Increased Intake of Vegetables and Fruits Improves Cognitive Function among Chinese Oldest Old: 10-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Measures
2.2.1. Assessment of Cognitive Function
2.2.2. Assessment of Vegetable and Fruit Intake Frequency
2.2.3. Assessment of Depression
2.2.4. Assessment of Psychological Well-Being (PWB)
2.2.5. Individual-Level Covariates
2.3. Statistical Analysis
3. Results
3.1. Prevalence of MCI among Chinese Older Adults
3.2. Factors Associated with MCI among Chinese Older Adults
3.3. The Relationship between the Frequency of Fruit and Vegetable Consumption and MCI among Chinese Older Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Ageing 2019; United Nations: New York, NY, USA, 2020. [Google Scholar]
- National Bureau of Statistics. Bulletin of the Seventh National Population Census (No. 5), Population Age Composition; China Statistics: Beijing, China, 2021; pp. 10–11.
- Hu, C.; Yu, D.; Sun, X.; Zhang, M.; Wang, L.; Qin, H. The prevalence and progression of mild cognitive impairment among clinic and community populations: A systematic review and meta-analysis. Int. Psychogeriatr. 2017, 29, 1595–1608. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, A.; Palazuelos-González, R.; Rivera-Almaraz, A.; Manrique-Espinoza, B. Longitudinal association of sarcopenia and mild cognitive impairment among older Mexican adults. J. Cachexia Sarcopenia Muscle 2021, 12, 1848–1859. [Google Scholar] [CrossRef]
- Fei, M.; Qu, Y.C.; Wang, T.; Yin, J.; Bai, J.X.; Ding, Q.H. Prevalence and distribution of cognitive impairment no dementia (CIND) among the aged population and the analysis of socio-demographic characteristics: The community-based cross-sectional study. Alzheimer Dis. Assoc. Disord. 2009, 23, 130–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Z.; Liu, M.; Liu, S.; Yue, W.; Liu, S.; Xiang, L.; Lu, H.; Liu, P.; Wisniewski, T. Prevalence of cognitive impairment no dementia in a rural area of Northern China. Neuroepidemiology 2014, 42, 197–203. [Google Scholar] [CrossRef]
- Jia, J.; Wang, F.; Wei, C.; Zhou, A.; Jia, X.; Li, F.; Tang, M.; Chu, L.; Zhou, Y.; Zhou, C. The prevalence of dementia in urban and rural areas of China. Alzheimer’s Dement. 2014, 10, 1–9. [Google Scholar] [CrossRef]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Zhu, M.; Jiao, H.; Song, Y. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef]
- Schmidt, C. Thinking from the Gut. Nature 2015, 518, S12–S14. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; Wang, Y.-P. Gut microbiota-brain axis. Chin. Med. J. 2016, 129, 2373–2380. [Google Scholar] [CrossRef]
- Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017, 20, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Ohara, T.; Ninomiya, T.; Hata, J.; Yoshida, D.; Mukai, N.; Nagata, M.; Uchida, K.; Shirota, T.; Kitazono, T. Milk and Dairy Consumption and Risk of Dementia in an Elderly J apanese Population: The H isayama Study. J. Am. Geriatr. Soc. 2014, 62, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Shang, Y.; Luo, Y.; Wu, P.; Huang, X.; Tan, X.; Lu, X.; Zhen, L.; Hu, X. Lower prevalence of Alzheimer’s disease among Tibetans: Association with religious and genetic factors. J. Alzheimer’s Dis. 2016, 50, 659–667. [Google Scholar] [CrossRef]
