Validation of Dietary Intake Estimated by Web-Based Dietary Assessment Methods and Usability Using Dietary Records or 24-h Dietary Recalls: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Study Selection
2.4. Data Collection
2.5. Evaluation of the Relative Validity of Web-Based Dietary Assessment
3. Results
3.1. Screening and Characteristics of Included Studies
3.2. Difference of Dietary Intake between the Web-Based and the Conventional Dietary Assessment
3.3. Correlation Coefficients between the Web-Based and the Conventional Dietary Assessment
3.4. Usability of the Web-Based Dietary Assessment Methods
4. Discussion
4.1. Characteristics of Included Studies
4.2. The Differences and Correlation Coefficients between Dietary Intake between the Web-Based and the Conventional Dietary Assessment
4.3. Usability of the Web-Based Dietary Assessment
4.4. Strength and Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, T.C.; Clark, J.; Riddles, M.K.; Mohadjer, L.K.; Fakhouri, T.H.I. National Health and Nutrition Examination Survey, 2015–2018: Sample Design and Estimation Procedures; Vital and Health Statistics Series 2; U.S. Department of Health and Human Services: Washington, DC, USA, 2020; Volume 184, pp. 1–35.
- Public Health England. National Diet and Nutrition Survey. Available online: https://www.gov.uk/government/collections/national-diet-and-nutrition-survey (accessed on 18 October 2022).
- Public Health England. National Diet and Nutrition Survey: Results from Years 7 and 8 (Combined) of the Rolling Programme (2014/2015–2015/2016). Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/699241/NDNS_results_years_7_and_8.pdf (accessed on 18 October 2022).
- Australian Health Survey. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/D1A83EE0703D6E8FCA257BBB0014C443?opendocument (accessed on 18 October 2022).
- Ngo, J.; Engelen, A.; Molag, M.; Roesle, J.; García-Segovia, P.; Serra-Majem, L. A review of the use of information and communication technologies for dietary assessment. Br. J. Nutr. 2009, 101 (Suppl. 2), S102–S112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timon, C.M.; van den Barg, R.; Blain, R.J.; Kehoe, L.; Evans, K.; Walton, J.; Flynn, A.; Gibney, E.R. A review of the design and validation of web- and computer-based 24-h dietary recall tools. Nutr. Res. Rev. 2016, 29, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Internal Affairs and Communications. Basic Data and Policy Trends (Japanese). Available online: https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r02/html/nd252120.html (accessed on 18 October 2022).
- Committed to Connecting the World International Telecommunication Union. Individuals Using the Internet. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed on 18 October 2022).
- Thompson, F.E.; Subar, A.F.; Loria, C.M.; Reedy, J.L.; Baranowski, T. Need for technological innovation in dietary assessment. J. Am. Diet. Assoc. 2010, 110, 48–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey 2019 (Japanese). Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 18 October 2022).
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey (Japanese). Available online: https://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html (accessed on 18 October 2022).
- Public Health England. NDNS: Diet and Physical Activity—A Follow-Up Study during COVID-19. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1019663/Follow_up_stud_2020_main_report.pdf (accessed on 18 October 2022).
- Gazan, R.; Vieux, F.; Mora, S.; Havard, S.; Dubuisson, C. Potential of existing online 24-h dietary recall tools for national dietary surveys. Public Health Nutr. 2021, 24, 5361–5386. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Mamalaki, E.; Bathrellou, E.; Poulimeneas, D.; Yannakoulia, M.; Panagiotakos, D.B. The validity of technology-based dietary assessment methods in childhood and adolescence: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1065–1080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Misir, A.; Boshuizen, H.; Ocké, M. A Systematic Review and Meta-Analysis of Validation Studies Performed on Dietary Record Apps. Adv. Nutr. 2021, 12, 2321–2332. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 18 October 2022).
