Association between Nutrition and Health Knowledge and Multiple Chronic Diseases: A Large Cross-Sectional Study in Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Questionnaire and Scoring
2.3. Outcome Variable
2.4. Covariates
2.5. Quality Control
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Association of NHK with Five Specific Chronic Diseases
3.3. Association of NHK with the Number of Chronic Diseases
3.4. Stratified Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 5 April 2021).
- China Center for Disease Control and Prevention. China National Plan for NCD Prevention and Treatment (2012–2015). Available online: https://www.chinacdc.cn/en/ne/201207/t20120725_64430.html (accessed on 8 May 2012).
- He, Y.; Li, Y.; Yang, X.; Hemler, E.C.; Fang, Y.; Zhao, L.; Zhang, J.; Yang, Z.; Wang, Z.; He, L.; et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982–2012: A cross-sectional population-based study. Lancet Diabetes Endo 2019, 7, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Du, W.; Huang, F.; Jiang, H.; Bai, J.; Zhang, X.; Zhang, B.; Wang, H. Twenty-Five-Year Trends in Dietary Patterns among Chinese Adults from 1991 to 2015. Nutrients 2021, 13, 1327. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, Y.; Zeng, M.; Li, Z.; Zeng, H.; Shi, Z.; Zhao, Y. Association Between Nutrition Literacy and Overweight/Obesity of Adolescents: A Cross-Sectional Study in Chongqing, China. Front. Nutr. 2022, 9, 893267. [Google Scholar] [CrossRef]
- Chen, X.; Cheskin, L.J.; Shi, L.; Wang, Y. Americans with diet-related chronic diseases report higher diet quality than those without these diseases. J. Nutr. 2011, 141, 1543–1551. [Google Scholar] [CrossRef]
- Cutler, D.M.; Lleras-Muney, A. Understanding differences in health behaviors by education. J. Health Econ. 2010, 29, 1–28. [Google Scholar] [CrossRef]
- Li, Y.C.; Jiang, B.; Zhang, M.; Huang, Z.J.; Qian, D.E.N.G.; Zhou, M.G.; Zhao, Z.P.; Wang, Y.F.; Wang, L.M. Vegetable and Fruit Consumption among Chinese Adults and Associated Factors: A Nationally Representative Study of 170,847 Adults. Biomed. Environ. Sci. 2017, 30, 863–874. [Google Scholar] [CrossRef]
- Spronk, I.; Kullen, C.; Burdon, C.; O’Connor, H. Relationship between nutrition knowledge and dietary intake. Br. J. Nutr. 2014, 111, 1713–1726. [Google Scholar] [CrossRef]
- Kullen, C.J.; Farrugia, J.L.; Prvan, T.; O’Connor, H.T. Relationship between general nutrition knowledge and diet quality in Australian military personnel. Br. J. Nutr. 2016, 115, 1489–1497. [Google Scholar] [CrossRef]
- Bottcher, M.R.; Marincic, P.Z.; Nahay, K.L.; Baerlocher, B.E.; Willis, A.W.; Park, J.; Gaillard, P.; Greene, M.W. Nutrition knowledge and Mediterranean diet adherence in the southeast United States: Validation of a field-based survey instrument. Appetite 2017, 111, 166–176. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, Q.; Jin, S.; Cheng, G. The impact of changes in dietary knowledge on adult overweight and obesity in China. PLoS ONE 2017, 12, e0179551. [Google Scholar] [CrossRef]
