Inverse Correlation of Superoxide Dismutase and Catalase with Type 2 Diabetes among Rural Thais
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric Measurements
2.3. Biochemical Analysis
2.4. Antioxidant Enzyme Measurements
2.5. Vitamin Measurements
2.6. Dietary Assessment
2.7. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Associations of Antioxidant Enzyme Activities and Vitamin Status with T2D Risk
3.3. Associations between Antioxidant Enzyme Activity and T2D Risk Stratified According to Diabetes Risk Factors
3.4. Synergetic Effects of Antioxidant Enzyme Activity on T2D Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef]
- Division of Non Communicable Diseases. NCD. Available online: http://www.thaincd.com/2016/mission/documents-detail.php?id=14220&tid=32&gid=1-020วันที่ (accessed on 10 September 2021).
- Pejin, R.; Popović, D.; Tanackov, I.; Bjelica, A.; Tomic-Naglic, D.; Jovanovia, A.; Stokic, E. The synergistic action of antioxidative enzymes—Correlations of catalase and superoxide dismutase in the development and during the treatment of type 2 diabetes. Srp. Arh. Celok. Lek. 2019, 147, 286–294. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Kolesnikova, L.I.; Kolesnikov, S.I. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull. Exp. Biol. Med. 2021, 71, 179–189. [Google Scholar]
- Hou, Y.; Lin, M.; Qiu, X.; He, M.; Zhang, Y.; Guo, F. Effect of Type-2 Diabetes Mellitus in Retinopathy Patients on MDA, SOD Activity and its Correlation with HbA1c. Braz. Arch. Biol. Technol. 2021, 64, e21200075. [Google Scholar] [CrossRef]
- Ghasemi-Dehnoo, M.; Amini-Khoei, H.; Lorigooini, Z.; Rafieian-Kopaei, M. Oxidative stress and antioxidants in diabetes mellitus. Asian Pac. J. Trop. Med. 2020, 13, 431–438. [Google Scholar]
- Haddad, N.I.A.; Nori, E.; Ali, S.H. The Effect of Type Two Diabetes Mellitus on Superoxide Dismutase (SOD) activity and its correlation with HbA1c in Iraqi Patients. Int. J. Eng. Res. 2016, 2, 7–15. [Google Scholar]
- Pieme, C.A.; Tatangmo, J.A.; Simo, G.; Biapa Nya, P.C.; Ama Moor, V.J.; Moukette Moukette, B.; Tankeu Nzufo, F.; Njinkio Nono, B.L.; Sobngwi, E. Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes. BMC Res. Notes 2017, 10, 141. [Google Scholar] [CrossRef]
- Omoruyi, F.; Sparks, J.; Stennett, D.; Dilworth, L. Superoxide dismutase as a measure of antioxidant status and its application to diabetes. In Diabetes, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 409–417. [Google Scholar]
- Fei, Z.; Gao, W.; Xu, X.; Sheng, H.; Qu, S.; Cui, R. Serum superoxide dismutase activity: A sensitive, convenient, and economical indicator associated with the prevalence of chronic type 2 diabetic complications, especially in men. Free Radic. Res. 2021, 55, 275–280. [Google Scholar] [CrossRef]
- Nwakulite, A.; Obeagu, E.I.; Eze, R.; Vincent, C.C.N.; Chukwurah, E.F.; Okafor, C.J.; Ubekwe, A.M.; Adike, C.N.; Chukwuani, U.; Ifionu, B.I. Evaluation of Catalase and Manganese in Type 2 Diabetic Patients in University of Port Harcourt Teaching Hospital. J. Pharm. Res. Int. 2021, 33, 40–45. [Google Scholar] [CrossRef]