- Lamport, D.J.; Saunders, C.; Butler, L.T.; Spencer, J.P. Fruits, vegetables, 100% juices, and cognitive function. Nutr. Rev. 2014, 72, 774–789. [Google Scholar] [CrossRef] [PubMed]
- do Rosario, V.A.; Fitzgerald, Z.; Broyd, S.; Paterson, A.; Roodenrys, S.; Thomas, S.; Bliokas, V.; Potter, J.; Walton, K.; Weston–Green, K. Food anthocyanins decrease concentrations of TNF-α in older adults with mild cognitive impairment: A randomized, controlled, double blind clinical trial. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Kheirouri, S.; Alizadeh, M. MIND diet and cognitive performance in older adults: A systematic review. Crit. Rev. Food Sci. Nutr. 2022, 62, 8059–8077. [Google Scholar] [CrossRef] [PubMed]
- Rivan, N.F.M.; Shahar, S.; Fakhruddin, N.N.I.N.M.; You, Y.X.; Din, N.C.; Rajikan, R. The effect of dietary patterns on mild cognitive impairment and dementia incidence among community-dwelling older adults. Front. Nutr. 2022, 9, 901750. [Google Scholar] [CrossRef] [PubMed]
- Nooyens, A.C.; Bueno-de-Mesquita, H.B.; van Boxtel, M.P.; van Gelder, B.M.; Verhagen, H.; Verschuren, W.M. Fruit and vegetable intake and cognitive decline in middle-aged men and women: The Doetinchem Cohort Study. Br. J. Nutr. 2011, 106, 752–761. [Google Scholar] [CrossRef]
- Gehlich, K.H.; Beller, J.; Lange-Asschenfeldt, B.; Köcher, W.; Meinke, M.C.; Lademann, J. Consumption of fruits and vegetables: Improved physical health, mental health, physical functioning and cognitive health in older adults from 11 European countries. Aging Ment. Health 2020, 24, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.O.; Geda, Y.E.; Cerhan, J.R.; Knopman, D.S.; Cha, R.H.; Christianson, T.J.; Pankratz, V.S.; Ivnik, R.J.; Boeve, B.F.; O’Connor, H.M. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2010, 29, 413–423. [Google Scholar] [CrossRef]
- Ritchie, K.; Carrière, I.; Ritchie, C.W.; Berr, C.; Artero, S.; Ancelin, M.-L. Designing prevention programmes to reduce incidence of dementia: Prospective cohort study of modifiable risk factors. BMJ 2010, 341, c3885. [Google Scholar] [CrossRef]
- Ortega, R.M.; Requejo, A.M.; Andrés, P.; López-Sobaler, A.M.; Quintas, M.E.; Redondo, M.R.; Navia, B.; Rivas, T. Dietary intake and cognitive function in a group of elderly people. Am. J. Clin. Nutr. 1997, 66, 803–809. [Google Scholar] [CrossRef]
- Nurk, E.; Refsum, H.; Drevon, C.A.; Tell, G.S.; Nygaard, H.A.; Engedal, K.; Smith, A.D. Cognitive performance among the elderly in relation to the intake of plant foods. The Hordaland Health Study. Br. J. Nutr. 2010, 104, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
- Whyte, A.R.; Rahman, S.; Bell, L.; Edirisinghe, I.; Krikorian, R.; Williams, C.M.; Burton-Freeman, B. Improved metabolic function and cognitive performance in middle-aged adults following a single dose of wild blueberry. Eur. J. Nutr. 2021, 60, 1521–1536. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, D.; Tan, Y. Intake of fruit and vegetables and the incident risk of cognitive disorders: A systematic review and meta-analysis of cohort studies. J. Nutr. Health Aging 2017, 21, 1284–1290. [Google Scholar] [CrossRef]