- Livingstone, K.M.; McNaughton, S.A. Dietary patterns by reduced rank regression are associated with obesity and hypertension in Australian adults. Br. J. Nutr. 2017, 117, 248–259. [Google Scholar] [CrossRef]
- Aihemaitijiang, S.; Ye, C.; Halimulati, M.; Huang, X.; Wang, R.; Zhang, Z. Development and Validation of Nutrition Literacy Questionnaire for the Chinese Elderly. Nutrients 2022, 14, 1005. [Google Scholar] [CrossRef]
- Lovrić, B.; Placento, H.; Farčić, N.; Lipič Baligač, M.; Mikšić, Š.; Mamić, M.; Jovanović, T.; Vidić, H.; Karabatić, S.; Cviljević, S.; et al. Association between Health Literacy and Prevalence of Obesity, Arterial Hypertension, and Diabetes Mellitus. Int. J. Environ. Res. Public Health 2022, 19, 9002. [Google Scholar] [CrossRef]
- Hashim, S.A.; Barakatun-Nisak, M.Y.; Abu Saad, H.; Ismail, S.; Hamdy, O.; Mansour, A.A. Association of Health Literacy and Nutritional Status Assessment with Glycemic Control in Adults with Type 2 Diabetes Mellitus. Nutrients 2020, 12, 3152. [Google Scholar] [CrossRef]
- Podell, R.N.; Keller, K.; Mulvihill, M.N.; Berger, G.; Kent, D.F. Evaluation of the effectiveness of a high school course in cardiovascular nutrition. Am. J. Public Health 1978, 68, 573–576. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Shi, M.; Wang, X.; Liu, H.; Guo, S.; Tan, L.; Yang, X.; Wu, X.; Hao, L. Awareness of nutrition and health knowledge and its influencing factors among Wuhan residents. Front Public Health 2022, 10, 987755. [Google Scholar] [CrossRef]
- Lewis, J.E.; Arheart, K.L.; LeBlanc, W.G.; Fleming, L.E.; Lee, D.J.; Davila, E.P.; Caban-Martinez, A.J.; Dietz, N.A.; McCollister, K.E.; Bandiera, F.C.; et al. Food label use and awareness of nutritional information and recommendations among persons with chronic disease. Am. J. Clin. Nutr. 2009, 90, 1351–1357. [Google Scholar] [CrossRef]
- Yahia, N.; Brown, C.A.; Rapley, M.; Chung, M. Level of nutrition knowledge and its association with fat consumption among college students. BMC Public Health 2016, 16, 1047. [Google Scholar] [CrossRef]
- Rovner, A.J.; Nansel, T.R.; Mehta, S.N.; Higgins, L.A.; Haynie, D.L.; Laffel, L.M. Development and validation of the type 1 diabetes nutrition knowledge survey. Diabetes Care 2012, 35, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Panaich, S.; Steinberg, J.; Zalawadiya, S.; Kumar, A.; Aranha, A.; Cardozo, L. Use of nutrition literacy scale in elderly minority population. J. Nutr. Health Aging 2013, 17, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.L.; Gearry, R.B.; Pearson, J.; Parnell, W.; Skidmore, P.M. Dietary intake in midlife and associations with standard of living, education and nutrition literacy. N. Z. Med. J. 2014, 127, 30–40. [Google Scholar] [PubMed]
- Itzkovitz, A.; Maggio, V.; Roy-Fleming, A.; Legault, L.; Brazeau, A.S. Nutrition and food literacy among young Canadian adults living with type 1 diabetes. Diabet. Med. 2022, 39, e14921. [Google Scholar] [CrossRef] [PubMed]
