Meal-Based Intervention on Health Promotion in Middle-Aged Women: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Dietary Intervention and Assessment
2.3. Measurements
2.4. Menopausal Index
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Participants
3.2. Nutrient Intake Analysis
3.3. Changes in Anthropometric and Body Composition Parameters Induced by Intervention
3.4. Alterations in Biochemical Parameters
3.5. Improvement in KI and PSQI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greendale, G.A.; Lee, N.P.; Arriola, E.R. The menopause. Lancet 1999, 353, 571–580. [Google Scholar] [CrossRef]
- Honour, J.W. Biochemistry of the menopause. Ann. Clin. Biochem. 2018, 55, 18–33. [Google Scholar] [CrossRef]
- Pugliese, G.D.; Barrea, L.D.; Laudisio, D.D.; Aprano, S.D.; Castellucci, B.D.; Framondi, L.D.; Di Matteo, R.D.; Savastano, S.P.; Colao, A.P.; Muscogiuri, G.D. Mediterranean diet as tool to manage obesity in menopause: A narrative review. Nutrition 2020, 79-80, 110991. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.A. Metabolic syndrome after menopause and the role of hormones. Maturitas 2008, 60, 10–18. [Google Scholar] [CrossRef]
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Pugliese, G.; Laudisio, D.; Colao, A.; Savastano, S.; Muscogiuri, G. Mediterranean diet as medical prescription in menopausal women with obesity: A practical guide for nutritionists. Crit. Rev. Food Sci. Nutr. 2021, 61, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Wilczek, B.; Warner, M.; Gustafsson, J.-Å.; Landgren, B.-M. Isoflavone treatment for acute menopausal symptoms. Menopause 2007, 14, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Chedraui, P.; San Miguel, G.; Schwager, G. The effect of soy-derived isoflavones over hot flushes, menopausal symptoms and mood in climacteric women with increased body mass index. Gynecol. Endocrinol. 2011, 27, 307–313. [Google Scholar] [CrossRef]
- Wangen, K.E.; Duncan, A.M.; Xu, X.; Kurzer, M.S. Soy isoflavones improve plasma lipids in normocholesterolemic and mildly hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr. 2001, 73, 225–231. [Google Scholar] [CrossRef]
- Pereira, M.A.; O’Reilly, E.; Augustsson, K.; Fraser, G.E.; Goldbourt, U.; Heitmann, B.L.; Hallmans, G.; Knekt, P.; Liu, S.; Pietinen, P. Dietary fiber and risk of coronary heart disease: A pooled analysis of cohort studies. Arch. Intern. Med. 2004, 164, 370–376. [Google Scholar] [CrossRef]
- Juntunen, K.S.; Laaksonen, D.E.; Poutanen, K.S.; Niskanen, L.K.; Mykkänen, H.M. High-fiber rye bread and insulin secretion and sensitivity in healthy postmenopausal women. Am. J. Clin. Nutr. 2003, 77, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Tardivo, A.P.; Nahas-Neto, J.; Orsatti, C.L.; Dias, F.; Poloni, P.; Schmitt, E.; Nahas, E.A. Effects of omega-3 on metabolic markers in postmenopausal women with metabolic syndrome. Climacteric 2015, 18, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Fonolla-Joya, J.; Reyes-García, R.; García-Martín, A.; López-Huertas, E.; Muñoz-Torres, M. Daily intake of milk enriched with n-3 fatty acids, oleic acid, and calcium improves metabolic and bone biomarkers in postmenopausal women. J. Am. Coll. Nutr. 2016, 35, 529–536. [Google Scholar] [CrossRef] [PubMed]