- Karolina, G.; Aleksandra, D.; Natalia, J.; Ewa, O.B. Considering the Role of Vitamin A in Glucose Metabolism. J. Endocrinol. Diabetes 2018, 5, 1–4. [Google Scholar]
- Zhang, C.; Li, K.; Zhang, J.; Kuang, X.; Liu, C.; Deng, Q.; Li, D. Relationship between retinol and risk of diabetic retinopathy: A case-control study. Asia Pac. J. Clin. Nutr. 2019, 28, 607–613. [Google Scholar] [PubMed]
- Said, E.; Mousa, S.; Fawzi, M.; Sabry, N.A.; Farid, S. Combined effect of high-dose vitamin A, vitamin E supplementation, and zinc on adult patients with diabetes: A randomized trial. J. Adv. Res. 2020, 28, 27–33. [Google Scholar] [CrossRef]
- Daniega, D.R. The Role of Vitamin a in the Control of Hyperglycemia in Type 2 Diabetes Mellitus: A Narrative Review. Assoc. J. Health Sci. 2022, 1, 1–5. [Google Scholar] [CrossRef]
- Asbaghi, O.; Nazarian, B.; Yousefi, M.; Anjom-Shoae, J.; Rasekhi, H.; Sadeghi, O. Effect of vitamin E intake on glycemic control and insulin resistance in diabetic patients: An updated systematic review and meta-analysis of randomized controlled trials. Nutr. J. 2023, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Phosat, C.; Panprathip, P.; Chumpathat, N.; Prangthip, P.; Chantratita, N.; Soonthornworasiri, N.; Puduang, S.; Kwanbunjan, K. Elevated C-reactive protein, interleukin 6, tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais: A cross-sectional study. BMC Endocr. Disord. 2017, 17, 44. [Google Scholar] [CrossRef] [PubMed]
- Taderegew, M.M.; Emeria, M.S.; Zegeye, B. Association of glycemic control and anthropometric measurement among type 2 diabetes mellitus: A cross-sectional study. Diabetol. Int. 2021, 12, 356–363. [Google Scholar] [CrossRef]
- Cyuńczyk, M.; Zujko, M.E.; Jamiołkowski, J.; Zujko, K.; Łapińska, M.; Zalewska, M.; Kondraciuk, M.; Witkowska, A.M.; Kamiński, K.A. Dietary Total Antioxidant Capacity Is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population. Antioxidants 2022, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Kyrou, I.; Tsigos, C.; Mavrogianni, C.; Cardon, G.; Van Stappen, V.; Latomme, J.; Kivelä, J.; Wikström, K.; Tsochev, K.; Nanasi, A.; et al. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: A narrative review with emphasis on data from Europe. BMC Endocr. Disord. 2020, 20, 134. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, S.; Kluttig, A.; Tiller, D.; Fricke, J.; Müller, G.; Schipf, S.; Völzke, H.; Schunk, M.; Meisinger, C.; Schienkiewitz, A.; et al. Anthropometric markers and their association with incident type 2 diabetes mellitus: Which marker is best for prediction? Pooled analysis of four German population-based cohort studies and comparison with a nationwide cohort study. BMJ Open 2016, 6, e009266. [Google Scholar] [CrossRef]
- Ismail, L.; Materwala, H.; Al Kaabi, J. Association of risk factors with type 2 diabetes: A systematic review. Comput. Struct. Biotechnol. J. 2021, 19, 1759–1785. [Google Scholar] [CrossRef]