- Mottaghi, T.; Amirabdollahian, F.; Haghighatdoost, F. Fruit and vegetable intake and cognitive impairment: A systematic review and meta-analysis of observational studies. Eur. J. Clin. Nutr. 2018, 72, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Inagaki, H.; Gondo, Y.; Kamide, K.; Ikebe, K.; Masui, Y.; Arai, Y.; Ishizaki, T.; Sasaki, S.; Nakagawa, T. Association between dietary patterns and cognitive function among 70-year-old Japanese elderly: A cross-sectional analysis of the SONIC study. Nutr. J. 2017, 16, 56. [Google Scholar] [CrossRef]
- Lee, L.; Kang, S.; Lee, H.; Lee, B.; Park, J.; Kim, J.H.; Jung, I.K.; Park, Y.; Lee, J. Relationships between dietary intake and cognitive function level in Korean elderly people. Public Health 2001, 115, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Yahia, E.M.; García-Solís, P.; Celis, M.E.M. Contribution of fruits and vegetables to human nutrition and health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–45. [Google Scholar]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef]
- Wang, D.D.; Li, Y.; Bhupathiraju, S.N.; Rosner, B.A.; Sun, Q.; Giovannucci, E.L.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Stampfer, M.J. Fruit and vegetable intake and mortality: Results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation 2021, 143, 1642–1654. [Google Scholar] [CrossRef]
- van Breda, S.G.; de Kok, T.M. Smart combinations of bioactive compounds in fruits and vegetables may guide new strategies for personalized prevention of chronic diseases. Mol. Nutr. Food Res. 2018, 62, 1700597. [Google Scholar] [CrossRef]
- Zeng, Y. Toward deeper research and better policy for healthy aging–using the unique data of Chinese longitudinal healthy longevity survey. China Econ. J. 2012, 5, 131–149. [Google Scholar] [CrossRef]
- Zeng, Y.; Feng, Q.; Gu, D.; Vaupel, J.W. Demographics, phenotypic health characteristics and genetic analysis of centenarians in China. Mech. Ageing Dev. 2017, 165, 86–97. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Liu, G.G. Cognitive impairment and mortality among the oldest-old Chinese. Int. J. Geriatr. Psychiatry 2016, 31, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Gender differentials in cognitive impairment and decline of the oldest old in China. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2006, 61, S107–S115. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.; Stephan, B.C.; Robinson, L.; Brayne, C.; Matthews, F.E.; Function, C.; Collaboration, A.S. Two-decade change in prevalence of cognitive impairment in the UK. Eur. J. Epidemiol. 2019, 34, 1085–1092. [Google Scholar] [CrossRef]
- Yeoman, A.; Dew, M.; Das, L.; Rajapaksa, S. Role of cognitive function in assessing informed consent for endoscopy. Postgrad. Med. J. 2006, 82, 65–69. [Google Scholar] [CrossRef]
- Shakersain, B.; Rizzuto, D.; Wang, H.-X.; Faxén-Irving, G.; Prinelli, F.; Fratiglioni, L.; Xu, W. An active lifestyle reinforces the effect of a healthy diet on cognitive function: A population-based longitudinal study. Nutrients 2018, 10, 1297. [Google Scholar] [CrossRef]
- Fornés, N.S.; Stringhini, M.L.F.; Elias, B.M. Reproducibility and validity of a food-frequency questionnaire for use among low-income Brazilian workers. Public Health Nutr. 2003, 6, 821–827. [Google Scholar] [CrossRef]
