Placebo and Nocebo Effects on Sports and Exercise Performance: A Systematic Literature Review Update
Abstract
:1. Introduction
1.1. Placebo and Nocebo Effects in Sports
1.2. Scope of Review
2. Materials and Methods
2.1. Type of Studies
2.2. Type of Participants
2.3. Type of Interventions
2.4. Outcome Measures
2.5. Interventions
2.6. Search Strategy
2.7. Data Collection and Analysis
2.8. Quality Check
3. Results
3.1. Description of Studies
3.2. Study Design and Participants
3.3. Nutritional Ergogenic Aids
3.3.1. Caffeine
3.3.2. Mint and Menthol Gel
3.3.3. Colored Artificially Sweetened Solution
3.3.4. Energy Meals
3.3.5. Hyperoxic Air
3.3.6. Water
3.3.7. Inert Capsules
3.3.8. Sports Cream
3.3.9. Equipment
3.3.10. Verbal Suggestions in Clinical Scenarios
3.4. Open Label Placebo
3.5. Mechanical Ergogenic Aids
3.6. Type of Sport or Motor Performance
3.7. Side Effects
3.8. Overall Results
4. Discussion
4.1. Side Effects
4.2. Limitations
4.3. Practical Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Szabo, A. Placebo Doping in Sport: Overview and Ethical Considerations. JSES 2023, 1, 60–67. [Google Scholar] [CrossRef]
- Hill, N. You Can Work Your Own Miracles; Ballantine Books: New York, NY, USA, 1996; pp. 23–160. [Google Scholar]
- Colloca, L.; Barsky, A.J. Placebo and Nocebo Effects. NEJM 2020, 382, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Evers, A.W.M.; Colloca, L.; Blease, C.; Annoni, M.; Atlas, L.Y.; Benedetti, F.; Bingel, U.; Büchel, C.; Carvalho, C.; Colagiuri, B.; et al. Implications of Placebo and Nocebo Effects for Clinical Practice: Expert Consensus. Psychother. Psychosom. 2018, 87, 204–210. [Google Scholar] [CrossRef]
- Raglin, J.; Szabo, A.; Lindheimer, J.B.; Beedie, C. Understanding Placebo and Nocebo Effects in the Context of Sport: A Psychological Perspective. Eur. J. Sport Sci. 2020, 20, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Beedie, C.; Hettinga, F. Introduction to the Special Edition on the Placebo Effect in Sport and Exercise. Eur. J. Sport Sci. 2020, 20, 277–278. [Google Scholar] [CrossRef] [PubMed]
- Price, D.D.; Finniss, D.G.; Benedetti, F. A Comprehensive Review of the Placebo Effect: Recent Advances and Current Thought. Annu. Rev. Psychol. 2008, 59, 565–590. [Google Scholar] [CrossRef] [PubMed]
- Clark, V.R.; Hopkins, W.G.; Hawley, J.A.; Burke, L.M. Placebo Effect of Carbohydrate Feedings during a 40-Km Cycling Time Trial. Med. Sci. Sport Exer. 2000, 32, 1642–1647. [Google Scholar] [CrossRef] [PubMed]
- Szabo, A.; Müller, A. Coaches’ Attitudes towards Placebo Interventions in Sport. Eur. J. Sport Sci. 2015, 16, 293–300. [Google Scholar] [CrossRef]
- Beedie, C.; Benedetti, F.; Barbiani, D.; Camerone, E.; Lindheimer, J.; Roelands, B. Incorporating Methods and Findings from Neuroscience to Better Understand Placebo and Nocebo Effects in Sport. Eur. J. Sport Sci. 2019, 20, 313–325. [Google Scholar] [CrossRef]
- Hurst, P.; Schipof-Godart, L.; Szabo, A.; Raglin, J.; Hettinga, F.; Roelands, B.; Lane, A.; Foad, A.; Coleman, D.; Beedie, C. The Placebo and Nocebo Effect on Sports Performance: A Systematic Review. Eur. J. Sport Sci. 2019, 20, 279–292. [Google Scholar] [CrossRef]
- Duncan, M.J.; Lyons, M.; Hankey, J. Placebo Effects of Caffeine on Short-Term Resistance Exercise to Failure. Int. J. Sport Physiol. 2009, 4, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Kalasountas, V.; Reed, J.; Fitzpatrick, J. The Effect of Placebo-Induced Changes in Expectancies on Maximal Force Production in College Students. J. Appl. Sport Psychol. 2007, 19, 116–124. [Google Scholar] [CrossRef]
