sci. 2022, 100 (Suppl. 3), 261. [Google Scholar] [CrossRef]
- Denholm, K. A review of bovine colostrum preservation techniques. J. Dairy Res. 2022, 100 (Suppl. 3), 261. [Google Scholar] [CrossRef]
- Mann, S.; Curone, G.; Chandler, T.; Moroni, P.; Cha, J.; Bhawal, R.; Zhang, S. Heat treatment of bovine colostrum: I. Effects on bacterial and somatic cell counts, immunoglobulin, insulin, and IGF-I concentrations, as well as the colostrum proteome. J. Dairy Sci. 2020, 89, 345–354. [Google Scholar] [CrossRef]
- Elizondo-Salazar, J.A.; Jayarao, B.M.; Heinrichs, A.J. Effect of heat treatment of bovine colostrum on bacterial counts, viscosity, and Immunoglobulin G concentration. J. Dairy Sci. 2010, 103, 9368–9383. [Google Scholar] [CrossRef] [PubMed]
- Mainer, G.; Sánchez, L.; Ena, J.; Calvo, M. Kinetic and Thermodynamic Parameters for Heat Denaturation of Bovine Milk IgG, IgA and IgM. J. Food Sci. 1997, 93, 961–967. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Currie, A.J.; Ren, S.; Bering, S.B.; Sangild, P.T. Heat treatment and irradiation reduce anti-bacterial and immune-modulatory properties of bovine colostrum. J. Funct. Foods 2019, 57, 182–189. [Google Scholar] [CrossRef]
- Rabaza, A.; Fraga, M.; Mendoza, A.; Giannitti, F. A meta-analysis of the effects of colostrum heat treatment on colostral viscosity, immunoglobulin G concentration, and the transfer of passive immunity in newborn dairy calves. J. Dairy Sci. 2023, 106, 7203–7219. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, B.T.; Garcia-Guerra, A.; Lakritz, J.; Weiss, W.P.; Velez, J.S.; Bothe, H.; Merchan, D.; Schuenemann, G.M. Effects of prepartum vaccination timing relative to pen change with an acidogenic diet on serum and colostrum immunoglobulins in Holstein dairy cows. J. Dairy Sci. 2021, 104, 11072–11081. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Solorzano, J.; de Koning, D.-J.; Tråvén, M.; de Haan, T.; Jouffroy, M.; Larsson, A.; Myrthe, A.; Arts, J.A.J.; Parmentier, H.K.; Bovenhuis, H.; et al. Genetic parameters of colostrum and calf serum antibodies in Swedish dairy cattle. Genet. Sel. Evol. 2022, 54, 68. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Visentin, G.; Goi, A.; De Marchi, M.; Penasa, M. Genetic characteristics of colostrum refractive index and its use as a proxy for the concentration of immunoglobulins in Holstein cattle. Genet. Sel. Evol. 2022, 54, 79. [Google Scholar] [CrossRef] [PubMed]
- Soufleri, A.; Banos, G.; Panousis, N.; Fletouris, D.; Arsenos, G.; Valergakis, G. Genetic parameters of colostrum traits in Holstein dairy cows. J. Dairy Sci. 2019, 102, 11225–11232. [Google Scholar] [CrossRef]
- Yang, Y. Nutritional Immunity: Body Defence; Peking University Medical Press: Beijing China, 2023. [Google Scholar]
- Zimmermann, P.; Jones, C.E. Factors That Influence Infant Immunity and Vaccine Responses. Pediatr. Infect. Dis. J. 2021, 40, S40–S46. [Google Scholar] [CrossRef]
- Singh, A.; Kaur, H.; Gupta, G.; Naranje, K.; Verma, A.; Roy, A.; Gautam, A.; Pandey, A.; Gupta, A.; Jaiswal, R.; et al. Enhancement of Immunity and Health in Neonates and Infants. J. Neonatol. 2021, 35, 138–154. [Google Scholar] [CrossRef]
- Nyangahu, D.D.; Lennard, K.S.; Brown, B.P.; Darby, M.G.; Wendoh, J.M.; Havyarimana, E.; Smith, P.; Butcher, J.; Stintzi, A.; Mulder, N.; et al. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. Microbiome 2018, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Maffei, D.; Brewer, M.; Codipilly, C.; Weinberger, B.; Schanler, R.J. Early oral colostrum administration in preterm infants. J. Perinatol. 2019, 40, 284–287. [Google Scholar] [CrossRef]
- Menon, G.; Williams, T.C. Human milk for preterm infants: Why, what, when and how? Arch. Dis. Child. Fetal Neonatal Ed. 2013, 96, F559–F562. [Google Scholar] [CrossRef]