- da Silva Ferreira, T.; Torres, M.R.S.G.; Sanjuliani, A.F. Dietary calcium intake is associated with adiposity, metabolic profile, inflammatory state and blood pressure, but not with erythrocyte intracellular calcium and endothelial function in healthy pre-menopausal women. Br. J. Nutr. 2013, 110, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Van Patten, C.L.; Olivotto, I.A.; Chambers, G.K.; Gelmon, K.A.; Hislop, T.G.; Templeton, E.; Wattie, A.; Prior, J.C. Effect of soy phytoestrogens on hot flashes in postmenopausal women with breast cancer: A randomized, controlled clinical trial. J. Clin. Oncol. 2002, 20, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Murkies, A.; Lombard, C.; Strauss, B.; Wilcox, G.; Burger, H.; Morton, M. Dietary flour supplementation decreases post-menopausal hot flushes: Effect of soy and wheat. Maturitas 1995, 21, 189–195. [Google Scholar] [CrossRef]
- Germain, A.S.; Peterson, C.T.; Robinson, J.G.; Alekel, D.L. Isoflavone-rich or isoflavone-poor soy protein does not reduce menopausal symptoms during 24 weeks of treatment. Menopause 2001, 8, 17–26. [Google Scholar] [CrossRef]
- Mohammady, M.; Janani, L.; Jahanfar, S.; Mousavi, M.S. Effect of omega-3 supplements on vasomotor symptoms in menopausal women: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 228, 295–302. [Google Scholar] [CrossRef]
- Afsane, G.; Azadeh, R.; Ali, K.; Atusa, J. Efficacy of omega-3 on hot flush in perimenopausal women versus placebo. Med. Sci. 2012, 22, 221–225. [Google Scholar]
- Moghadam, R.; Ozgoli, G.; Molayi, B.; Majid, H.; Soori, H.; Ghanati, K. Effect of omega3 on vasomotor disorders in menopausal women. J. Arak Univ. Med. Sci. 2012, 15, 116–126. [Google Scholar]
- Cohen, L.S.; Joffe, H.; Guthrie, K.A.; Ensrud, K.E.; Freeman, M.; Carpenter, J.S.; Learman, L.A.; Newton, K.M.; Reed, S.D.; Manson, J.E. Efficacy of omega-3 treatment for vasomotor symptoms: A randomized controlled trial: Omega-3 treatment for vasomotor symptoms. Menopause 2014, 21, 347. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.M.; Reed, S.D.; LaCroix, A.Z.; Grothaus, L.C.; Ehrlich, K.; Guiltinan, J. Treatment of vasomotor symptoms of menopause with black cohosh, multibotanicals, soy, hormone therapy, or placebo: A randomized trial. Ann. Intern. Med. 2006, 145, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Han, K.K.; Soares, J.M., Jr.; Haidar, M.A.; De Lima, G.R.; Baracat, E.C. Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstet. Gynecol. 2002, 99, 389–394. [Google Scholar] [PubMed]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014, 37 (Suppl. S1), S120–S143. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare, The Korean Nutrition Society. Dietary Reference Intakes for Koreans: Energy and Macronutrients; Korean Nutrition Society: Sejong, Republic of Korea, 2020. [Google Scholar]