- Beedie, C.J.; Coleman, D.A.; Foad, A.J. Positive and Negative Placebo Effects Resulting from the Deceptive Administration of an Ergogenic Aid. Int. J. Sport Nutr. Exe. 2007, 17, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The Prisma Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The Prisma 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Szabo, A. Placebo Effects on Kayak Sprint Performance in Child Athletes. Eur. J. Sport Sci. 2024, 24, 577–586. [Google Scholar] [CrossRef]
- Valero, F.; González-Mohíno, F.; Salinero, J.J. Belief That Caffeine Ingestion Improves Performance in a 6-Minute Time Trial Test without Affecting Pacing Strategy. Nutrients 2024, 16, 327. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Sánchez, D.; Bravo-Sánchez, A.; Ramírez-delaCruz, M.; Abián, P.; Abián-Vicén, J. Placebo Effect of Caffeine on Physiological Parameters and Physical Performance. Nutrients 2024, 16, 1405. [Google Scholar] [CrossRef]
- Horváth, Á.; Szabo, A.; Gál, V.; Suhaj, C.; Aranyosy, B.; Köteles, F. Are there placebo or nocebo effects in balancing performance? Cogn. Res. Princ. Implic. 2023, 8, 25. [Google Scholar] [CrossRef]
- Hanson, N.J.; Dykstra, R.M.; Garner, C.T.; Nachtegall, A.R.; Courtney, K.; Jevtovic, F. The Placebo Effect of Transcranial Direct Current Stimulation (Tdcs) on 3-Minute Aerobic Test Performance. Med. Sci. Sport Exer. 2023, 55, 31–32. [Google Scholar] [CrossRef]
- de Salles Painelli, V.; Fernandes, E.; Brietzke, C.; Pires, F.O. The Placebo Effect of a Pink Non-Caloric, Artificially Sweetened Solution on Strength Endurance Performance and Psychological Responses in Trained Individuals. Nutr. Health 2023. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.M.; Varone, N.; Clark, C.; Ramirez, K.; Ross, M.L.; Swann, C.; Stevens, C.J. A Menthol-Enhanced “Cooling” Energy Gel Does Not Influence Laboratory Time Trial Performance in Trained Runners. Nutrients 2023, 15, 3379. [Google Scholar] [CrossRef] [PubMed]
- Fiorio, M.; Villa-Sánchez, B.; Rossignati, F.; Emadi Andani, M. The placebo effect shortens movement time in goal-directed movements. Sci. Rep. 2022, 12, 19567. [Google Scholar] [CrossRef] [PubMed]
- Blumenstein, B.; Abrahamsen, F.E.; Losnegard, T. Placebo and nocebo in sports: Potential effects of hypothetical differences in roll resistance on roller ski performance. Transl. Sports Med. 2021, 4, 401–408. [Google Scholar] [CrossRef]
- Naharudin, M.N.; Adams, J.; Richardson, H.; Thomson, T.; Oxinou, C.; Marshall, C.; Clayton, D.J.; Mears, S.A.; Yusof, A.; Hulston, C.J.; et al. Viscous Placebo and Carbohydrate Breakfasts Similarly Decrease Appetite and Increase Resistance Exercise Performance Compared with a Control Breakfast in Trained Males. Brit. J. Nutr. 2020, 124, 232–240. [Google Scholar] [CrossRef] [PubMed]
- McLemore, B.H.; McLemore, S.G.; Rogers, R.R.; Pederson, J.A.; Williams, T.D.; Marshall, M.R.; Ballmann, C.G. Nocebo effects on perceived muscle soreness and exercise performance following unaccustomed resistance exercise: A pilot study. J. Funct. Morphol. Kinesiol. 2020, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Filip-Stachnik, A.; Krzysztofik, M.; Kaszuba, M.; Leońska-Duniec, A.; Czarny, W.; Del Coso, J.; Wilk, M. Placebo effect of caffeine on maximal strength and strength endurance in healthy recreationally trained women habituated to caffeine. Nutrients 2020, 12, 3813. [Google Scholar] [CrossRef] [PubMed]