- Volertas, S.; Hudson, E.; McMorris, M.; Sanders, G. Further Characterization of Multiple Food Protein Intolerances of Infancy, An Entity Distinct from Fpies. Ann. Allergy Asthma Immunol. 2018, 121, S119. [Google Scholar] [CrossRef]
- Athalye-Jape, G.; Patole, S. Probiotics for preterm infants—time to end all controversies. Microb. Biotechnol. 2019, 12, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, S.G.; Arigbede, O.; Mathis, A.; Close, F.; Suther, S.G.; Mazzio, E.; Saunders-Jones, R.; Soliman, K.F.A.; Darling-Reed, S.F. Disparities in Infant Nutrition: WIC Participation and Rates of Breastfeeding in Florida. Int. J. Environ. Res. Public Health 2023, 20, 5988. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Mi, L.; Li, C.; Zhang, Y.; Bi, R.; Pang, J.; Li, Y. Comparative Proteomic Analysis of Proteins in Breast Milk during Different Lactation Periods. Nutrients 2022, 14, 3648. [Google Scholar] [CrossRef]
- Teller, I.C.; Embleton, N.D.; Griffin, I.J.; van Elburg, R.M. Post-discharge formula feeding in preterm infants: A systematic review mapping evidence about the role of macronutrient enrichment. Clin. Nutr. 2016, 35, 791–801. [Google Scholar] [CrossRef]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. The Veterinary clinics of North America. Food Anim. Pract. 2019, 24, 19–39. [Google Scholar] [CrossRef]
- Goto, M.; Maruyama, M.; Kitadate, K.; Kirisawa, R.; Obata, Y.; Koiwa, M.; Iwai, H. Detection of Interleukin-1.BETA. in Sera and Colostrum of Dairy Cattle and in Sera of Neonates. J. Vet. Med. Sci. 1997, 59, 437–441. [Google Scholar] [CrossRef]
- Reber, A.; Lockwood, A.; Hippen, A.; Hurley, D. Colostrum induced phenotypic and trafficking changes in maternal mononuclear cells in a peripheral blood leukocyte model for study of leukocyte transfer to the neonatal calf. Vet. Immunol. Immunopathol. 2005, 109, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.; Priyadharshini, B.; Turka, L.A. Immunometabolism of regulatory T cells. Nat. Immunol. 2016, 17, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Du, X.; Xu, X.; Wang, M.; Li, Z. Impairment of regulatory T cells in patients with neonatal necrotizing enterocolitis. Int. Immunopharmacol. 2018, 63, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Fortmann, I.; Dammann, M.-T.; Siller, B.; Humberg, A.; Demmert, M.; Tüshaus, L.; Lindert, J.; van Zandbergen, V.; Pagel, J.; Rupp, J.; et al. Infants Younger Than 90 Days Admitted for Late-Onset Sepsis Display a Reduced Abundance of Regulatory T Cells. Front. Immunol. 2021, 12, 666447. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.I.H.; Awad, H.A.; Imam, S.S.; Gad, G.I.; Aboushady, N.M.; Abdou, R.M.; Eissa, D.S.; Azzam, N.T.; Barakat, M.M.; Yassin, M.M.; et al. Gut priming with bovine colostrum and T regulatory cells in preterm neonates: A randomized controlled trial. Pediatr Res 2021, 90, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.O.; Martin, L.; Østergaard, M.V.; Rudloff, S.; Li, Y.; Roggenbuck, M.; Bering, S.B.; Sangild, P.T. Bovine colostrum improves neonatal growth, digestive function, and gut immunity relative to donor human milk and infant formula in preterm pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G480–G491. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G.; Daniels, E.; Nunan, H.; Moore, A.; Whyte, P.; Franklin, K.; Mccloud, P.; Moore, D. Passive immunisation of children with bovine colostrum containing antibodies to human rotavirus. Lancet 1989, 334, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Ebina, T.; Ohta, M.; Kanamaru, Y.; Yamamoto-Osumi, Y.; Baba, K. Passive immunizations of suckling mice and infants with bovine colostrum containing antibodies to human rotavirus. J. Med. Virol. 1992, 38, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Paediatrics; People’s Health Publishing House: Beijing, China, 2018. [Google Scholar]