- Sargeant, L.; Khaw, K.; Bingham, S.; Day, N.; Luben, R.; Oakes, S.; Welch, A.; Wareham, N. Fruit and vegetable intake and population glycosylated haemoglobin levels: The EPIC-Norfolk Study. Eur. J. Clin. Nutr. 2001, 55, 342–348. [Google Scholar] [CrossRef]
- Pessoa, M.C.; Mendes, L.L.; Gomes, C.S.; Martins, P.A.; Velasquez-Melendez, G. Food environment and fruit and vegetable intake in a urban population: A multilevel analysis. BMC Public Health 2015, 15, 1012. [Google Scholar] [CrossRef]
- Reicks, M.; Gold, A.; Tran, N.; LeBlanc, K. Impacts of a taste of african heritage: A culinary heritage cooking course. J. Nutr. Educ. Behav. 2022, 54, 388–396. [Google Scholar] [CrossRef]
- Fangfang, H.; Qiong, W.; Shuai, Z.; Xiao, H.; Jingya, Z.; Guodong, S.; Yan, Z. Vegetable and Fruit Intake, Its Patterns, and Cognitive Function: Cross-Sectional Findings among Older Adults in Anhui, China. J. Nutr. Health Aging 2022, 26, 529–536. [Google Scholar] [CrossRef]
- Domel, S.B.; Baranowski, T.; Leonard, S.B.; Litaker, M.S.; Baranowski, J.; Mullis, R.; Byers, T.; Strong, W.B.; Treiber, F.; Levy, M. Defining the year 2000 fruit and vegetable goal. J. Am. Coll. Nutr. 1993, 12, 669–675. [Google Scholar] [CrossRef]
- Eisinga, R.; Grotenhuis, M.t.; Pelzer, B. The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown? Int. J. Public Health 2013, 58, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Ruggiano, N.; Li, Q.; Guo, Y.; Pan, X. Disparities in depression among Chinese older adults with neurodegenerative diseases. Aging Ment. Health 2022, 26, 632–638. [Google Scholar] [CrossRef]
- Pei, Z.; Zhang, J.; Qin, W.; Hu, F.; Zhao, Y.; Zhang, X.; Cong, X.; Liu, C.; Xu, L. Association between Dietary Patterns and Depression in Chinese Older Adults: A Longitudinal Study Based on CLHLS. Nutrients 2022, 14, 5230. [Google Scholar] [CrossRef]
- Li, D.; Wu, T.C.Z. An exploration of the subjective well-being of the Chinese oldest-old. In Healthy Longevity in China. The Springer Series on Demographic Methods and Population Analysis; Springer: Dordrecht, The Netherlands, 2008; pp. 347–356. [Google Scholar]
- Gong, E.; Hua, Y.; Yan, L.L. Psychological wellbeing and all-cause mortality in the oldest old in China: A longitudinal survey-based study. Lancet 2016, 388, S22. [Google Scholar] [CrossRef]
- Cheng, G.; Yan, Y. Sociodemographic, health-related, and social predictors of subjective well-being among Chinese oldest-old: A national community-based cohort study. BMC Geriatr. 2021, 21, 124. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Yang, L.; Jin, X.; Yan, J.; Jin, Y.; Yu, W.; Wu, H.; Xu, S. Prevalence of dementia, cognitive status and associated risk factors among elderly of Zhejiang province, China in 2014. Age Ageing 2016, 45, 708–712. [Google Scholar] [CrossRef]
- Department of Planning, Development and Information Technology. Statistical Bulletin on the Development of Health Care in China in 2021; Department of Planning, Development and Information Technology: Beijing, China, 2022. [Google Scholar]
- Johnson, E.J. A possible role for lutein and zeaxanthin in cognitive function in the elderly. Am. J. Clin. Nutr. 2012, 96, 1161S–1165S. [Google Scholar] [CrossRef] [PubMed]
- Shukitt-Hale, B.; Bielinski, D.F.; Lau, F.C.; Willis, L.M.; Carey, A.N.; Joseph, J.A. The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. Br. J. Nutr. 2015, 114, 1542–1549. [Google Scholar] [CrossRef]