- Corsi, N.; Andani, M.E.; Sometti, D.; Tinazzi, M.; Fiorio, M. When words hurt: Verbal suggestion prevails over conditioning in inducing the motor nocebo effect. Eur. J. Neurosci. 2019, 50, 3311–3326. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Clark, B.; Garvican-Lewis, L.A.; Welvaert, M.; Gore, C.J.; Thompson, K.G. The Potential to Change Pacing and Performance during 4000-M Cycling Time Trials Using Hyperoxia and Inspired Gas-Content Deception. Int. J. Sport Physiol. 2019, 14, 949–957. [Google Scholar] [CrossRef]
- Saunders, B.; Saito, T.; Klosterhoff, R.; de Oliveira, L.F.; Barreto, G.; Perim, P.; Gualano, B. “I put it in my head that the supplement would help me”: Open-placebo improves exercise performance in female cyclists. PLoS ONE 2019, 14, e0222982. [Google Scholar] [CrossRef] [PubMed]
- Hurst, P.; Schipof-Godart, L.; Hettinga, F.; Roelands, B.; Beedie, C. Improved 1000-m running performance and pacing strategy with caffeine and placebo: A balanced placebo design study. Int. J. Sports Physiol. Perform. 2019, 15, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Fanti-Oren, S.; Birenbaum-Carmeli, D.; Nemet, D.; Pantanowitz, M.; Eliakim, A. Significant effect of information placebo on exercise test results in children with normal weight, overweight and obesity. Acta Paediatr. 2019, 109, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Zech, N.; Seemann, M.; Grzesiek, M.; Breu, A.; Seyfried, T.F.; Hansen, E. Nocebo effects on muscular performance–an experimental study about clinical situations. Front. Pharmacol. 2019, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.D.C.T.; Galvão, L.; Bottaro, M.; Mota, J.F.; Pimentel, G.D.; Gentil, P. Effects of placebo on bench throw performance of Paralympic weightlifting athletes: A pilot study. J. Int. Soc. Sports Nutr. 2019, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mak, D.N.T.; Au, I.P.H.; Chan, M.; Chan, Z.Y.S.; An, W.W.; Zhang, J.H.; Cheung, R.T.H. Placebo effect of facilitatory Kinesio tape on muscle activity and muscle strength. Physiother. Theory Pract. 2019, 35, 157–162. [Google Scholar]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Best, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med. 2016, 47, 1035–1042. [Google Scholar] [CrossRef]
- Tokish, J.M.; Kocher, M.S.; Hawkins, R.J. Ergogenic AIDS: A Review of Basic Science, Performance, Side Effects, and Status in Sports. Am. J. Sports Med. 2004, 32, 1543–1553. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
Placebo/Nocebo Terms | Sport/Exercise Terms | |
---|---|---|
| AND |
|
|
| |
|
| |
|
| |
| ||
| ||
| ||
|
Step 1. | Access Google Scholar website. |
Step 2. | Click the left upper corner lines (3) and select “Advanced search” from the pop-down menu. |
Step 3. | Enter the search terms as outlined in the following steps. |
Step 4. | Enter all possible keywords (i.e., sport, sports, motor, training, etc.), which denote an outcome or dependent measure, connected with the Boolean operator ‘OR’ in the “with all of the words” field. Also, add the plural of the terms. |