- Jeong, Y.; Lee, E.; Park, Y.J.; Kim, Y.; Kwon, O.; Kim, Y. A Review of Recent Evidence from Meal-Based Diet Interventions and Clinical Biomarkers for Improvement of Glucose Regulation. Prev. Nutr. Food Sci. 2020, 25, 9–24. [Google Scholar] [CrossRef]
- Kant, A.K.; Schatzkin, A.; Graubard, B.I.; Schairer, C. A prospective study of diet quality and mortality in women. JAMA 2000, 283, 2109–2115. [Google Scholar] [CrossRef]
- Han, K.; Yang, Y.J.; Kim, H.; Kwon, O. A modified recommended food score is inversely associated with high blood pressure in Korean adults. Nutrients 2020, 12, 3479. [Google Scholar] [CrossRef]
- KUPPERMAN, H.S.; BLATT, M.H.; WIESBADER, H.; FILLER, W. Comparative clinical evaluation of estrogenic preparations by the menopausal and amenorrheal indices. J. Clin. Endocrinol. Metab. 1953, 13, 688–703. [Google Scholar] [CrossRef]
- Omachi, T.A. Measuring sleep in rheumatologic diseases: The ESS, FOSQ, ISI, and PSQI. Arthritis Care Res. 2011, 63, S287. [Google Scholar] [CrossRef]
- Walldius, G.; de Faire, U.; Alfredsson, L.; Leander, K.; Westerholm, P.; Malmström, H.; Ivert, T.; Hammar, N. Long-term risk of a major cardiovascular event by apoB, apoA-1, and the apoB/apoA-1 ratio—Experience from the Swedish AMORIS cohort: A cohort study. PLoS Med. 2021, 18, e1003853. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; El Ghoch, M.; Colao, A.; Hassapidou, M.; Yumuk, V.; Busetto, L. European guidelines for obesity management in adults with a very low-calorie ketogenic diet: A systematic review and meta-analysis. Obes. Facts 2021, 14, 222–245. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary approaches to stop hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef]
- Russell, J.; Flood, V.; Rochtchina, E.; Gopinath, B.; Allman-Farinelli, M.; Bauman, A.; Mitchell, P. Adherence to dietary guidelines and 15-year risk of all-cause mortality. Br. J. Nutr. 2013, 109, 547–555. [Google Scholar] [CrossRef]
- Holmes, E.; Li, J.V.; Athanasiou, T.; Ashrafian, H.; Nicholson, J.K. Understanding the role of gut microbiome—host metabolic signal disruption in health and disease. Trends Microbiol. 2011, 19, 349–359. [Google Scholar] [CrossRef]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Van Der Schoot, A.; Drysdale, C.; Whelan, K.; Dimidi, E. The effect of fiber supplementation on chronic constipation in adults: An updated systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2022, 116, 953–969. [Google Scholar] [CrossRef]
- Lancaster, S.M.; Lee-McMullen, B.; Abbott, C.W.; Quijada, J.V.; Hornburg, D.; Park, H.; Perelman, D.; Peterson, D.J.; Tang, M.; Robinson, A. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe 2022, 30, 848–862.e7. [Google Scholar] [CrossRef] [PubMed]