- Rodríguez, L.; Cervantes, E.; Ortiz, R. Malnutrition and gastrointestinal and respiratory infections in children: A public health problem. Int. J. Environ. Res. Public Health 2011, 8, 1174–1205. [Google Scholar] [CrossRef]
- Pakkanen, R.; Aalto, J. Growth factors and antimicrobial factors of bovine colostrum. Int. Dairy J. 1997, 7, 285–297. [Google Scholar] [CrossRef]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the pig as a human biomedical model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.X.; Zhang, F.; Geng, Q.; Wang, P.Y.; Zhou, H.; Zhang, Y.M. Effect of orally administered bovine colostrum on cytokine production in vivo and in vitro in immunosuppressed mice. Int. Dairy J. 2010, 20, 522–527. [Google Scholar] [CrossRef]
- King, M.R.; Morel, P.C.H.; Revell, D.K.; Pluske, J.R.; Birtles, M.J. Dietary Bovine Colostrum Increases Villus Height and Decreases Small Intestine Weight in Early-weaned Pigs. Anim. Biosci. 2008, 21, 567–573. [Google Scholar] [CrossRef]
- Boudry, C.; Buldgen, A.; Portetelle, D.; Collard, A.; Théwis, A.; Dehoux, J.-P. Effects of oral supplementation with bovine colostrum on the immune system of weaned piglets. Res. Vet. Sci. 2006, 83, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Boudry, C.; Buldgen, A.; Portetelle, D.; Gianello, P.; Théwisa, A.; Leterme, P.; Dehoux, J. Effect of bovine colostrum supplementation on cytokine mRNA expression in weaned piglets. Livest. Sci. 2007, 108, 295–298. [Google Scholar] [CrossRef]
- Saad, K.; Abo-Elela, M.G.; Abd El-Baseer, K.A.; Ahmed, A.E.; Ahmad, F.A.; Tawfeek, M.S.; El-Houfey, A.A.; Aboul_Khair, M.D.; Abdel-Salam, A.M.; Abo-Elgheit, A.; et al. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine 2016, 95, e4560. [Google Scholar] [CrossRef] [PubMed]
- Hałasa, M.; Skonieczna-Żydecka, K.; Machaliński, B.; Bühner, L.; Baśkiewicz-Hałasa, M. Six Weeks of Supplementation with Bovine Colostrum Effectively Reduces URTIs Symptoms Frequency and Gravity for up to 20 Weeks in Pre-School Children. Nutrients 2023, 15, 3626. [Google Scholar] [CrossRef] [PubMed]
- Hałasa, M.; Baśkiewicz-Hałasa, M.; Jamioł-Milc, D.; Maciejewska-Markiewicz, D.; Skonieczna-Żydecka, K. Bovine colostrum supplementation in prevention of upper respiratory tract infections—Systematic review, meta-analysis and meta-regression of randomized controlled trials. J. Funct. Foods 2022, 99, 105316. [Google Scholar] [CrossRef]
- Johnson, D.C. Airway mucus function and dysfunction. New Engl. J. Med. 2011, 363, 2233–2247. [Google Scholar]
- Appukutty, M.; Radhakrishnan, A.; Ramasamy, K.; Majeed, A.B.; Chinna, K.; Noor, I.M.; Safii, N.S.; Koon, P.B. Salivary immunoglobulin A (sIgA) responses to bovine colostrum supplementation during regular training in physically active young healthy adolescents. Br. J. Sports Med. 2010, 44 (Suppl. 1), i44. [Google Scholar] [CrossRef]
- Barakat, S.H.; Meheissen, M.A.; Omar, O.M.; Elbana, D.A. Bovine Colostrum in the Treatment of Acute Diarrhea in Children: A Double-Blinded Randomized Controlled Trial. J. Trop. Pediatr. 2020, 66, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, Y.-W.; Jiang, J.-J.; Song, Q.-K. Bovine colostrum and product intervention associated with relief of childhood infectious diarrhea. Sci. Rep. 2019, 9, 3093. [Google Scholar] [CrossRef] [PubMed]
- Cicchella, A.; Stefanelli, C.; Massaro, M. Upper Respiratory Tract Infections in Sport and the Immune System Response. A Review. Biol. 2021, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Recent Progress in Applicability of Exercise Immunology and Inflammation Research to Sports Nutrition. Nutrients 2021, 13, 4299. [Google Scholar] [CrossRef] [PubMed]