- Garbutt, J.; England, C.; Jones, A.G.; Andrews, R.C.; Salway, R.; Johnson, L. Is glycaemic control associated with dietary patterns independent of weight change in people newly diagnosed with type 2 diabetes? Prospective analysis of the Early-ACTivity-In-Diabetes trial. BMC Med. 2022, 20, 161. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Ming-wei, L.; Qi-qiang, H.; Larsson, S.C. Egg, cholesterol and protein intake and incident type 2 diabetes mellitus: Results of repeated measurements from a prospective cohort study. Clin. Nutr. 2021, 40, 4180–4186. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Unnikrishnan, R.; Shobana, S.; Malavika, M.; Anjana, R.M.; Sudha, V. Are excess carbohydrates the main link to diabetes & its complications in Asians? Indian J. Med. Res. 2018, 148, 531–538. [Google Scholar] [PubMed]
- Farooq, D.M.; Alamri, A.F.; Alwhahabi, B.K.; Metwally, A.M.; Kareem, K.A. The status of zinc in type 2 diabetic patients and its association with glycemic control. J. Fam. Community Med. 2020, 27, 29–36. [Google Scholar] [CrossRef]
- Ke, Q.; Chen, C.; He, F.; Ye, Y.; Bai, X.; Cai, L.; Xia, M. Association between dietary protein intake and type 2 diabetes varies by dietary pattern. Diabetol. Metab. Syndr. 2018, 15, 48. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, L.; Liu, H.; Zhang, S.; Tian, H.; Shen, Y.; Tuomilehto, J.; Yu, Z.; Yang, X.; Hu, G.; et al. β-Cell function or insulin resistance was associated with the risk of type 2 diabetes among women with or without obesity and a history of gestational diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001060. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef]
- Mandal, M.; Varghese, A.; Gaviraju, V.K.; Talwar, S.N.; Malini, S.S. Impact of hyperglycaemia on molecular markers of oxidative stress and antioxidants in type 2 diabetes mellitus. Clin. Diabetol. 2019, 8, 215–222. [Google Scholar] [CrossRef]
- Lipa, M.; Madhusmita, B.; Ajay, P. A study to assess serum levels of superoxide dismutase and catalase in senile cataract patients with and without diabetes mellitus at tertiary care hospital. Int. J. Res. Med. Sci. 2016, 4, 3714–3716. [Google Scholar] [CrossRef]
- Zhao, J.S.; Jin, H.X.; Gao, J.L.; Pu, C.; Zhang, P.; Huang, J.J.; Cheng, L.; Feng, G. Serum Extracellular Superoxide Dismutase Is Associated with Diabetic Retinopathy Stage in Chinese Patients with Type 2 Diabetes Mellitus. Dis. Markers 2018, 2018, 8721379. [Google Scholar] [CrossRef]
- Góth, L.; Nagy, T.; Paragh, G.; Káplár, M. Blood Catalase Activities, Catalase Gene Polymorphisms and Acatalasemia Mutations in Hungarian Patients with Diabetes Mellitus. Glob. J. Obes. Diabetes Metab. Syndr. 2016, 3, 1–5. [Google Scholar] [CrossRef]
- Palekar, A.V.; Ray, K.S. Oxidative stress in patients with diabetes mellitus. J. Diabetes Metab. Disord. Control 2016, 3, 138–143. [Google Scholar]