- Hoving, L.R.; Katiraei, S.; Pronk, A.; Heijink, M.; Vonk, K.K.; Amghar-el Bouazzaoui, F.; Vermeulen, R.; Drinkwaard, L.; Giera, M.; van Harmelen, V. The prebiotic inulin modulates gut microbiota but does not ameliorate atherosclerosis in hypercholesterolemic APOE* 3-Leiden. CETP mice. Sci. Rep. 2018, 8, 16515. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choue, R.; Lim, H. Effect of soy isoflavones supplement on climacteric symptoms, bone biomarkers, and quality of life in Korean postmenopausal women: A randomized clinical trial. Nutr. Res. Pract. 2017, 11, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Nahas, E.P.; Neto, J.N.; De Luca, L.; Traiman, P.; Pontes, A.; Dalben, I. Benefits of soy germ isoflavones in postmenopausal women with contraindication for conventional hormone replacement therapy. Maturitas 2004, 48, 372–380. [Google Scholar] [CrossRef]
- Geunhee, A. Effectiveness of Exercise Education for the Diabetes Treatment. Korea J. Sport. Sci. 2008, 17, 621–629. [Google Scholar]
- Chung, S.O.; Song, O.K.; Ko, J.M.; Wi, J.H.; Lee, T.H.; Yum, J.H.; Cho, D.K.; Son, J.H.; Nam, H.W.; Yoo, H.J.; et al. The Effects of Teaching Methods on the Dietary Compliance and Hemoglobin A1c, Level in Patients with Diabetes Mellitus. J. Korean Diabetes Assoc. 2000, 24, 560–573. [Google Scholar]
- Lizcano, F.; Guzmán, G. Estrogen Deficiency and the Origin of Obesity during Menopause. BioMed. Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef]
- Sowers, M.; Zheng, H.; Tomey, K.; Karvonen-Gutierrez, C.; Jannausch, M.; Li, X.; Yosef, M.; Symons, J. Changes in body composition in women over six years at midlife: Ovarian and chronological aging. J. Clin. Endocrinol. Metab. 2007, 92, 895–901. [Google Scholar] [CrossRef]
- Barrasa, G.R.R.; Cañete, N.G.; Boasi, L.E.V. Age of postmenopause women: Effect of soy isoflavone in lipoprotein and inflammation markers. J. Menopausal Med. 2018, 24, 176–182. [Google Scholar] [CrossRef]
- Chang, C.-J.; Wu, C.-H.; Yao, W.-J.; Yang, Y.-C.; Wu, J.-S.; Lu, F.-H. Relationships of age, menopause and central obesity on cardiovascular disease risk factors in Chinese women. Int. J. Obes. 2000, 24, 1699–1704. [Google Scholar] [CrossRef]
- Zhu, D.; Li, X.; Macrae, V.E.; Simoncini, T.; Fu, X. Extragonadal effects of follicle-stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol. Metab. 2018, 29, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Rebuffé-Scrive, M.; Eldh, J.; Hafström, L.-O.; Björntorp, P. Metabolism of mammary, abdominal, and femoral adipocytes in women before and after menopause. Metabolism 1986, 35, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Villegas, R.; Gao, Y.-T.; Dai, Q.; Yang, G.; Cai, H.; Li, H.; Zheng, W.; Shu, X.O. Dietary calcium and magnesium intakes and the risk of type 2 diabetes: The Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2009, 89, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Garcia, R.; Mendoza, N.; Palacios, S.; Salas, N.; Quesada-Charneco, M.; Garcia-Martin, A.; Fonolla, J.; Lara-Villoslada, F.; Muñoz-Torres, M. Effects of daily intake of calcium and vitamin D-enriched milk in healthy postmenopausal women: A randomized, controlled, double-blind nutritional study. J. Women’s Health 2018, 27, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Cancellieri, F.; De Leo, V.; Genazzani, A.; Nappi, C.; Parenti, G.; Polatti, F.; Ragni, N.; Savoca, S.; Teglio, L.; Finelli, F. Efficacy on menopausal neurovegetative symptoms and some plasma lipids blood levels of an herbal product containing isoflavones and other plant extracts. Maturitas 2007, 56, 249–256. [Google Scholar] [CrossRef]