- Dzik, S. Gut mucosa barrier preservation by orally administered IgA-IgG to patients undergoing bone marrow transplantation: A randomized pilot study. Transfus. Med. Rev. 2001, 3, 252. [Google Scholar] [CrossRef]
- Golby, S.J.C.; Spencer, J. Where do IgA plasma cells in the gut come from? Gut 2002, 51, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Drummond, L.R.; Campos, H.O.; Drummond, F.R.; de Oliveira, G.M.; Fernandes, J.G.R.P.; Amorim, R.P.; Monteiro, M.d.C.; Lara, H.F.G.; Leite, L.H.R.; Coimbra, C.C. Acute and chronic effects of physical exercise on IgA and IgG levels and susceptibility to upper respiratory tract infections: A systematic review and meta-analysis. Pflügers Arch. Eur. J. Physiol. 2022, 474, 1221–1248. [Google Scholar] [CrossRef] [PubMed]
- Główka, N.; Woźniewicz, M. Potential use of Colostrum Bovinum supplementation in athletes—A review. Acta Sci. Pol. Technol. Aliment. 2019, 18, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Mero, A.; Kähkönen, J.; Nykänen, T.; Parviainen, T.; Jokinen, I.; Takala, T.; Nikula, T.; Rasi, S.; Leppäluoto, J. IGF-I, IgA, and IgG responses to bovine colostrum supplementation during training. J. Appl. Physiol. 2002, 93, 732–739. [Google Scholar] [CrossRef]
- Główka, N.; Durkalec-Michalski, K.; Woźniewicz, M. Immunological Outcomes of Bovine Colostrum Supplementation in Trained and Physically Active People: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1023. [Google Scholar] [CrossRef]
- Baśkiewicz-Hałasa, M.; Stachowska, E.; Grochans, E.; Maciejewska-Markiewicz, D.; Bühner, L.; Skonieczna-Żydecka, K.; Hałasa, M. Moderate Dose Bovine Colostrum Supplementation in Prevention of Upper Respiratory Tract Infections in Medical University Students: A Randomized, Triple Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 1925. [Google Scholar] [CrossRef] [PubMed]
- Gouhari, F.; Zandi, R.; Mehrvar, A.; Talebi, S.; Shariatpanahi, Z.V. Improved Physical Disability and Nutritional Status by Bovine Colostrum Supplementation in Adults with Traumatic Peri-trochanteric Femoral Fracture: A randomized, controlled, clinical trial. Injury 2023, 55, 111253. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ding, S.; Wang, J. Digital health for aging populations. Nat. Med. 2023, 29, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Immunology: Why older people are prone to flu. Nature 2016, 10, 533.
- Saltzman, R.L.; Peterson, P.K. Immunodeficiency of the Elderly. Rev. Infect. Dis. 1987, 9, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Lesourd, B.; Mazari, L. Nutrition and immunity in the elderly. Proc. Nutr. Soc. 2011, 58, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Aspinall, R.; Lang, P.O. Interventions to restore appropriate immune function in the elderly. Immun. Ageing 2018, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Verma, H.K.; Pande, B.; Costanzo, V.; Ye, W.; Cai, Y.; Bhaskar, L.V.K.S. Physical Activity and Nutritional Influence on Immune Function: An Important Strategy to Improve Immunity and Health Status. Front. Physiol. 2021, 12, 751374. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Kroemer, G. Boosting the immunotherapy response by nutritional interventions. J. Clin. Investig. 2021, 132, e161483. [Google Scholar] [CrossRef]
- Qin, L.; Jing, X.; Qiu, Z.; Cao, W.; Jiao, Y.; Routy, J.P.; Li, T. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults. Aging 2016, 8, 848–859. [Google Scholar] [CrossRef]
- Mao, Z.; Ke, Z.; Gorbunova, V.; Seluanov, A. Replicatively senescent cells are arrested in G1 and G2 phases. Aging 2012, 4, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Si, H. The Aging of Adipocytes Increases Expression of Pro-Inflammatory Cytokines Chronologically. Metabolites 2021, 11, 292. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Armstrong, J.L.; Tchkonia, T.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Martel, J.; Ojcius, D.M.; Wu, C.; Peng, H.; Voisin, L.; Perfettini, J.; Ko, Y.; Young, J.D. Emerging use of senolytics and senomorphics against aging and chronic diseases. Med. Res. Rev. 2020, 40, 2114–2131. [Google Scholar] [CrossRef]