- Lamport, D.J.; Dye, L.; Wightman, J.D.; Lawton, C.L. The effects of flavonoid and other polyphenol consumption on cognitive performance: A systematic research review of human experimental and epidemiological studies. Nutr. Aging 2012, 1, 5–25. [Google Scholar] [CrossRef]
- John, J.; Ziebland, S.; Yudkin, P.; Roe, L.; Neil, H. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: A randomised controlled trial. Lancet 2002, 359, 1969–1974. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.A.; Lucas, M.; MacGregor, G.A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef]
- Breteler, M.M.; Claus, J.J.; Grobbee, D.E.; Hofman, A. Cardiovascular disease and distribution of cognitive function in elderly people: The Rotterdam Study. BMJ 1994, 308, 1604–1608. [Google Scholar] [CrossRef]
- Kilander, L.; Nyman, H.; Boberg, M.; Hansson, L.; Lithell, H. Hypertension is related to cognitive impairment: A 20-year follow-up of 999 men. Hypertension 1998, 31, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Shea, T.B. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003, 26, 137–146. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and dementia: An international consensus statement. J. Alzheimer’s Dis. 2018, 62, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhong, X.; Wu, Z.; Zhang, M.; Mai, N.; Peng, Q.; Chen, X.; Ouyang, C.; Liang, W.; Dai, C. Interactive effects of elevated homocysteine and late-life depression on cognitive impairment. J. Affect. Disord. 2020, 277, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Li, S.; Chen, C.; Lu, Z.; Zhang, D. Dietary fiber intake is positively related with cognitive function in US older adults. J. Funct. Foods 2022, 90, 104986. [Google Scholar] [CrossRef]
- Lefevre-Arbogast, S.; Thomas, A.; Samieri, C. Dietary factors and brain health. Curr. Opin. Lipidol. 2022, 33, 25–30. [Google Scholar] [CrossRef]
- Neuffer, J.; Gourru, M.; Thomas, A.; Lefèvre-Arbogast, S.; Foubert-Samier, A.; Helmer, C.; Delcourt, C.; Féart, C.; Samieri, C. A biological index to screen multi-micronutrient deficiencies associated with the risk to develop dementia in older persons from the community. J. Alzheimer’s Dis. 2022, 85, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Soininen, H.; Solomon, A.; Visser, P.J.; Hendrix, S.B.; Blennow, K.; Kivipelto, M.; Hartmann, T.; Group, L.C.S. 36-month LipiDiDiet multinutrient clinical trial in prodromal Alzheimer’s disease. Alzheimer’s Dement. 2021, 17, 29–40. [Google Scholar] [CrossRef]
- Cook Maher, A.; Kielb, S.; Loyer, E.; Connelley, M.; Rademaker, A.; Mesulam, M.-M.; Weintraub, S.; McAdams, D.; Logan, R.; Rogalski, E. Psychological well-being in elderly adults with extraordinary episodic memory. PloS ONE 2017, 12, e0186413. [Google Scholar] [CrossRef]
- Cooper, C.; Selwood, A.; Livingston, G. The prevalence of elder abuse and neglect: A systematic review. Age Ageing 2008, 37, 151–160. [Google Scholar] [CrossRef]
- Wilson, R.S.; Boyle, P.A.; Capuano, A.W.; Shah, R.C.; Hoganson, G.M.; Nag, S.; Bennett, D.A. Late-life depression is not associated with dementia-related pathology. Neuropsychology 2016, 30, 135. [Google Scholar] [CrossRef]