- Gwak, J.H.; Kim, J.Y.; Kim, H.J.; Shin, D.H.; Lee, J.H. The effect of isoflavone and gamma-linolenic acid supplementation on serum lipids and menopausal symptoms in postmenopausal women. Korean J. Nutr. 2010, 43, 123–131. [Google Scholar] [CrossRef]
- Tao, M.; Shao, H.; Li, C.; Teng, Y. Correlation between the modified Kupperman Index and the Menopause Rating Scale in Chinese women. Patient Prefer. Adherence 2013, 7, 223. [Google Scholar]
- Yun, M.-H.; Yu, S.-J.; Kim, H.-J. A study on relations between hot flush and the Kupperman’s Index, MENQOL, MRS during treatment for hot flush in menopausal women. J. Korean Obstet. Gynecol. 2011, 24, 87–98. [Google Scholar]
- Øverlie, I.; Moen, M.H.; Holte, A.; Finset, A. Androgens and estrogens in relation to hot flushes during the menopausal transition. Maturitas 2002, 41, 69–77. [Google Scholar] [CrossRef]
- Chourbaji, S.; Urani, A.; Inta, I.; Sanchis-Segura, C.; Brandwein, C.; Zink, M.; Schwaninger, M.; Gass, P. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol. Dis. 2006, 23, 587–594. [Google Scholar] [CrossRef]
- Lee, J.; Han, Y.; Cho, H.H.; Kim, M.-R. Sleep disorders and menopause. J. Menopausal Med. 2019, 25, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.P.; Hibbeln, J.R.; Silver, M.; Hirschberg, A.M.; Wang, B.; Yule, A.M.; Petrillo, L.F.; Pascuillo, E.; Economou, N.I.; Joffe, H. Omega-3 fatty acids for major depressive disorder associated with the menopausal transition: A preliminary open trial. Menopause 2011, 18, 279. [Google Scholar] [CrossRef] [PubMed]
- Hachul, H.; Brandão, L.C.; D’Almeida, V.; Bittencourt, L.R.A.; Baracat, E.C.; Tufik, S. Isoflavones decrease insomnia in postmenopause. Menopause 2011, 18, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.D.; Chantre, P.; Mares, P. Effects of a standardized soy extract on hot flushes: A multicenter, double-blind, randomized, placebo-controlled study. Menopause 2002, 9, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Pruthi, S.; Qin, R.; Terstreip, S.A.; Liu, H.; Loprinzi, C.L.; Shah, T.R.; Tucker, K.F.; Dakhil, S.R.; Bury, M.J.; Carolla, R.L. A phase III, randomized, placebo-controlled, double-blind trial of flaxseed for the treatment of hot flashes: NCCTG N08C7. Menopause 2012, 19, 48. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Participants (n = 49) |
---|---|
Age, years | 58.20 ± 4.24 |
Height, cm | 156.34 ± 5.37 |
Physical activity, kcal/day | 265.36 ± 205.94 |
Menopause | |
Post-menopause | 43 (87.80) |
Perimenopause | 5 (10.20) |
Pre-menopause | 1 (2.00) |
Sleeping history | |
Sleeping time, h | 6.31 ± 1.16 |