- Pisa, P.T.; Landais, E.; Margetts, B.; Vorster, H.H.; Friedenreich, C.M.; Huybrechts, I.; Martin-Prevel, Y.; Branca, F.; Lee, W.T.K.; Leclercq, C.; et al. Inventory on the dietary assessment tools available and needed in Africa: A prerequisite for setting up a common methodological research infrastructure for nutritional surveillance, research, and prevention of diet-related non-communicable diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 37–61. [Google Scholar] [CrossRef] [PubMed]
- Cade, J.E. Measuring diet in the 21st century: Use of new technologies. Proc. Nutr. Soc. 2017, 76, 276–282. [Google Scholar] [CrossRef]
- Pendergast, F.J.; Leech, R.M.; McNaughton, S.A. Novel Online or Mobile Methods to Assess Eating Patterns. Curr. Nutr. Rep. 2017, 6, 212–227. [Google Scholar] [CrossRef] [Green Version]
- Dao, M.C.; Subar, A.F.; Warthon-Medina, M.; Cade, J.E.; Burrows, T.; Golley, R.K.; Forouhi, N.G.; Pearce, M.; Holmes, B.A. Dietary assessment toolkits: An overview. Public Health Nutr. 2019, 22, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Hooson, J.J.; Hutchinson, J.J.; Warthon-Medina, M.; Hancock, N.; Greathead, K.; Knowles, B.; Vargas-Garcia, E.; Gibson, L.E.; Bush, L.A.; Margetts, B.; et al. A systematic review of reviews identifying UK validated dietary assessment tools for inclusion on an interactive guided website for researchers: www.nutritools.org. Crit. Rev. Food Sci. Nutr. 2020, 60, 1265–1289. [Google Scholar] [CrossRef] [Green Version]
- Archundia Herrera, M.C.; Chan, C.B. Narrative Review of New Methods for Assessing Food and Energy Intake. Nutrients 2018, 10, 1064. [Google Scholar] [CrossRef] [Green Version]
- Schembre, S.M.; Liao, Y.; O’Connor, S.G.; Hingle, M.D.; Shen, S.E.; Hamoy, K.G.; Huh, J.; Dunton, G.F.; Weiss, R.; Thomson, C.A.; et al. Mobile Ecological Momentary Diet Assessment Methods for Behavioral Research: Systematic Review. JMIR Mhealth Uhealth 2018, 6, e11170. [Google Scholar] [CrossRef] [Green Version]
- Illner, A.K.; Freisling, H.; Boeing, H.; Huybrechts, I.; Crispim, S.P.; Slimani, N. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int. J. Epidemiol. 2012, 41, 1187–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, J.; Koch, S.A.J.; Nöthlings, U. New approaches in assessing food intake in epidemiology. Curr. Opin. Clin. Nutr. Metab. Care 2018, 2, 343–351. [Google Scholar] [CrossRef]
- Sharp, D.B.; Allman-Farinelli, M. Feasibility and validity of mobile phones to assess dietary intake. Nutrition 2014, 30, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Lieffers, J.R.; Hanning, R.M. Dietary assessment and self-monitoring with nutrition applications for mobile devices. Can. J. Diet. Pract. Res. 2012, 73, e253–e260. [Google Scholar] [CrossRef]
- Arens-Volland, A.G.; Spassova, L.; Bohn, T. Promising approaches of computer-supported dietary assessment and management-Current research status and available applications. Int. J. Med. Inform. 2015, 84, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Höchsmann, C.; Martin, C.K. Review of the validity and feasibility of image-assisted methods for dietary assessment. Int. J. Obes. 2020, 44, 2358–2371. [Google Scholar] [CrossRef] [PubMed]
- Lombard, M.J.; Steyn, N.P.; Charlton, K.E.; Senekal, M. Application and interpretation of multiple statistical tests to evaluate validity of dietary intake assessment methods. Nutr. J. 2015, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Serra-Majem, L.; Andersen, L.F.; Henríque-Sánchez, P.; Doreste-Alonso, J.; Sánchez-Villegas, A.; Ortiz-Andrelluchi, A.; Negri, E.; La Vecchia, C. Evaluating the quality of dietary intake validation studies. Br. J. Nutr. 2009, 102 (Suppl. 1), S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafrenière, J.; Laramée, C.; Robitaille, J.; Lamarche, B.; Lemieux, S. Assessing the relative validity of a new, web-based, self-administered 24 h dietary recall in a French-Canadian population. Public Health Nutr. 2018, 21, 2744–2752. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, E.; Michie, M.; Kawabata, T. Validity of Nutrient Intakes Derived from an Internet Website Dish-Based Dietary Record for Self-Management of Weight among Japanese Women. Nutrients 2017, 9, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timon, C.M.; Blain, R.J.; McNulty, B.; Kehoe, L.; Evans, K.; Walton, J.; Flynn, A.; Gibney, E.R. The Development, Validation, and User Evaluation of Foodbook24: A Web-Based Dietary Assessment Tool Developed for the Irish Adult Population. J. Med. Internet Res. 2017, 19, e158. [Google Scholar] [CrossRef] [Green Version]