Step 5. | Enter all independent measure names in the “with at least one of the words” field. Place double or triple words (like “placebo effect”) within quotation marks and add the plural of the terms, too. (If the Boolean operator ‘OR’ is not used, Google Scholar will add that automatically. |
Step 6. | Ensure that the groups of keywords used for dependent and independent variables of interest are separated by the Boolean operator ‘AND’. |
Step 7. | Set the search period in the “Return articles dated between” field. |
Step 8. | Examine records gathered in order of relevance first by limiting the search to the title of the articles, then by searching anywhere within the text. |
Author (Year; Newest First) | Design | Subjects | Dependent Measures | No. of Part. | Treatment Informed | Treatment Received (Independent Measure) | Effect Size d | % Change | Major Findings |
---|---|---|---|---|---|---|---|---|---|
Szabo (2024) [18] | WP | Elite child kayakers (♂ = 11, ♀ = 1) | 200 m kayak ergometer sprint | 12 | Tic Tac mint (as placebo) | Tic Tac with deception and actor participation | 2.8 | 3.7% | Greater sprint distance in placebo condition |
Valero et al. (2024) [19] | WP | Recreationally trained runners (♂ = 13) | 6 min TT test | 13 | Caffeine (optimal dose) | Gum without caffeine | 0.69 | 1.61% | Placebo effect boosts 6 min running performance |
Ortiz-Sanchez et al. (2024) [20] | WP | Physically active participants (♂ = 12, ♀ = 6) | Bench press and squat at 3 different loads | 18 | Caffeine (9 mg/kg) | Placebo capsule (9 mg cellulose) | 0.5 and 0.5 | 2.56% and 11.31% | Placebo effects observed in only 2/54 strength performance measures |
Horvath et al. (2023) [21] | BP | Healthy individuals (♂ = 21, ♀ = 57) | Postural stability | 78 | Sports cream (as placebo; as nocebo; control) | Verbal instruction connected to the same cream | 0.10 | 2.50% | No significant objective placebo or nocebo effects |
Hanson et al. (2023) [22] | WP | Leisure exercisers (♂ = 9, ♀ = 14) | 3 m aerobic test | 23 | tDCS | Placebo and nocebo; belief and disbelief | 0.03 | 0.25% and −1.03% | No placebo or nocebo effect |
de Salles Painelli et al. (2023) [23] | WP | Strength-training athletes (♂ = 18) | Strength endurance test bench press exercise | 18 | Carbohydrate energy drink (CHO) | Colored, artificially sweetened drink | 0.4 | 6.60% | The artificially sweetened solution enhanced strength-endurance exercise performance |
Vogel et al. (2023) [24] | WP | Trained runners (♂ = 8, ♀ = 6) | 20 min self-paced treadmill time trial | 14 | Placebo or menthol-enhanced energy gel | Placebo or menthol-enhanced energy gel | 0 | 0.00% | No effect |
Fiorio et al. (2022) [25] | WP | Healthy volunteers (♂ = 10, ♀ = 14) | Reach a target fine motor movement time | 24 | TENS | TENS (with placebo manipulation) | 0.64 0.35 | CBD | In contrast to control, placebo resulted in better fine motor performance |
Blumenstein et al. (2021) [26] | WP | Junior athletes (♂ = 15, ♀ = 6) | 45 m indoor roller ski sprint (completion time) | 21 | Roller skis with low, medium, and high resistance | Equal roll resistance (medium resistance; belief deception) | 0.15 | −0.70% | Negative perception affects roller ski performance times |
Naharudin et al. (2020) [27] | WP | Strength training athletes (♂ = 22) | Back squats and bench press | 22 | Energy nutrition | Water, placebo, carbohydrate | 1.0 | 14.90% | Placebo-increased strength performance |