ISI * | 8.96 ± 5.73 |
No insomnia | 22 (44.90) |
Subthreshold insomnia | 15 (30.61) |
Clinical insomnia | 12 (24.49) |
Alcohol drinking habit | |
Current | 18 (36.70) |
Dietary history | |
MEDFICTS ** | 44.82 ± 24.47 |
Step 2 diet | 24 (48.98) |
Step 1 diet | 19 (38.78) |
RFS *** | 25.80 ± 5.93 |
Medication history | |
Antihypertensive agents | 11 (22.40) |
Lipid-lowering medication | 15 (30.60) |
Antidepressants, sedatives, anxiety pills | 1 (2.00) |
Sleeping pills | 8 (16.30) |
Dietary supplements | 1 (2.00) |
Other drugs | 19 (38.80) |
Variables | Pre | Post | Change | p-Value |
---|---|---|---|---|
Targeted nutrients | ||||
Fiber (g) | 15.05 ± 5.27 | 19.96 ± 4.26 | 4.92 ± 6.71 | <0.0001 |
Calcium (mg) | 332.61 ± 152.60 | 687.11 ± 170.30 | 354.50 ± 159.20 | <0.0001 |
Isoflavones (mg) | 13.14 ± 9.55 | 52.81 ± 18.45 | 39.67 ± 22.62 | <0.0001 |
Omega-3 fatty acids (g) | 1.09 ± 0.62 | 1.17 ± 0.31 | 0.08 ± 0.60 | 0.367 |
α-Linolenic acid 18:3 (mg) | 819.73 ± 533.52 | 836.90 ± 279.66 | 17.17 ± 589.40 | 0.841 |
Stearidonic acid 18:4 (mg) | 14.11 ± 18.39 | 11.38 ± 8.63 | −2.73 ± 17.85 | 0.295 |
Eicosapentaenoic acid 20:5 (mg) | 86.49 ± 69.48 | 133.34 ± 49.36 | 46.85 ± 73.13 | <0.0001 |
Docosahexaenoic acid 22:6 (mg) | 139.37 ± 122.10 | 161.92 ± 76.44 | 22.55 ± 116.60 | 0.187 |
Macronutrients | ||||
Energy (kcal) | 1273.48 ± 385.55 | 1577.27 ± 259.82 | 303.79 ± 416.90 | <0.0001 |
Carbohydrate (g) | 192.56 ± 56.09 | 215.71 ± 38.79 | 23.16 ± 57.35 | 0.007 |
Protein (g) | 50.14 ± 16.59 | 74.19 ± 13.42 | 24.06 ± 19.46 | <0.0001 |
Fat (g) | 34.29 ± 15.72 | 46.71 ± 11.22 | 12.43 ± 19.36 | <0.0001 |
Other nutrients | ||||
Sodium (mg) | 2552.34 ± 1252.88 | 2595.81 ± 580.40 | 43.47 ± 1177.80 | 0.799 |
Cholesterol (mg) | 268.56 ± 119.32 | 294.33 ± 80.40 | 25.77 ± 127.10 | 0.167 |
Saturated fatty acid (g) | 11.04 ± 5.78 | 10.67 ± 7.09 | −0.38 ± 7.60 | 0.734 |
Variables | Pre | Post | Change | p-Value | Effect Size |
---|---|---|---|---|---|
Anthropometric parameters | |||||
Weight (kg) | 57.98 ± 6.72 | 57.46 ± 6.67 | −0.52 ± 1.17 | 0.003 | 0.447 |
BMI (kg/m2) | 23.69 ± 2.21 | 23.52 ± 2.22 | −0.16 ± 0.49 | 0.025 | 0.330 |
Waist circumference (cm) | 79.55 ± 6.24 | 78.29 ± 6.48 | −1.27 ± 5.00 | 0.083 | 0.253 |
Hip circumference (cm) | 93.81 ± 3.82 | 94.17 ± 4.83 | 0.36 ± 4.00 | 0.528 | 0.091 |
Systolic blood pressure (mmHg) | 124.45 ± 15.21 | 124.86 ± 13.41 | 0.41 ± 12.20 | 0.816 | 0.033 |
Diastolic blood pressure (mmHg) | 72.49 ± 11.70 | 71.55 ± 8.94 | −0.94 ± 9.69 | 0.501 | 0.097 |
Body composition | |||||
Total body water (L) | 27.63 ± 3.11 | 27.46 ± 3.07 | −0.17 ± 0.73 | 0.119 | 0.227 |
Body fat (kg) | 20.38 ± 4.40 | 20.08 ± 4.65 | −0.30 ± 1.04 | 0.049 | 0.288 |
Total body fat mass (%) | 34.93 ± 4.81 | 34.70 ± 5.31 | −0.23 ± 1.50 | 0.282 | 0.155 |
Abdominal fatness (%) | 0.85 ± 0.03 | 0.85 ± 0.04 | 0.00 ± 0.02 | 0.646 | 0.430 |
Skeletal muscle mass (kg) | 20.22 ± 2.56 | 20.10 ± 2.52 | −0.11 ± 0.56 | 0.168 | 0.200 |
SMI (%) | 26.39 ± 2.16 | 26.33 ± 2.36 | −0.06 ± 0.60 | 0.502 | 0.097 |
