Handgrip Strength Test and Bioelectrical Impedance Analysis in SARS-CoV-2 Patients Admitted to Sub-Intensive Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Nutritional Assessement and Outcome
2.3. Body Composition and Muscular Strenght
2.4. Outcome
2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Respiratory Support
3.3. Nutritional Parameters and Muscle Assessment
3.4. Prediction of Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Shea, E.; Trawley, S.; Manning, E.; Barrett, A.; Browne, V.; Timmons, S. Malnutrition in Hospitalised Older Adults: A Multicentre Observational Study of Prevalence, Associations and Outcomes. J. Nutr. Health Aging 2017, 21, 830–836. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L.; Wang, H.; Hao, Q.; Dong, B.; Yang, M. Malnutrition-Sarcopenia Syndrome Predicts Mortality in Hospitalized Older Patients. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alberda, C.; Gramlich, L.; Jones, N.; Jeejeebhoy, K.; Day, A.G.; Dhaliwal, R.; Heyland, D.K. The Relationship between Nutritional Intake and Clinical Outcomes in Critically Ill Patients: Results of an International Multicenter Observational Study. Intensiv. Care Med. 2009, 35, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.D. Possible Mechanisms Underlying the Development of Cachexia in COPD. Eur. Respir. J. 2008, 31, 492. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Gong, C.; Wang, J.; Liu, B.; Shi, L.; Duan, J. Prevalence of Malnutrition and Analysis of Related Factors in Elderly Patients with COVID-19 in Wuhan, China. Eur. J. Clin. Nutr. 2020, 74, 871–875. [Google Scholar] [CrossRef]
- Holdoway, A. Nutritional Management of Patients during and after COVID-19 Illness. Br. J. Community Nurs. 2020, 25, S6–S10. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Sasdelli, A.S.; Ravaioli, F.; Baracco, B.; Battaiola, C.; Bocedi, G.; Brodosi, L.; Leoni, L.; Mari, G.A.; Musio, A. Malnutrition and Nutritional Therapy in Patients with SARS-CoV-2 Disease. Clin. Nutr. 2021, 40, 1330–1337. [Google Scholar] [CrossRef]
- Van der Meij, B.S.; Ligthart-Melis, G.C.; de van der Schueren, M.A.E. Malnutrition in Patients with COVID-19: Assessment and Consequences. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 543–554. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (US). Science Brief: Evidence Used to Update the List of Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19. In National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases; CDC COVID-19 Science Briefs; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2022. [Google Scholar]
- Martindale, R.; Patel, J.J.; Taylor, B.; Arabi, Y.M.; Warren, M.; McClave, S.A. Nutrition Therapy in Critically Ill Patients with Coronavirus Disease 2019. J. Parenter. Enter. Nutr. 2020, 44, 1174–1184. [Google Scholar] [CrossRef]
- Londhe, P.; Guttridge, D.C. Inflammation Induced Loss of Skeletal Muscle. Bone 2015, 80, 131–142. [Google Scholar] [CrossRef]