- Lee, H.-J.; Yoon, Y.-S.; Lee, S.-J. Molecular mechanisms of cellular senescence in neurodegenerative diseases. J. Mol. Biol. 2023, 435, 168114. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef] [PubMed]
- Chae, A.; Aitchison, A.; Day, A.S.; Keenan, J.I. Bovine colostrum demonstrates anti-inflammatory and antibacterial activity in in vitro models of intestinal inflammation and infection. J. Funct. Foods 2016, 28, 293–298. [Google Scholar] [CrossRef]
- Duff, W.R.; Chilibeck, P.D.; Rooke, J.J.; Kaviani, M.; Krentz, J.R.; Haines, D.M. The effect of bovine colostrum supplementation in older adults during resistance training. Int. J. Sport Nutr. Exerc. Metab. 2013, 24, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Ooi, T.C.; Ahmad, A.; Rajab, N.F.; Sharif, R. Effects of 12 weeks colostrum milk supplement among older adults: A randomised, double-blind and placebo-controlled trial. Int. Dairy J. 2023, 149, 105819. [Google Scholar] [CrossRef]
- Melnik, B.C.; John, S.M.; Carrera-Bastos, P.; Cordain, L.; Leitzmann, C.; Weiskirchen, R.; Schmitz, G. The Role of Cow’s Milk Consumption in Breast Cancer Initiation and Progression. Curr. Nutr. Rep. 2023, 12, 122–140. [Google Scholar] [CrossRef]
Ingredient | CHM | MHM | CPM | MPM | BC | BM |
---|---|---|---|---|---|---|
Energy (kcal/dL) | 58 | 69 | 42.3 | 50.5 | 130 | – |
Fat (g/L) | 20–50 | 32–38 | 12–26 | 24–35 | 50–80 | 37–39 |
Protein (g/L) | 8–37 | 9.0–12.0 | 19–41 | 12.7–26 | 60–149 | 34–36 |
Carbohydrates (g/L) | – | 76 | 22–62 | 30–77 | – | – |
Casein (g/L) | 3.0–5.6 | 4–4.8 | – | – | 26–43 | 2–30 |
Whey (g/L) | 4.3–11.1 | 6–7.2 | – | – | 35–120 | 4–50 |
Immunoglobulin (g/L) | 1.14–20 | 1.2 | – | – | 42–90 | 0.4–1.0 |
Lactose (g/L) | 44–72 | 50–78 | 22–49 | 28–73 | 18.9–32 | 49 |
IgG (g/L) | 0.05–0.43 | 0.03–0.06 | – | – | 20–200 | 0.15–0.8 |
IgG1 (g/L) | – | – | – | – | 15–180 | 0.3–0.6 |
IgG2 (g/L) | – | – | – | – | 1–3 | 0.06–0.12 |
SIgA (g/L) | 3.5–17.35 | 1.0–1.7 | – | 2.6 | 1.7–6.2 | 0.04–0.14 |
IgM (g/L) | 0.15–1.59 | 0.03–0.10 | – | – | 3.7–9.0 | 0.03–0.10 |
α-Lactalbumin (g/L) | 2.56 | 2–3 | – | – | 2.04 | 1–1.5 |
β-Lactoglobulin (g/L) | – | – | – | – | 14.3 | – |
Lactoferrin (g/L) | 5.05–7.0 | 1.0–2.7 | – | – | 0.8–5.0 a | 0.01–0.75 |
Whey protein (%) | – | – | – | – | 6 | 0.4–0.5 |
Lactoperoxidas (mg/L) | 5.17 | 5.17 | – | – | 11–45 | 13–30 |
Lysozyme (mg/L) | 270–430 | 160–460 | – | – | 0.14–0.7 | 0.07–0.6 |
EGF (μg/L) | 35–438 | 20–111 | – | – | 4–324.2 | 2–155 |
TGF-β (mg/L) | 1.4–40 | 0.953 | – | – | 0.15–2.0 | 0.013–0.071 |
TGF-α (μg/L) | 2.2–7.2 | – | – | – | 2.2–7.2 | – |
IGF (mg/L) | 18 | – | – | – | 10 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Sun, Q.; Chen, C.; Wang, R.; Yan, W. A Review: The Effect of Bovine Colostrum on Immunity in People of All Ages. Nutrients 2024, 16, 2007. https://doi.org/10.3390/nu16132007
Duan H, Sun Q, Chen C, Wang R, Yan W. A Review: The Effect of Bovine Colostrum on Immunity in People of All Ages. Nutrients. 2024; 16(13):2007. https://doi.org/10.3390/nu16132007
Chicago/Turabian StyleDuan, Hao, Qian Sun, Chao Chen, Rongchang Wang, and Wenjie Yan. 2024. "A Review: The Effect of Bovine Colostrum on Immunity in People of All Ages" Nutrients 16, no. 13: 2007. https://doi.org/10.3390/nu16132007
APA StyleDuan, H., Sun, Q., Chen, C., Wang, R., & Yan, W. (2024). A Review: The Effect of Bovine Colostrum on Immunity in People of All Ages. Nutrients, 16(13), 2007. https://doi.org/10.3390/nu16132007