- Monnerie, B.; Tavoularis, L.G.; Guelinckx, I.; Hebel, P.; Boisvieux, T.; Cousin, A.; Le Bellego, L. A cross-over study comparing an online versus a paper 7-day food record: Focus on total water intake data and participant’s perception of the records. Eur. J. Nutr. 2015, 54 (Suppl. 2), 27–34. [Google Scholar] [CrossRef] [Green Version]
- Storey, K.E.; McCargar, L.J. Reliability and validity of Web-SPAN, a web-based method for assessing weight status, diet and physical activity in youth. J. Hum. Nutr. Diet. 2012, 25, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, A.K.; Petrelius Sipinen, J.; Axelsson, C.; Nyberg, G.; Landberg, R.; Leanderson, P.; Arnemo, M.; Warensjö Lemming, E. Use of a Web-Based Dietary Assessment Tool (RiksmatenFlex) in Swedish Adolescents: Comparison and Validation Study. J. Med. Internet Res. 2019, 21, e12572. [Google Scholar] [CrossRef] [Green Version]
- Timon, C.M.; Evans, K.; Kehoe, L.; Blain, R.J.; Flynn, A.; Gibney, E.R.; Walton, J. Comparison of a Web-Based 24-h Dietary Recall Tool (Foodbook24) to an Interviewer-Led 24-h Dietary Recall. Nutrients 2017, 9, 425. [Google Scholar] [CrossRef] [Green Version]
- Albar, S.A.; Alwan, N.A.; Evans, C.E.; Greenwood, D.C.; Cade, J.E. Agreement between an online dietary assessment tool (myfood24) and an interviewer-administered 24-h dietary recall in British adolescents aged 11–18 years. Br. J. Nutr. 2016, 115, 1678–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.; Simpson, E.; Poliakov, I.; Matthews, J.N.; Olivier, P.; Adamson, A.J.; Foster, E. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11–24 Year-Old. Nutrients 2016, 8, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassard, D.; Laramée, C.; Robitaille, J.; Lemieux, S.; Lamarche, B. Differences in Population-Based Dietary Intake Estimates Obtained From an Interviewer-Administered and a Self-Administered Web-Based 24-h Recall. Front. Nutr. 2020, 7, 137. [Google Scholar] [CrossRef]
- Beasley, J.; Riley, W.T.; Jean-Mary, J. Accuracy of a PDA-based dietary assessment program. Nutrition 2005, 21, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raatz, S.K.; Scheett, A.J.; Johnson, L.K.; Jahns, L. Validity of electronic diet recording nutrient estimates compared to dietitian analysis of diet records: Randomized controlled trial. J. Med. Internet Res. 2015, 17, e21. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Poudrier, J.K.; Waters, N.M.; Gillevet, P.M.; Xu, Y. Dietary intake measured from a self-administered, online 24-h recall system compared with 4-day diet records in an adult US population. J. Acad. Nutr. Diet. 2012, 112, 1642–1647. [Google Scholar] [CrossRef]
- Vereecken, C.A.; Covents, M.; Haynie, D.; Maes, L. Feasibility of the Young Children’s Nutrition Assessment on the Web. J. Am. Diet. Assoc. 2009, 109, 1896–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The relative validity of a food record using the smartphone application MyFitnessPal. Nutr. Diet. 2018, 75, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Mescoloto, S.B.; Caivano, S.; Domene, S. Evaluation of a mobile application for estimation of food intake Avaliação de um aplicativo móvel para a estimativa de ingestão alimentar. Rev. Nutr. Campinas 2017, 30, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Llamas, F.; Garaulet, M.; Torralba, C.; Zamora, S. Desarrollo de una versión actualizada de una aplicación informática para investigación y práctica en nutrición humana (GRUNUMUR 2.0) [Development of a current version of a software application for research and practice in human nutrition (GRUNUMUR 2.0)]. Nutr. Hosp. 2012, 27, 1576–1582. (In Spanish) [Google Scholar] [CrossRef]
- Meroni, A.; Jualim, N.; Fuller, N. ‘Boden Food Plate’: Novel Interactive Web-based Method for the Assessment of Dietary Intake. J. Vis. Exp. 2018, 139, 57923. [Google Scholar] [CrossRef] [Green Version]