- Silva, D.F.; Lima, S.C.; Sena-Evangelista, K.C.; Marchioni, D.M.; Cobucci, R.N.; Andrade, F.B. Nutritional Risk Screening Tools for Older Adults with COVID-19: A Systematic Review. Nutrients 2020, 12, 2956. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Mao, Z.; Wang, W.; Hu, H. Clinical Significance of Nutritional Risk Screening for Older Adult Patients with COVID-19. Eur. J. Clin. Nutr. 2020, 74, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Kananen, L.; Eriksdotter, M.; Boström, A.M.; Kivipelto, M.; Annetorp, M.; Metzner, C.; Bäck Jerlardtz, V.; Engström, M.; Johnson, P.; Lundberg, L.G.; et al. Body Mass Index and Mini Nutritional Assessment-Short Form as Predictors of in-Geriatric Hospital Mortality in Older Adults with COVID-19. Clin. Nutr. 2022, 41, 2973–2979. [Google Scholar] [CrossRef] [PubMed]
- King, D.A.; Cordova, F.; Scharf, S.M. Nutritional Aspects of Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2008, 5, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Moonen, H.P.F.X.; Van Zanten, A.R.H. Bioelectric Impedance Analysis for Body Composition Measurement and Other Potential Clinical Applications in Critical Illness. Curr. Opin. Crit. Care 2021, 27, 344. [Google Scholar] [CrossRef]
- Saiphoklang, N.; Tepwimonpetkun, C. Interest of Hand Grip Strength to Predict Outcome in Mechanically Ventilated Patients. Heart Lung 2020, 49, 637–640. [Google Scholar] [CrossRef]
- De Almeida, C.; Penna, P.M.; Pereira, S.S.; Rosa, C.d.O.B.; Franceschini, S.d.C.C. Relationship between Phase Angle and Objective and Subjective Indicators of Nutritional Status in Cancer Patients: A Systematic Review. Nutr. Cancer 2021, 73, 2201–2210. [Google Scholar] [CrossRef]
- Da Silva, T.K.; Berbigier, M.C.; Rubin, B.d.A.; Moraes, R.B.; Corrêa Souza, G.; Schweigert Perry, I.D. Phase Angle as a Prognostic Marker in Patients with Critical Illness. Nutr. Clin. Pract. 2015, 30, 261–265. [Google Scholar] [CrossRef]
- Moonen, H.P.F.X.; Bos, A.E.; Hermans, A.J.H.; Stikkelman, E.; van Zanten, F.J.L.; van Zanten, A.R.H. Bioelectric Impedance Body Composition and Phase Angle in Relation to 90-Day Adverse Outcome in Hospitalized COVID-19 Ward and ICU Patients: The Prospective BIAC-19 Study. Clin. Nutr. ESPEN 2021, 46, 185–192. [Google Scholar] [CrossRef]
- Osuna-Padilla, I.A.; Rodríguez-Moguel, N.C.; Rodríguez-Llamazares, S.; Aguilar-Vargas, A.; Casas-Aparicio, G.A.; Ríos-Ayala, M.A.; Hernández-Cardenas, C.M. Low Phase Angle Is Associated with 60-Day Mortality in Critically Ill Patients with COVID-19. J. Parenter. Enter. Nutr. 2022, 46, 828–835. [Google Scholar] [CrossRef]
- Cornejo-Pareja, I.; Vegas-Aguilar, I.M.; García-Almeida, J.M.; Bellido-Guerrero, D.; Talluri, A.; Lukaski, H.; Tinahones, F.J. Phase Angle and Standardized Phase Angle from Bioelectrical Impedance Measurements as a Prognostic Factor for Mortality at 90 Days in Patients with COVID-19: A Longitudinal Cohort Study. Clin. Nutr. 2022, 41, 3106–3114. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Uranga, A.; Guzmán-Martínez, J.; Esteve-Atiénzar, P.J.; Wikman-Jorgensen, P.; Núñez-Cruz, J.M.; Espinosa-del-Barrio, L.; Hernández-Isasi, I.; Pomares-Gómez, F.J.; Perelló-Camacho, E.; Fernández-García, N.; et al. Nutritional and Functional Impact of Acute SARS-CoV-2 Infection in Hospitalized Patients. J. Clin. Med. 2022, 11, 2424. [Google Scholar] [CrossRef]