- Byers, A.L.; Yaffe, K. Depression and risk of developing dementia. Nat. Rev. Neurol. 2011, 7, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Wang, R.; Kiss, A.; Bronskill, S.E.; Lanctot, K.L.; Herrmann, N.; Gallagher, D. Depression and increased risk of Alzheimer’s dementia: Longitudinal analyses of modifiable risk and sex-related factors. Am. J. Geriatr. Psychiatry 2021, 29, 917–926. [Google Scholar] [CrossRef]
- Heser, K.; Tebarth, F.; Wiese, B.; Eisele, M.; Bickel, H.; Köhler, M.; Mösch, E.; Weyerer, S.; Werle, J.; König, H.-H. Age of major depression onset, depressive symptoms, and risk for subsequent dementia: Results of the German Study on Ageing, Cognition, and Dementia in Primary Care Patients (AgeCoDe). Psychol. Med. 2013, 43, 1597–1610. [Google Scholar] [CrossRef]
- Royall, D.R.; Palmer, R.F. Alzheimer’s disease pathology does not mediate the association between depressive symptoms and subsequent cognitive decline. Alzheimer’s Dement. 2013, 9, 318–325. [Google Scholar] [CrossRef]
- Xia, X.; Jiang, Q.; McDermott, J.; Han, J.D.J. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell 2018, 17, e12802. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H.M.; Asthana, S.; Bain, L.; Brinton, R.; Craft, S.; Dubal, D.B.; Espeland, M.A.; Gatz, M.; Mielke, M.M.; Raber, J. Sex biology contributions to vulnerability to Alzheimer’s disease: A think tank convened by the Women’s Alzheimer’s Research Initiative. Alzheimer’s Dement. 2016, 12, 1186–1196. [Google Scholar] [CrossRef]
- Langa, K.M.; Larson, E.B.; Crimmins, E.M.; Faul, J.D.; Levine, D.A.; Kabeto, M.U.; Weir, D.R. A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Intern. Med. 2017, 177, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Knol, M.J.; Le Cessie, S.; Algra, A.; Vandenbroucke, J.P.; Groenwold, R.H. Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression. Cmaj 2012, 184, 895–899. [Google Scholar] [CrossRef] [PubMed]
Variable | T1 | T2 | T3 | T4 | ||||
---|---|---|---|---|---|---|---|---|
MMSE = 0 | MMSE = 1 | MMSE = 0 | MMSE = 1 | MMSE = 0 | MMSE = 1 | MMSE = 0 | MMSE = 1 | |
X ± S/N (%) | X ± S/N (%) | X ± S/N (%) | X ± S/N (%) | |||||
Gender | ||||||||
Men | 1040 (49.7) | 107 (29.6) | 1038 (49.4) | 107 (30.5) | 2033 (50.7) | 112 (27.0) | 885 (53.6) | 260 (32.4) |
Women | 1052 (50.3) | 255 (70.4) | 1065 (50.6) | 244 (69.5) | 1006 (49.3) | 303 (73.0) | 766 (46.4) | 543 (67.6) |
Age | 74.29 ± 7.44 | 82.20 ± 9.19 | 77.55 ± 7.62 | 83.93 ± 9.44 | 80.35 ± 7.57 | 86.89 ± 9.06 | 83.25 ± 7.01 | 90.00 ± 8.63 |
Years of school | 3.21 ± 3.80 | 1.02 ± 2.28 | 3.21 ± 3.80 | 0.96 ± 2.18 | 3.17 ± 3.76 | 1.32 ± 2.72 | 3.58 ± 3.90 | 1.47 ± 2.78 |
Ethnic | ||||||||
Hans | 1949 (93.2) | 347 (95.9) | 1974 (93.9) | 322 (91.7) | 1908 (93.6) | 388 (93.5) | 1538 (93.2) | 758 (94.4) |
Others | 143 (6.8) | 15 (4.1) | 129 (6.1) | 29 (8.3) | 131 (6.4) | 27 (6.5) | 113 (6.8) | 45 (5.6) |
Birthplace | ||||||||
Urban | 184 (8.8) | 19 (5.2) | 185 (8.8) | 18 (5.1) | 176 (8.6) | 27 (6.5) | 152 (9.2) | 51 (6.4) |
Rural | 1908 (91.2) | 343 (94.8) | 1918 (91.2) | 333 (94.9) | 1863 (91.4) | 388 (93.5) | 1499 (90.8) | 752 (93.6) |
Living condition | ||||||||
Live with family | 1784 (85.3) | 277 (76.5) | 1681 (79.9) | 278 (79.2) | 1595 (78.2) | 306 (73.7) | 1320 (80.0) | 651 (81.1) |
Live alone | 296 (14.1) | 79 (21.8) | 400 (19.0) | 67 (19.1) | 423 (20.7) | 102 (24.6) | 303 (18.4) | 126 (15.7) |