- Lotfi, A.; Shapourabadi, M.A.; Kachuei, A.; Saneei, P.; Alavi Naeini, A. Assessment and comparison of the antioxidant defense system in patients with type 2 diabetes, diabetic nephropathy and healthy people: A case-control study. Clin. Nutr. ESPEN 2020, 37, 173–177. [Google Scholar] [CrossRef]
- Dworzański, J.; Strycharz-Dudziak, M.; Kliszczewska, E.; Kiełczykowska, M.; Dworzańska, A.; Drop, B.; Polz-Dacewicz, M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS ONE 2020, 15, e0230374. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Lin, L.; Han, N.; Zhao, Z.; Liu, Z.; Luo, S.; Xu, X.; Liu, J.; Wang, H. Plasma retinol-binding protein 4 in the first and second trimester and risk of gestational diabetes mellitus in Chinese women: A nested case-control study. Nutr. Metab. 2020, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, M.I.; Habibzadeh, S.; Shahbazzadegan, B.; Mazani, M.; Bigdeli, A.; Shahbazi, A. Vitamin E levels in patients with controlled and uncontrolled type 2 diabetes mellitus. Int. J. Community Med. Public Health 2018, 5, 864–870. [Google Scholar] [CrossRef]
- Trasino, S.E.; Gudas, L.J. Vitamin A: A missing link in diabetes? Diabetes Manag. 2015, 5, 359–367. [Google Scholar] [CrossRef]
- Department of Health, Ministry of Public Health. Dietary Reference Intake for Thais 2020, 1st ed.; Department of Health, Ministry of Public Health: Bangkok, Thailand, 2020; pp. 133–165. [Google Scholar]
- Talukder, A.; Hossain, M.Z. Prevalence of Diabetes Mellitus and Its Associated Factors in Bangladesh: Application of Two-level Logistic Regression Model. Sci. Rep. 2020, 10, 10237. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 3611–3616. [Google Scholar] [CrossRef]
- Alghazeer, R.; Alghazir, N.; Awayn, N.; Ahtiwesh, O.; Ibnosina, S.E. Biomarkers of Oxidative Stress and Antioxidant Defense in Patients with Type 1 Diabetes Mellitus. J. Med. Biomed. Sci. 2018, 10, 198–204. [Google Scholar] [CrossRef]
- Awadallah, S.; Hasan, H.; Attlee, A.; Raigangar, V.; Unnikannan, H.; Madkour, M.; Abraham, M.S.; Rashid, L.M. Waist circumference is a major determinant of oxidative stress in subjects with and without metabolic syndrome. Diabetes Metab. Syndr. 2019, 13, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zheng, X.; Wen, X.; Zhong, J.; Zhou, Y.; Xu, L. Visceral fat correlates with insulin secretion and sensitivity independent of BMI and subcutaneous fat in Chinese with type 2 diabetes. Front. Endocrinol. 2023, 14, 1144834. [Google Scholar] [CrossRef] [PubMed]
- Perego, C.; Da Dalt, L.; Pirillo, A.; Galli, A.; Catapano, A.L.; Norata, G.D. Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.S.; Lee, H.J.; Jeong, H.R.; Shim, Y.S.; Kang, M.J.; Hwang, I.T. Triglyceride glucose index is superior biomarker for predicting type 2 diabetes mellitus in children and adolescents. Endocr. J. 2022, 69, 559–565. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dudzińska, W.; Pluta, W. Antioxidant Enzyme Activity and Serum HSP70 Concentrations in Relation to Insulin Resistance and Lipid Profile in Lean and Overweight Young Men. Antioxidants 2023, 12, 655. [Google Scholar] [CrossRef]