- Sudore, R.L.; Mehta, K.M.; Simonsick, E.M.; Harris, T.B.; Newman, A.B.; Satterfield, S.; Rosano, C.; Rooks, R.N.; Rubin, S.M.; Ayonayon, H.N.; et al. Limited literacy in older people and disparities in health and healthcare access. J. Am. Geriatr. Soc. 2006, 54, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.S.; Gazmararian, J.A.; Baker, D.W. Health literacy and functional health status among older adults. Arch. Intern. Med. 2005, 165, 1946–1952. [Google Scholar] [CrossRef]
- Hudon, C.; Fortin, M.; Poitras, M.E.; Almirall, J. The relationship between literacy and multimorbidity in a primary care setting. BMC Fam. Pract. 2012, 13, 33. [Google Scholar] [CrossRef]
- Vozikis, A.; Drivas, K.; Milioris, K. Health literacy among university students in Greece: Determinants and association with self-perceived health, health behaviours and health risks. Arch. Public Health 2014, 72, 15. [Google Scholar] [CrossRef]
- Toçi, E.; Burazeri, G.; Kamberi, H.; Toçi, D.; Roshi, E.; Jerliu, N.; Bregu, A.; Brand, H. Health literacy and body mass index: A population-based study in a South-Eastern European country. J. Public Health 2021, 43, 123–130. [Google Scholar] [CrossRef]
- Girois, S.B.; Kumanyika, S.K.; Morabia, A.; Mauger, E. A comparison of knowledge and attitudes about diet and health among 35- to 75-year-old adults in the United States and Geneva, Switzerland. Am. J. Public Health 2001, 91, 418–424. [Google Scholar] [CrossRef]
- Zhang, F.; Or, P.P.L.; Chung, J.W.Y. How different health literacy dimensions influences health and well-being among men and women: The mediating role of health behaviours. Health Expect. 2021, 24, 617–627. [Google Scholar] [CrossRef]
- Qi, L.; Ding, X.; Tang, W.; Li, Q.; Mao, D.; Wang, Y. Prevalence and Risk Factors Associated with Dyslipidemia in Chongqing, China. Int. J. Environ. Res. Public Health 2015, 12, 13455–13465. [Google Scholar] [CrossRef]
- Li, S.; Lear, S.A.; Rangarajan, S.; Hu, B.; Yin, L.; Bangdiwala, S.I.; Alhabib, K.F.; Rosengren, A.; Gupta, R.; Mony, P.K.; et al. Association of Sitting Time With Mortality and Cardiovascular Events in High-Income, Middle-Income, and Low-Income Countries. JAMA Cardiol. 2022, 7, 796–807. [Google Scholar] [CrossRef]
- Kelly, C.; Scharff, D.; Larose, J.; Dougherty, N.L.; Hessel, A.S.; Brownson, R.C. A tool for rating chronic disease prevention and public health interventions. Prev. Chronic Dis. 2013, 10, E206. [Google Scholar] [CrossRef]
- Mackey, L.M.; Doody, C.; Werner, E.L.; Fullen, B. Self-Management Skills in Chronic Disease Management: What Role Does Health Literacy Have? Med. Decis. Making 2016, 36, 741–759. [Google Scholar] [CrossRef]
- Paasche-Orlow, M.K.; Wolf, M.S. The causal pathways linking health literacy to health outcomes. Am. J. Health Behav. 2007, 31 (Suppl. S1), S19–S26. [Google Scholar] [CrossRef]
- Gómez-Donoso, C.; Martínez-González, M.; Martínez, J.A.; Sayón-Orea, C.; de la Fuente-Arrillaga, C.; Bes-Rastrollo, M. Adherence to dietary guidelines for the Spanish population and risk of overweight/obesity in the SUN cohort. PLoS ONE 2019, 14, e0226565. [Google Scholar] [CrossRef]