McLemore et al. (2020) [28] | BP | Untrained males (♂ = 14) | ROM, RPE, and total repetitions performed | 14 | Negative belief group: inorganic nitrate | Inert substance capsule | 1.8 2.5 | −22.40% −49.00% | Nocebo reduced ROM and repetitions maximum performance |
Filip-Stachnik et al. (2020) [29] | WP | Resistance trained (♀ = 13) | Strength endurance performance | 13 | Caffeine (6 mg/kg) | Flour capsule (as placebo) | 0.26 (Avg.) | −1.77% (Avg.) | No placebo effect on strength performance |
Corsi et al. (2019) [30] | WP | Healthy volunteers (♂ = 25, ♀ = 28) | Motor task—press a piston | 53 | TENS | Placebo and nocebo suggestions | 0.87 and 0.67 | 8.12% | Suggestions affect motor performance, leading to a decline (nocebo effect) |
Davies et al. (2019) [31] | WP | Trained cyclists (♂ = 15) | Cycling TT performance | 15 | Hyperoxic air | Normoxic air | CBD | 8% | Greater mean power output and increased speedwork due to placebo |
Saunders et al. (2019) [32] | WP | Trained cyclists (♀ = 28) | Cycling time trial performance and mean power output | 28 | Open-label placebo | Red-and-white flour capsules (100 mg) | 0.16 and 0.15 | 0.70% and 1.5% | Open placebo modestly enhances time trial cycling performance and mean power output |
Hurst et al. (2019) [33] | WP | Trained middle-distance athletes (♂ = 11) | 1000 m running TT, peak HR, RPE | 11 | Caffeine (3 mg/kg) | Told caffeine, received placebo | 1.14 | 1.89% | Large placebo effect compared to baseline |
Fanti-Oren et al. (2019) [34] | BP | Children with obesity (♂ = 24) and normal weight children (♂ = 24) | Progressive treadmill exercise test | 48 | Water with the information ‘increases energy’ | Water | 0.71 0.90 | 33.3% 24.6% | Placebo-related increased time to exhaustion in both groups |
Zech et al. (2019) [35] | WP | Healthy people | Maximal muscular strength | 46 | Negative and positive verbal and non-verbal suggestions | Positive and negative information | CBD | Around 7% to 9% decrease | Nocebo effects weakened muscular performance |
Costa et al. (2019) [36] | WP | Paralympic weightlifting athletes (♂ = 4) | Bench throw tests (mean propulsive velocity) | 4 | Caffeine capsule (6 mg/kg) | Maize starch capsule (as placebo) | 0.36 0.49 | 10.5% 13.5% | Placebo improved bench-throw performance |
Mak et al. (2019) [37] | WP | KT users and non-KT users (♂ = 32, ♀ = 28) | Maximal power grip strength | 60 | KT (as placebo) | Facilitatory KT or no tape application (control) | 0.16 | 0.16% | KT increases grip strength slightly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhabra, B.; Szabo, A. Placebo and Nocebo Effects on Sports and Exercise Performance: A Systematic Literature Review Update. Nutrients 2024, 16, 1975. https://doi.org/10.3390/nu16131975
Chhabra B, Szabo A. Placebo and Nocebo Effects on Sports and Exercise Performance: A Systematic Literature Review Update. Nutrients. 2024; 16(13):1975. https://doi.org/10.3390/nu16131975
Chicago/Turabian StyleChhabra, Bhavya, and Attila Szabo. 2024. "Placebo and Nocebo Effects on Sports and Exercise Performance: A Systematic Literature Review Update" Nutrients 16, no. 13: 1975. https://doi.org/10.3390/nu16131975
APA StyleChhabra, B., & Szabo, A. (2024). Placebo and Nocebo Effects on Sports and Exercise Performance: A Systematic Literature Review Update. Nutrients, 16(13), 1975. https://doi.org/10.3390/nu16131975