Variables | Control Group (n = 55) | T2D Group (n = 47) | p Value |
---|---|---|---|
Gender (n, %) | 0.579 | ||
Male | 18 (32.7) | 13 (27.7) | |
Female | 37 (67.3) | 34 (72.3) | |
Age (years) | 44 (35, 60) | 48 (35, 66) | 0.013 |
Age classification (n, %) | 0.019 | ||
≤40 | 13 (23.6) | 6 (12.8) | |
41–50 | 34 (61.8) | 23 (48.9) | |
≥51 | 8 (14.5) | 18 (38.3) | |
Education level (n, %) | 0.242 | ||
Primary school or below | 43 (78.2) | 39 (83.0) | |
Secondary school | 11 (20.0) | 5 (10.6) | |
Vocational college or above | 1 (1.8) | 3 (6.4) | |
Occupation (n, %) | 0.648 | ||
Agriculture | 21 (38.2) | 21 (44.7) | |
Salaried | 25 (45.5) | 21 (44.7) | |
Others | 9 (16.4) | 5 (10.6) | |
Cigarette smoking (n, %) | 0.367 | ||
Never and former smokers | 16 (29.1) | 10 (21.3) | |
Current smokers | 39 (70.9) | 37 (78.7) | |
Alcohol intake (n, %) | 0.761 | ||
No | 23 (41.8) | 22 (46.8) | |
Yes | 32 (58.2) | 25 (53.2) | |
Physical activity (n, %) | 0.292 | ||
Rarely/never | 19 (34.5) | 9 (19.1) | |
1–2 times/week | 6 (10.9) | 6 (12.8) | |
3–4 times/week | 5 (9.1) | 5 (10.6) | |
≥5 times/week | 25 (45.5) | 27 (57.4) | |
Family history of diabetes (n, %) | 0.024 | ||
No | 39 (70.9) | 22 (46.8) | |
Yes | 16 (29.1) | 25 (53.2) |
Variables | Control Group (n = 55) | T2D Group (n = 47) | p Value |
---|---|---|---|
Weight (kg) | 57.95 (39.25, 86.65) | 68.25 (41.60, 108.65) | 0.001 |
Height (cm) | 157 (143, 174) | 156 (146, 172) | 0.144 |
SBP (mmHg) | 120 (91, 158) | 129 (99, 181) | 0.039 |
DBP (mmHg) | 76 (49, 96) | 79 (51, 98) | 0.025 |
BMI (kg/m2) | 24.02 (17.34, 30.96) | 27.23 (17.52, 43.80) | <0.001 |
AC (cm) | 80.50 (69.00, 101.50) | 93.00 (73.10, 121.30) | <0.001 |
WC (cm) | 80.00 (65.00, 102.50) | 89.00 (70.00, 115.00) | <0.001 |
HC (cm) | 93.00 (77.50, 110.00) | 98.00 (77.00, 127.50) | 0.019 |
WHR | 0.85 (0.72, 1.00) | 0.90 (0.74, 1.01) | <0.001 |
Body fat (%) | 28.30 (16.40, 40.00) | 34.60 (6.80, 44.80) | <0.001 |
Visceral fat (%) | 7.50 (2.00, 33.10) | 11.50 (2.00, 40.50) | <0.001 |
Trunk fat (%) | 20.60 (9.20, 33.10) | 27.50 (5.30, 42.20) | 0.001 |
Muscle mass (%) | 25.70 (21.80, 33.70) | 23.50 (14.60, 36.70) | <0.001 |
Total energy (kcal/day) | 2022.6 (792.4, 7589.5) | 2304.6 (566.5, 5910.9) | 0.658 |
Protein (g/day) | 63.1 (27.3, 291.8) | 65.8 (15.3, 203.9) | 0.913 |
Fat (g/day) | 51.9 (14.2, 254.0) | 54.5 (7.8, 195.9) | 0.849 |
Carbohydrate (g/day) | 316.6 (109.1, 1187.0) | 373.6 (76.1, 952.2) | 0.562 |
Dietary fiber (g/day) | 9.5 (2.6, 41.8) | 10.3 (1.6, 47.8) | 0.970 |
Cholesterol (mg/day) | 256.4 (11.1, 1246.0) | 263.9 (1.3, 626.0) | 0.562 |
Vitamin A (µg/day) | 519.5 (78.3, 2798.4) | 666.0 (100.1, 3429.5) | 0.460 |
Vitamin E (mg/day) | 0.2 (0.0, 1.2) | 0.2 (0.0, 1.3) | 0.956 |
Iron (mg/day) | 11.8 (5.5, 44.3) | 13.4 (3.2, 48.4) | 0.480 |
Zinc (mg/day) | 2.2 (0.3, 12.2) | 2.1 (0.2, 7.4) | 0.655 |
Variables | Control Group (n = 55) | T2D Group (n = 47) | p Value |
---|---|---|---|