Live in a nursing institution | 12 (0.6) | 6 (1.7) | 22 (1.0) | 6 (1.7) | 21 (1.0) | 7 (1.7) | 28 (1.7) | 26 (3.2) |
Economic self-evaluation | ||||||||
Good | 306 (14.6) | 86 (23.8) | 269 (12.8) | 99 (28.2) | 172 (8.4) | 81 (19.5) | 141 (8.5) | 100 (12.5) |
Fair | 1521 (72.3) | 235 (64.9) | 1426 (67.8) | 222 (63.2) | 1514 (74.3) | 280 (67.5) | 1106 (67.0) | 599 (74.6) |
Poor | 274 (13.1) | 41 (11.3) | 408 (19.4) | 30 (8.5) | 353 (17.3) | 54 (13.0) | 404 (24.5) | 104 (13.0) |
Family annual income | ||||||||
Q1 | 1614 (77.2) | 275 (76.0) | 1208 (57.4) | 225 (64.1) | 959 (47.0) | 205 (49.4) | 628 (38.0) | 295 (36.7) |
Q2 | 275 (13.1) | 35 (9.7) | 424 (20.2) | 42 (12.0) | 534 (26.2) | 103 (24.8) | 412 (25.0) | 226 (28.1) |
Q3 | 57 (2.7) | 10 (2.8) | 200 (9.5) | 24 (6.8) | 243 (11.9) | 46 (11.1) | 216 (13.1) | 95 (11.8) |
Q4 | 146 (7.0) | 42 (11.6) | 271 (12.9) | 60 (17.1) | 303 (14.9) | 61 (14.7) | 395 (23.9) | 187 (23.3) |
Marital status | ||||||||
Currently married and living with spouse | 1300 (62.1) | 133 (36.7) | 1090 (51.8) | 120 (34.2) | 1052 (51.6) | 122 (29.4) | 782 (47.4) | 185 (23.0) |
Currently married and not living with spouse | 65 (3.1) | 6 (1.7) | 54 (2.6) | 8 (2.3) | 38 (1.9) | 11 (2.7) | 35 (2.1) | 17 (2.1) |
Unmarried or other | 727 (34.8) | 223 (61.6) | 959 (45.6) | 223 (63.5) | 949 (46.5) | 282 (68.0) | 834 (50.5) | 601 (74.8) |
Timely treatment | ||||||||
Yes | 1973 (94.3) | 318 (87.8) | 2018 (96.0) | 319 (90.9) | 1999 (98.0) | 386 (93.0) | 1614 (97.8) | 769 (95.8) |
No | 119 (5.7) | 44 (12.2) | 85 (4.0) | 32 (9.1) | 40 (2.0) | 29 (7.0) | 37 (2.2) | 34 (4.2) |
Starving in childhood | ||||||||
Yes | 1551 (74.1) | 289 (79.8) | 1553 (73.8) | 287 (81.8) | 1503 (73.7) | 337 (81.2) | 1206 (73.0) | 634 (79.0) |
No | 541 (25.9) | 73 (20.2) | 550 (26.2) | 64 (18.2) | 536 (26.3) | 78 (18.8) | 445 (27.0) | 169 (21.0) |
Vegetable and fruit intake patterns | ||||||||
V−/F− | 120 (5.7) | 56 (15.5) | 99 (4.7) | 35 (10.0) | 117 (5.7) | 61 (14.7) | 105 (6.4) | 137 (17.1) |
V+/F− | 1043 (49.9) | 194 (53.6) | 1105 (52.5) | 238 (67.8) | 1021 (50.1) | 231 (55.7) | 786 (47.6) | 397 (47.2) |
V−/F+ | 20 (1.0) | 5 (1.4) | 15 (0.7) | 7 (2.0) | 19 (0.9) | 6 (1.4) | 16 (1.0) | 14 (1.7) |
V+/F+ | 909 (43.5) | 107 (29.6) | 884 (42.0) | 71 (20.2) | 882 (43.3) | 117 (28.2) | 744 (45.1) | 273 (34.0) |
PWB | 26.54 ± 3.65 | 26.64 ± 6.59 | 27.47 ± 4.06 | 26.06 ± 5.68 | 27.26 ± 4.37 | 27.00 ± 6.74 | - | - |
Depression | ||||||||
No | - | - | 1757 (83.5) | 268 (76.4) | 1758 (86.2) | 349 (84.1) | - | - |
Yes | - | - | 346 (16.5) | 83 (23.6) | 281 (13.8) | 66 (15.9) | - | - |
All | 2092 (85.2) | 362 (14.8) | 2103 (85.7) | 351 (14.3) | 2039 (83.1) | 415 (16.9) | 1651 (67.3) | 803 (32.7) |
Factors Associated with Cognitive Function | Model 1 Unadjusted | Model 1 (T1–T4) Adjusted | Model 2 (T2–T3) Adjusted | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI of OR | OR | 95% CI of OR | OR | 95% CI of OR | ||||
LB | UB | LB | UB | LB | UB | ||||
Gender = Female (ref: Male) | 0.961 *** | 0.95 | 0.973 | 0.962 *** | 0.951 | 0.974 | 0.958 *** | 0.944 | 0.971 |
Age | 0.992 *** | 0.991 | 0.993 | 0.992 *** | 0.991 | 0.993 | 0.994 *** | 0.992 | 0.995 |
Years of schooling | 1.005 *** | 1.004 | 1.007 | 1.005 *** | 1.003 | 1.006 | 1.004 ** | 1.001 | 1.006 |