- Dickson-Spillmann, M.; Siegrist, M. Consumers’ knowledge of healthy diets and its correlation with dietary behaviour. J. Hum. Nutr. Diet. 2011, 24, 54–60. [Google Scholar] [CrossRef]
Variables | Overall | Tertiles of the Level of Nutrition and Health Knowledge | p Value b | ||
---|---|---|---|---|---|
T1 (n = 7414) | T2 (n = 7058) | T3 (n = 7087) | |||
NHK score | 67.0 (57.0, 74.0) | 51.5 (44.0, 57.0) | 67.0 (64.5, 69.5) | 77.0 (74.0, 80.5) | <0.001 |
Age (years) | 39.5 ± 12.3 | 39.9 ± 12.8 | 39.3 ± 12.3 | 39.1 ± 11.8 | <0.001 |
Gender | <0.001 | ||||
Male | 10,219 (47.4) | 3922 (52.9) | 3303 (46.8) | 2994 (42.2) | |
Female | 11,340 (52.6) | 3492 (47.1) | 3755 (53.2) | 4093 (57.8) | |
Education level | <0.001 | ||||
Junior school diploma or below | 4127 (19.1) | 1977 (26.7) | 1262 (17.9) | 888 (12.5) | |
High school diploma | 5249 (24.3) | 2055 (27.7) | 1780 (25.2) | 1414 (20.0) | |
Junior college diploma | 4927 (22.9) | 1646 (22.2) | 1648 (23.3) | 1633 (23.0) | |
Bachelor’s degree or above | 7256 (33.7) | 1736 (23.4) | 2368 (33.6) | 3152 (44.5) | |
Occupation | <0.001 | ||||
Medical workers | 2754 (12.8) | 1066 (14.4) | 742 (10.5) | 946 (13.3) | |
Catering service workers | 907 (4.2) | 429 (5.8) | 290 (4.1) | 188 (2.7) | |
Other health-related workers | 452 (2.1) | 232 (3.1) | 114 (1.6) | 106 (1.5) | |
Educational workers | 1800 (8.3) | 461 (6.2) | 627 (8.9) | 712 (10.0) | |
Others | 15,646 (72.6) | 5226 (70.5) | 5285 (74.9) | 5135 (72.5) | |
Residence | <0.001 | ||||
Downtown area | 10,912 (50.6) | 3392 (45.8) | 3532 (50.0) | 3988 (56.3) | |
Remote area | 10,647 (49.4) | 4022 (54.2) | 3526 (50.0) | 3099 (43.7) | |
Knowledge acquisition from an app | 17,308 (80.3) | 5363 (72.3) | 5901 (83.6) | 6044 (85.3) | <0.001 |
Educational activities | 4825 (22.4) | 1302 (17.6) | 1491 (21.1) | 2032 (28.7) | <0.001 |
Diabetes/hyperglycemia | 1064 (4.9) | 517 (7.0) | 315 (4.5) | 232 (3.3) | <0.001 |
Hypertension | 3123 (14.5) | 1421 (19.2) | 939 (13.3) | 763 (10.8) | <0.001 |
Dyslipidemia | 1648 (7.6) | 522 (7.0) | 543 (7.7) | 583 (8.2) | 0.027 |
Coronary heart disease | 354 (1.6) | 210 (2.8) | 81 (1.1) | 63 (0.9) | <0.001 |
Stroke | 143 (0.7) | 93.0 (1.3) | 33.0 (0.5) | 17.0 (0.2) | <0.001 |
0 of 5 chronic diseases | 16,507 (76.0) | 5205 (70.2) | 5561 (78.8) | 5741 (81.0) | <0.001 |
1 of 5 chronic diseases | 4103 (19.0) | 1802 (24.3) | 1197 (17.0) | 1104 (15.6) | <0.001 |
2 of 5 chronic diseases | 742 (3.4) | 320 (4.3) | 229 (3.2) | 193 (2.7) | <0.001 |
3 or more of 5 chronic diseases | 207 (1.0) | 87 (1.2) | 71 (1.0) | 49 (0.7) | 0.011 |
Model | Diabetes/Hyperglycemia | Hypertension | Dyslipidemia | Coronary Heart Disease | Stroke |
---|---|---|---|---|---|
Crude model | |||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
T2 | 0.62 (0.54, 0.72) | 0.65 (0.59, 0.71) | 1.10 (0.97, 1.25) | 0.40 (0.31, 0.52) | 0.37 (0.25, 0.55) |
T3 | 0.45 (0.39, 0.53) | 0.51 (0.46, 0.56) | 1.18 (1.05, 1.34) | 0.31 (0.23, 0.41) | 0.19 (0.11, 0.32) |
p-trend b | <0.001 | <0.001 | 0.007 | <0.001 | <0.001 |
Per SD increase | 0.67 (0.64, 0.71) | 0.75 (0.72, 0.77) | 1.01 (0.96, 1.06) | 0.54 (0.49, 0.59) | 0.44 (0.38, 0.51) |