- Yang, R.; Li, X.; Liu, H.; Zhen, Y.; Zhang, X.; Xiong, Q.; Luo, Y.; Gao, C.; Zeng, W. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19. Radiol. Cardiothorac. Imaging 2020, 2, e200047. [Google Scholar] [CrossRef] [PubMed]
- Abd Aziz, N.A.S.; Teng, N.I.M.F.; Abdul Hamid, M.R.; Ismail, N.H. Assessing the Nutritional Status of Hospitalized Elderly. Clin. Interv. Aging 2017, 12, 1615–1625. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M. Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A Practical Tool for Identification of Nutritional Status. JNHA 2009, 13, 782–788. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Correa, C.; Pineda-Zuluaga, M.C.; Marulanda Mejia, F. Skeletal Muscle Mass by Bioelectrical Impedance Analysis and Calf Circumference for Sarcopenia Diagnosis. J. Electr. Bioimpedance 2020, 11, 57–61. [Google Scholar] [CrossRef]
- Kumar, S.; Dutt, R.A.; Hemraj, S.; Bhat, S.; Manipadybhima, B. Phase Angle Measurement in Healthy Human Subjects through Bio-Impedance Analysis. Iran. J. Basic Med. Sci. 2012, 15, 1180–1184. [Google Scholar]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical Impedance Analysis (BIA)-Derived Phase Angle in Sarcopenia: A Systematic Review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef]
- Wu, H.; Ding, P.; Wu, J.; Yang, P.; Tian, Y.; Zhao, Q. Phase Angle Derived from Bioelectrical Impedance Analysis as a Marker for Predicting Sarcopenia. Front. Nutr. 2022, 9, 1060224. [Google Scholar] [CrossRef]
- Kyle, U.; Laurence, G.; Pichard, C. Low Phase Angle Determined by Bioelectrical Impedance Analysis Is Associated with Malnutrition and Nutritional Risk at Hospital Admission. Clin. Nutr. 2012, 32, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, Y.; Zhang, F.; Zhang, L.; Li, L. COVID-19 in Elderly Adults: Clinical Features, Molecular Mechanisms, and Proposed Strategies. Aging Dis. 2020, 11, 1481. [Google Scholar] [CrossRef] [PubMed]
- Del Giorno, R.; Quarenghi, M.; Stefanelli, K.; Capelli, S.; Giagulli, A.; Quarleri, L.; Stehrenberger, D.; Ossola, N.; Monotti, R.; Gabutti, L. Nutritional Risk Screening and Body Composition in COVID-19 Patients Hospitalized in an Internal Medicine Ward. Int. J. Gen. Med. 2020, 13, 1643–1651. [Google Scholar] [CrossRef]
- Geng, J.; Wei, Y.; Xue, Q.; Deng, L.; Wang, J. Phase Angle Is a Useful Bioelectrical Marker for Skeletal Muscle Quantity and Quality in Hospitalized Elderly Patients. Medicine 2022, 101, e31646. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. The Age-Related Loss of Skeletal Muscle Mass and Function: Measurement and Physiology of Muscle Fibre Atrophy and Muscle Fibre Loss in Humans. Ageing Res. Rev. 2018, 47, 123–132. [Google Scholar] [CrossRef]