FBG (mg/dL) | 87 (65, 98) | 110 (69, 261) | <0.001 |
2-h BG (mg/dL) | 103 (42, 176) | 207 (85, 480) | <0.001 |
HbA1c (%) | 5.3 (3.3, 6.1) | 5.9 (4.5, 10.7) | <0.001 |
HOMA-IR | 1.16 (0.01, 2.72) | 1.60 (0.15, 17.81) | <0.001 |
HOMA-β | 86.17 (0.66, 341.47) | 44.55 (7.81, 188.62) | <0.001 |
TG (mg/dL) | 102 (43, 601) | 148 (64, 694) | 0.002 |
HDL-C (mg/dL) | 56 (19, 118) | 52 (3, 114) | 0.027 |
LDL-C (mg/dL) | 122 (60, 233) | 126 (54, 303) | 0.987 |
Total cholesterol (mg/dL) | 203 (9, 335) | 206 (77, 368) | 0.917 |
SOD (%) | 82.35 (16.67, 164.71) | 77.93 (11.76, 123.53) | 0.048 |
CAT (nmol/min/mL) | 16.63 (0.23, 82.70) | 6.56 (0.23, 58.79) | 0.030 |
Vitamin A (mg/L) | 0.62 (0.28, 0.94) | 0.64 (0.28, 1.10) | 0.867 |
Vitamin E (mg/L) | 10.43 (6.47, 15.60) | 10.83 (4.32, 17.92) | 0.951 |
Variables | No. of T2D (%) | ORs (95% CIs) | |||||
---|---|---|---|---|---|---|---|
Crude | p Value | Model 1 | p Value | Model 2 | p Value | ||
Antioxidant enzyme activities | |||||||
Quartiles of SOD (%) | |||||||
Q1 | 14 (51.9) | 4.04 (1.06–15.37) | 0.041 | 4.46 (1.09–18.23) | 0.037 | 4.77 (1.01–22.40) | 0.047 |
Q2 | 12 (46.2) | 3.21 (0.84–12.35) | 0.089 | 3.08 (0.76–12.42) | 0.113 | 3.05 (0.65–14.29) | 0.157 |
Q3 | 16 (55.2) | 4.61 (1.22–17.34) | 0.024 | 4.53 (1.15–17.87) | 0.031 | 6.12 (1.30–28.83) | 0.022 |
Q4 | 4 (21.1) | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) | |||
Quartiles of CAT (nmol/min/mL) | |||||||
Q1 | 17 (68.0) | 3.77 (1.17–12.19) | 0.026 | 4.38 (1.24–15.48) | 0.022 | 4.22 (1.07–16.60) | 0.039 |
Q2 | 11 (42.3) | 1.30 (0.42–4.02) | 0.645 | 1.46 (0.44–4.77) | 0.527 | 1.27 (0.34–4.72) | 0.712 |
Q3 | 10 (38.5) | 1.11 (0.35–3.46) | 0.856 | 1.00 (0.30–3.32) | 0.996 | 0.93 (0.24–3.55) | 0.917 |
Q4 | 9 (36.0) | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) | |||
Vitamin status | |||||||
Quartiles of vitamin A (mg/L) | |||||||
Q1 | 14 (56.0) | 1.38 (0.44–4.32) | 0.811 | 1.43 (0.42–4.82) | 0.560 | 1.33 (0.33–5.29) | 0.679 |
Q2 | 10 (38.5) | 0.68 (0.21–2.12) | 0.509 | 0.66 (0.19–2.20) | 0.502 | 0.62 (0.16–2.40) | 0.490 |
Q3 | 12 (44.4) | 0.87 (0.28–2.66) | 0.572 | 0.91 (0.285–2.95) | 0.886 | 0.81 (0.23–2.87) | 0.750 |
Q4 | 11 (47.8) | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) | |||
Quartiles of Vitamin E (mg/L) | |||||||
Q1 | 12 (48.0) | 0.79 (0.26–2.39) | 0.683 | 0.81 (0.24–2.72) | 0.744 | 1.04 (0.26–4.14) | 0.954 |
Q2 | 11 (42.3) | 1.17 (0.38–3.56) | 0.777 | 1.54 (0.46–5.14) | 0.477 | 2.11 (0.49–9.01) | 0.313 |
Q3 | 13 (52.0) | 0.85 (0.28–2.59) | 0.777 | 0.81 (0.24–2.70) | 0.732 | 0.85 (0.20–3.52) | 0.827 |
Q4 | 11 (44.0) | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
Variables | No. of T2D (%) | SOD (%) | CAT (nmol/min/mL) | ||
---|---|---|---|---|---|
Adjusted | Adjusted | ||||
ORs | CIs | ORs | CIs | ||
Age (years) a | |||||
Low | 17 (36.2) | 2.31 | (0.13–40.50) | 24.91 | (1.46–422.83) * |
High | 30 (54.5) | 6.61 | (0.89–48.97) | 1.67 | (0.30–9.13) |
BMI (kg/m2) | |||||
Low | 12 (26.1) | 1.06 | (0.03–31.78) | 3.26 | (0.27–38.32) |