p value | <0.001 | <0.001 | 0.841 | <0.001 | <0.001 |
Adjusted model c | |||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
T2 | 0.69 (0.59, 0.80) | 0.70 (0.63, 0.77) | 1.05 (0.92, 1.20) | 0.45 (0.35, 0.59) | 0.45 (0.30, 0.68) |
T3 | 0.50 (0.42, 0.59) | 0.56 (0.50, 0.62) | 1.03 (0.90, 1.17) | 0.35 (0.26, 0.47) | 0.24 (0.14, 0.41) |
p-trend | <0.001 | <0.001 | 0.667 | <0.001 | <0.001 |
Per SD increase | 0.70 (0.66, 0.74) | 0.77 (0.74, 0.80) | 0.96 (0.91, 1.01) | 0.56 (0.51, 0.62) | 0.50 (0.43, 0.58) |
p value | <0.001 | <0.001 | 0.099 | <0.001 | <0.001 |
Model | Total | Diabetes/ Hyperglycemia | Hypertension | Dyslipidemia | Coronary Heart Disease | Stroke |
---|---|---|---|---|---|---|
Crude model | ||||||
Unawareness | 16,572 (76.9) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Awareness | 4987 (23.1) | 0.51 (0.43, 0.61) | 0.60 (0.55, 0.67) | 1.20 (1.07, 1.35) | 0.46 (0.33, 0.63) | 0.33 (0.19, 0.59) |
p-trend b | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | |
Adjusted model c | ||||||
Unawareness | 16,572 (76.9) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Awareness | 4987 (23.1) | 0.56 (0.46, 0.67) | 0.65 (0.58, 0.72) | 1.07 (0.95, 1.21) | 0.52 (0.37, 0.72) | 0.41 (0.23, 0.73) |
p-trend | <0.001 | <0.001 | 0.283 | <0.001 | 0.003 |
Model | Number of Chronic Diseases | ||
---|---|---|---|
1 | 2 | ≥3 | |
Crude model | |||
T1 | 1.00 | 1.00 | 1.00 |
T2 | 0.62 (0.57, 0.68) | 0.67 (0.56, 0.80) | 0.76 (0.56, 1.05) |
T3 | 0.56 (0.51, 0.60) | 0.55 (0.46, 0.66) | 0.51 (0.36, 0.73) |
p-trend b | <0.001 | <0.001 | <0.001 |
Per SD increase | 0.71 (0.68, 0.73) | 0.75 (0.70, 0.80) | 0.74 (0.65, 0.84) |
p value | <0.001 | <0.001 | <0.001 |
Adjusted model c | |||
T1 | 1.00 | 1.00 | 1.00 |
T2 | 0.66 (0.61, 0.73) | 0.68 (0.56, 0.81) | 0.76 (0.55, 1.05) |
T3 | 0.59 (0.54, 0.65) | 0.54 (0.44, 0.65) | 0.45 (0.31, 0.65) |
p-trend b | <0.001 | <0.001 | <0.001 |
Per SD increase | 0.71 (0.69, 0.74) | 0.73 (0.67, 0.78) | 0.70 (0.61, 0.80) |
p value | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wu, Y.; Shi, M.; He, Z.; Hao, L.; Wu, X. Association between Nutrition and Health Knowledge and Multiple Chronic Diseases: A Large Cross-Sectional Study in Wuhan, China. Nutrients 2023, 15, 2096. https://doi.org/10.3390/nu15092096
Wang S, Wu Y, Shi M, He Z, Hao L, Wu X. Association between Nutrition and Health Knowledge and Multiple Chronic Diseases: A Large Cross-Sectional Study in Wuhan, China. Nutrients. 2023; 15(9):2096. https://doi.org/10.3390/nu15092096
Chicago/Turabian StyleWang, Shanshan, Yating Wu, Mengdie Shi, Zhenyu He, Liping Hao, and Xiaomin Wu. 2023. "Association between Nutrition and Health Knowledge and Multiple Chronic Diseases: A Large Cross-Sectional Study in Wuhan, China" Nutrients 15, no. 9: 2096. https://doi.org/10.3390/nu15092096
APA StyleWang, S., Wu, Y., Shi, M., He, Z., Hao, L., & Wu, X. (2023). Association between Nutrition and Health Knowledge and Multiple Chronic Diseases: A Large Cross-Sectional Study in Wuhan, China. Nutrients, 15(9), 2096. https://doi.org/10.3390/nu15092096