Ethnic = Others (ref: Hans) | 0.998 | 0.974 | 1.022 | 1.000 | 0.977 | 1.025 | 1.012 | 0.984 | 1.04 |
Birthplace = Rural (ref: Urban) | 0.981 * | 0.963 | 0.999 | 0.982 | 0.964 | 1.001 | 0.989 | 0.965 | 1.014 |
Living condition = Live in a nursing institution (ref: Live with family) | 0.984 | 0.872 | 1.109 | 0.983 | 0.873 | 1.106 | 0.978 | 0.898 | 1.065 |
Living condition = Live alone (ref: Live with family) | 1.016 | 0.996 | 1.036 | 1.016 | 0.996 | 1.037 | 1.021 * | 1.001 | 1.041 |
Economic self-evaluation = Good (ref: poor) | 1.012 | 0.991 | 1.034 | 0.999 | 0.978 | 1.021 | 1.018 | 0.992 | 1.044 |
Economic self-evaluation = Fair (ref: poor) | 1.006 | 0.989 | 1.023 | 0.999 | 0.982 | 1.016 | 1.004 | 0.983 | 1.026 |
Family income = Q4 (ref: Q1) | 1.009 | 0.988 | 1.03 | 1.005 | 0.984 | 1.026 | 1.003 | 0.983 | 1.023 |
Family income = Q3 (ref: Q1) | 0.999 | 0.961 | 1.038 | 0.998 | 0.96 | 1.037 | 0.982 | 0.957 | 1.007 |
Family income = Q2 (ref: Q1) | 1.013 | 0.995 | 1.03 | 1.009 | 0.992 | 1.026 | 0.994 | 0.978 | 1.01 |
Marital status = Unmarried or other (ref: currently married and living with spouse) | 0.983 * | 0.969 | 0.998 | 0.986 | 0.971 | 1.001 | 0.987 | 0.972 | 1.002 |
Marital status = Currently married and not living with spouse (ref: currently married and living with spouse) | 0.996 | 0.968 | 1.025 | 1.000 | 0.971 | 1.029 | 0.958 | 0.911 | 1.006 |
Timely treatment = No (ref: Yes) | 0.978 | 0.952 | 1.004 | 0.985 | 0.959 | 1.012 | 0.982 | 0.943 | 1.023 |
Starving in childhood = No (ref: Yes) | 1.019 ** | 1.008 | 1.031 | 1.019 ** | 1.008 | 1.03 | 1.014 * | 1.001 | 1.027 |
Vegetable and fruit intake patterns = V+/F+ (ref: V−/F−) | 1.05 ** | 1.021 | 1.08 | 1.026 * | 1.001 | 1.053 | 1.101 *** | 1.062 | 1.141 |
Vegetable and fruit intake patterns = V−/F+ (ref: V−/F−) | 1.038 | 0.978 | 1.101 | 1.028 | 0.964 | 1.097 | 0.995 | 0.869 | 1.14 |
Vegetable and fruit intake patterns = V+/F− (ref: V−/F−) | 1.036 * | 1.008 | 1.065 | 1.014 | 0.989 | 1.04 | 1.075 *** | 1.038 | 1.114 |
PWB | 1.008 *** | 1.006 | 1.01 | 1.003 ** | 1.001 | 1.005 | 1.002 * | 1 | 1.004 |
Depression = Yes (ref: No) | - | - | - | - | - | - | 0.985 | 0.967 | 1.003 |
Variable | p | OR | 95% CI of OR | |
---|---|---|---|---|
LB | UB | |||
[F = 1] ref [F = 0] | 0.189 | 0.989 | 0.972 | 1.006 |
[V = 1] ref [V = 0] | 0.348 | 1.006 | 0.994 | 1.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, A.; Wang, M.; Xu, L. Increased Intake of Vegetables and Fruits Improves Cognitive Function among Chinese Oldest Old: 10-Year Follow-Up Study. Nutrients 2023, 15, 2147. https://doi.org/10.3390/nu15092147
Qin A, Wang M, Xu L. Increased Intake of Vegetables and Fruits Improves Cognitive Function among Chinese Oldest Old: 10-Year Follow-Up Study. Nutrients. 2023; 15(9):2147. https://doi.org/10.3390/nu15092147
Chicago/Turabian StyleQin, Afei, Meiqi Wang, and Lingzhong Xu. 2023. "Increased Intake of Vegetables and Fruits Improves Cognitive Function among Chinese Oldest Old: 10-Year Follow-Up Study" Nutrients 15, no. 9: 2147. https://doi.org/10.3390/nu15092147
APA StyleQin, A., Wang, M., & Xu, L. (2023). Increased Intake of Vegetables and Fruits Improves Cognitive Function among Chinese Oldest Old: 10-Year Follow-Up Study. Nutrients, 15(9), 2147. https://doi.org/10.3390/nu15092147