High | 35 (62.5) | 7.53 | (1.06–53.49) * | 5.14 | (0.66–39.55) |
Physical activity | |||||
Low | 15 (37.5) | 5.36 | (0.25–114.86) | 42.14 | (1.17–1516.03) * |
High | 32 (51.6) | 4.96 | (0.68–36.28) | 1.39 | (0.26–7.50) |
Body fat (%) | |||||
Low | 16 (31.4) | 5.67 | (0.35–91.72) | 10.83 | (1.07–109.11) * |
High | 31 (60.8) | 3.84 | (0.45–32.33) | 1.46 | (0.17–12.39) |
Visceral fat (%) | |||||
Low | 14 (28.0) | 68.18 | (1.55–1995.89) * | 1.75 | (0.21–14.13) |
High | 33 (63.5) | 4.09 | (0.56–29.68) | 11.58 | (1.17–114.33) * |
HOMA-IR | |||||
Low | 13 (25.5) | 0.56 | (0.03–9.01) | 2.59 | (0.32–21.13) |
High | 34 (66.7) | 15.70 | (1.81–136.32) * | 10.43 | (1.03–105.60) * |
HOMA-β | |||||
Low | 33 (64.7) | 1.83 | (0.23–14.59) | 2.28 | (0.32–15.15) |
High | 14 (27.5) | 1.30 | (0.19–8.53) | 1.25 | (0.04–37.31) |
TC (mg/dL) | |||||
Low | 23 (45.1) | 2.08 | (0.20–20.96) | 0.68 | (0.08–5.62) |
High | 24 (47.1) | 17.15 | (1.17–250.01) * | 26.73 | (2.33–305.59) * |
HDL-C b (mg/dL) | |||||
Low | 27 (54.0) | 2.68 | (0.26–27.74) | 12.40 | (1.31–117.27) * |
High | 20 (38.5) | 6.58 | (0.50–85.64) | 2.08 | (0.38–11.39) |
LDL-C (mg/dL) | |||||
Low | 21 (42.0) | 3.71 | (0.31–43.45) | 16.18 | (1.04–247.72) * |
High | 26 (50.0) | 7.43 | (0.52–105.61) | 6.51 | (0.82–51.44) |
TG c (mg/dL) | |||||
Low | 24 (38.7) | 4.58 | (0.34–61.18) | 2.74 | (0.37–20.24) |
High | 23 (57.5) | 8.75 | (0.75–101.09) | 17.68 | (1.26–247.73) * |
Variables | Subjects (n) | T2D, n (%) | Crude | Adjusted |
---|---|---|---|---|
ORs (95% CIs) | ORs (95% CIs) | |||
Low SOD Low CAT | 18 | 12 (66.7) | 2.44 (0.65–9.13) | 2.34 (0.52–10.43) |
Low SOD High CAT | 30 | 9 (30.0) | 0.52 (0.161–1.70) | 0.50 (0.13–1.87) |
High SOD Low CAT | 34 | 16 (47.1) | 1.15 (0.37–3.50) | 1.39 (0.39–4.99) |
High SOD High CAT | 20 | 9 (45.0) | 1.00 (reference) | 1.00 (reference) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promyos, N.; Phienluphon, P.P.; Wechjakwen, N.; Lainampetch, J.; Prangthip, P.; Kwanbunjan, K. Inverse Correlation of Superoxide Dismutase and Catalase with Type 2 Diabetes among Rural Thais. Nutrients 2023, 15, 2071. https://doi.org/10.3390/nu15092071
Promyos N, Phienluphon PP, Wechjakwen N, Lainampetch J, Prangthip P, Kwanbunjan K. Inverse Correlation of Superoxide Dismutase and Catalase with Type 2 Diabetes among Rural Thais. Nutrients. 2023; 15(9):2071. https://doi.org/10.3390/nu15092071
Chicago/Turabian StylePromyos, Natnicha, Pornpimol Panprathip Phienluphon, Naruemon Wechjakwen, Jirayu Lainampetch, Pattaneeya Prangthip, and Karunee Kwanbunjan. 2023. "Inverse Correlation of Superoxide Dismutase and Catalase with Type 2 Diabetes among Rural Thais" Nutrients 15, no. 9: 2071. https://doi.org/10.3390/nu15092071
APA StylePromyos, N., Phienluphon, P. P., Wechjakwen, N., Lainampetch, J., Prangthip, P., & Kwanbunjan, K. (2023). Inverse Correlation of Superoxide Dismutase and Catalase with Type 2 Diabetes among Rural Thais. Nutrients, 15(9), 2071. https://doi.org/10.3390/nu15092071