Variables | Pre | Post | Change | p-Value | Effect Size |
---|---|---|---|---|---|
Bone turnover markers | |||||
CTx (ng/mL) | 0.40 ± 0.16 | 0.37 ± 0.14 | −0.03 ± 0.09 | 0.037 | 0.306 |
Osteocalcin (ng/mL) | 16.33 ± 4.84 | 14.25 ± 4.46 | −2.08 ± 3.09 | <0.0001 * | 0.673 |
Hormones | |||||
E2 (pg/mL) | 35.33 ± 154.83 | 12.90 ± 22.99 | −22.43 ± 153.80 | 0.312 | 0.146 |
FSH (mIU/mL) | 62.52 ± 31.30 | 59.75 ± 30.46 | −2.77 ± 10.02 | 0.059 | 0.277 |
Lipid profile | |||||
TG (mg/dL) | 120.65 ± 67.47 | 112.06 ± 106.28 | −8.59 ± 80.68 | 0.460 | 0.106 |
TC (mg/dL) | 209.78 ± 39.98 | 199.69 ± 43.38 | −10.08 ± 30.51 | 0.025 | 0.330 |
HDL-C (mg/dL) | 58.88 ± 13.62 | 59.92 ± 13.27 | 1.04 ± 8.78 | 0.411 | 0.119 |
LDL-C (mg/dL) | 134.69 ± 37.13 | 124.63 ± 37.34 | −10.06 ± 26.81 | 0.012 | 0.375 |
LDL-C/HDL-C | 2.41 ± 0.84 | 2.16 ± 0.77 | −0.25 ± 0.63 | 0.009 | 0.387 |
TC/HDL-C | 3.74 ± 1.09 | 3.46 ± 1.01 | −0.28 ± 0.84 | 0.025 | 0.330 |
hs-CRP (mg/dL) | 0.08 ± 0.08 | 0.12 ± 0.17 | 0.04 ± 0.16 | 0.113 | 0.230 |
Lp(a) (mg/dL) | 21.70 ± 20.58 | 21.99 ± 19.78 | 0.28 ± 5.35 | 0.706 | 0.054 |
ApoA1 (mg/dL) | 161.50 ± 22.03 | 149.19 ± 23.98 | −12.31 ± 18.29 | <0.0001 * | 0.673 |
ApoB (mg/dL) | 104.65 ± 24.39 | 96.20 ± 22.09 | −8.45 ± 16.82 | 0.001 * | 0.502 |
ApoB/ApoA1 | 1.65 ± 0.54 | 1.65 ± 0.54 | 0.001 ± 0.014 | 0.955 | 0.001 |
Glycemic parameters | |||||
Glucose (mg/dL) | 95.76 ± 15.62 | 91.31 ± 7.95 | −4.45 ± 16.47 | 0.065 | 0.270 |
Insulin (μU/mL) | 8.56 ± 5.16 | 7.06 ± 3.47 | −1.50 ± 4.98 | 0.040 | 0.301 |
Variables | Pre | Post | Change | p-Value | Effect Size | |
---|---|---|---|---|---|---|
KI | 14.27 ± 8.18 | 10.73 ± 7.00 | −3.53 ± 5.07 | <0.0001 * | 0.697 | |
No complaint | 9 (18.37) | 15 (30.61) | 3.7315 † | 0.292 | ||
Mild | 25 (51.02) | 22 (44.90) | ||||
Moderate | 13 (26.53) | 12 (24.49) | ||||
Severe | 2 (4.08) | 0 (0) | ||||
PSQI | 5.61 ± 2.08 | 5.06 ± 2.21 | −0.55 ± 1.78 | 0.018 | 0.310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shon, J.; Seong, Y.; Choi, Y.; Kim, Y.; Cho, M.S.; Ha, E.; Kwon, O.; Kim, Y.; Park, Y.J.; Kim, Y. Meal-Based Intervention on Health Promotion in Middle-Aged Women: A Pilot Study. Nutrients 2023, 15, 2108. https://doi.org/10.3390/nu15092108
Shon J, Seong Y, Choi Y, Kim Y, Cho MS, Ha E, Kwon O, Kim Y, Park YJ, Kim Y. Meal-Based Intervention on Health Promotion in Middle-Aged Women: A Pilot Study. Nutrients. 2023; 15(9):2108. https://doi.org/10.3390/nu15092108
Chicago/Turabian StyleShon, Jinyoung, Yehee Seong, Yeji Choi, Yeri Kim, Mi Sook Cho, Eunhee Ha, Oran Kwon, Yuri Kim, Yoon Jung Park, and Yangha Kim. 2023. "Meal-Based Intervention on Health Promotion in Middle-Aged Women: A Pilot Study" Nutrients 15, no. 9: 2108. https://doi.org/10.3390/nu15092108
APA StyleShon, J., Seong, Y., Choi, Y., Kim, Y., Cho, M. S., Ha, E., Kwon, O., Kim, Y., Park, Y. J., & Kim, Y. (2023). Meal-Based Intervention on Health Promotion in Middle-Aged Women: A Pilot Study. Nutrients, 15(9), 2108. https://doi.org/10.3390/nu15092108