- Pucci, G.; D’Abbondanza, M.; Curcio, R.; Alcidi, R.; Campanella, T.; Chiatti, L.; Gandolfo, V.; Veca, V.; Casarola, G.; Leone, M.; et al. Handgrip Strength Is Associated with Adverse Outcomes in Patients Hospitalized for COVID-19-Associated Pneumonia. Intern. Emerg. Med. 2022, 17, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Ponce, J.; Anzalone, A.J.; Bailey, K.; Sayles, H.; Timmerman, M.; Jackson, M.; McClay, J.; Hanson, C.; Consortium, N.C.C.C.N. Impact of Malnutrition on Clinical Outcomes in Patients Diagnosed with COVID-19. J. Parenter. Enter. Nutr. 2022, 46, 1797–1807. [Google Scholar] [CrossRef]
- Schols, A.M.W.J. The 2014 ESPEN Arvid Wretlind Lecture: Metabolism & Nutrition: Shifting Paradigms in COPD Management. Clin. Nutr. 2015, 34, 1074–1079. [Google Scholar] [CrossRef]
Variables as Mean (SD) | All Patients n = 101 | <70 Years Old n = 44 | ≥70 Years Old n = 57 |
---|---|---|---|
Age (years) | 69.2 (13.2) | 56.7 (9.0) | 78.8 (5.8) |
Sex (male) (%) | 60 | 65 | 56 |
BMI (Kg/m2) | 29.7 (7.3) | 31.7 (8.5) | 28.2 (5.9) |
Smoking habit (%) | 39 | 25 | 40 |
CCI | 4.3 (2.9) | 2.1 (2.0) | 6.1 (2.2) |
PaO2/FiO2 | 122.7 (53.9) | 121.3 (48.5) | 123.7 (58.1) |
Chest CT SS | 12.4 (4.4) | 12.7 (4.5) | 12.1 (4.3) |
NIV or CPAP (%) | 43 | 52 | 60 |
HFNC (%) | 54 | 47 | 40 |
MNA- sf® | 10.3 (2.2) | 11.1 (1.7) | 9.6 (2.3) |
Total protein (g/dL) | 6 (0.7) | 6.3 (0.7) | 5.8 (0.6) |
HGS | 27.5. (12.7) | 33.8 (12.9) | 21.2 (9.0) |
SMI (SMM//height2) | 10.6 (2.2) | 11.1 (1.9) | 10.2 (2.3) |
PhA | 4.5 (1.7) | 5 (1.8) | 4.2 (1.5) |
Death—ETI | 35% | 20% | 47% |
Models in Participants < 70 Years | Sensitivity | Specificity | AUC |
MNA-sf® | 0.22 | 0.97 | 0.59 |
PhA | 1 | 0.27 | 0.56 |
SMI HGS | 0.5 0.87 | 0.79 0.54 | 0.59 0.77 |
MNA-sf® + PhA | 0.87 | 0.36 | 0.54 |
MNA-sf® + SMI | 0.87 | 0.33 | 0.58 |
MNA-sf® + HGS | 1 | 0.42 | 0.77 |
Models in Participants ≥ 70 years | Sensitivity | Specificity | AUC |
MNA-sf® | 0.54 | 0.55 | 0.52 |
PhA | 0.66 | 0.76 | 0.72 |
SMI HGS | 0.63 0.76 | 0.62 0.54 | 0.58 0.60 |
MNA-sf® + PhA | 0.59 | 0.86 | 0.73 |
MNA-sf® + SMI | 0.68 | 0.53 | 0.60 |
MNA-sf® + HGS | 0.65 | 0.65 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zotti, S.; Luci, I.; Finamore, P.; Travaglino, F.; Pedone, C.; Antonelli Incalzi, R. Handgrip Strength Test and Bioelectrical Impedance Analysis in SARS-CoV-2 Patients Admitted to Sub-Intensive Unit. Nutrients 2023, 15, 1979. https://doi.org/10.3390/nu15081979
Zotti S, Luci I, Finamore P, Travaglino F, Pedone C, Antonelli Incalzi R. Handgrip Strength Test and Bioelectrical Impedance Analysis in SARS-CoV-2 Patients Admitted to Sub-Intensive Unit. Nutrients. 2023; 15(8):1979. https://doi.org/10.3390/nu15081979
Chicago/Turabian StyleZotti, Sonia, Isabella Luci, Panaiotis Finamore, Francesco Travaglino, Claudio Pedone, and Raffaele Antonelli Incalzi. 2023. "Handgrip Strength Test and Bioelectrical Impedance Analysis in SARS-CoV-2 Patients Admitted to Sub-Intensive Unit" Nutrients 15, no. 8: 1979. https://doi.org/10.3390/nu15081979
APA StyleZotti, S., Luci, I., Finamore, P., Travaglino, F., Pedone, C., & Antonelli Incalzi, R. (2023). Handgrip Strength Test and Bioelectrical Impedance Analysis in SARS-CoV-2 Patients Admitted to Sub-Intensive Unit. Nutrients, 15(8), 1979. https://doi.org/10.3390/nu15081979