- Fallaize, R.; Zenun Franco, R.; Pasang, J.; Hwang, F.; Lovegrove, J.A. Popular Nutrition-Related Mobile Apps: An Agreement Assessment Against a UK Reference Method. JMIR Mhealth Uhealth 2019, 7, e9838. [Google Scholar] [CrossRef]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; Reedy, J.; Schap, T.E.; Wilson, M.M.; Krebs-Smith, S.M. The National Cancer Institute’s Dietary Assessment Primer: A Resource for Diet Research. J. Acad. Nutr. Diet. 2015, 115, 1986–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranowski, T.; Islam, N.; Baranowski, J.; Martin, S.; Beltran, A.; Dadabhoy, H.; Adame, S.H.; Watson, K.B.; Thompson, D.; Cullen, K.W.; et al. Comparison of a Web-based versus traditional diet recall among children. J. Acad. Nutr. Diet. 2012, 112, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, R.; Radd-Vagenas, S.; Fiatarone Singh, M.; Noble, Y.; Daniel, K.; Mavros, Y.; Sachdev, P.S.; Lautenschlager, N.; Cox, K.; Brodaty, H.; et al. Electronic food records among middle-aged and older people: A comparison of self-reported and dietitian-assisted information. Nutr. Diet. 2021, 78, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.; Hawkins, A.; Simpson, E.; Adamson, A.J. Developing an interactive portion size assessment system (IPSAS) for use with children. J. Hum. Nutr. Diet. 2014, 27 (Suppl. 1), 18–25. [Google Scholar] [CrossRef]
- Hughes, A.R.; Summer, S.S.; Ollberding, N.J.; Benken, L.A.; Kalkwarf, H.J. Comparison of an interviewer-administered with an automated self-administered 24 h (ASA24) dietary recall in adolescents. Public Health Nutr. 2017, 20, 3060–3067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinozaki, N.; Murakami, K. Evaluation of the Ability of Diet-Tracking Mobile Applications to Estimate Energy and Nutrient Intake in Japan. Nutrients 2020, 12, 3327. [Google Scholar] [CrossRef]
- Subar, A.F.; Potischman, N.; Dodd, K.W.; Thompson, F.E.; Baer, D.J.; Schoeller, D.A.; Midthune, D.; Kipnis, V.; Kirkpatrick, S.I.; Mittl, B.; et al. Performance and Feasibility of Recalls Completed Using the Automated Self-Administered 24-h Dietary Assessment Tool in Relation to Other Self-Report Tools and Biomarkers in the Interactive Diet and Activity Tracking in AARP (IDATA) Study. J. Acad. Nutr. Diet. 2020, 120, 1805–1820. [Google Scholar] [CrossRef] [PubMed]
- Fontana, J.M.; Higgins, J.A.; Schuckers, S.C.; Bellisle, F.; Pan, Z.; Melanson, E.L.; Neuman, M.R.; Sazonov, E. Energy intake estimation from counts of chews and swallows. Appetite 2015, 85, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, C.R.; Kapur, K.; McAdams, M.J.; Dixit-Joshi, S.; Devasenapathy, N.; Shetty, H.; Hariharan, S.; George, P.S.; Mathew, A.; Sinha, R. Development of a field-friendly automated dietary assessment tool and nutrient database for India. Br. J. Nutr. 2014, 111, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Wark, P.A.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Carter, M.; Elliott, P.; Ford, H.E.; Hancock, N.; Morris, M.A.; Mulla, U.Z.; et al. Validity of an online 24-h recall tool (myfood24) for dietary assessment in population studies: Comparison with biomarkers and standard interviews. BMC Med. 2018, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Timon, C.M.; Astell, A.J.; Hwang, F.; Adlam, T.D.; Smith, T.; Maclean, L.; Spurr, D.; Forster, S.E.; Williams, E.A. The validation of a computer-based food record for older adults: The Novel Assessment of Nutrition and Ageing (NANA) method. Br. J. Nutr. 2015, 113, 654–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comrie, F.; Masson, L.F.; McNeill, G. A novel online Food Recall Checklist for use in an undergraduate student population: A comparison with diet diaries. Nutr. J. 2009, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Freese, J.; Feller, S.; Harttig, U.; Kleiser, C.; Linseisen, J.; Fischer, B.; Leitzmann, M.F.; Six-Merker, J.; Michels, K.B.; Nimptsch, K.; et al. Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies. Eur. J. Clin. Nutr. 2014, 68, 324–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, S.S.; Jiang, Y.S.; Chen, Y.; Li, Z.; Zhang, Y.F.; Sun, C.H.; Feng, R.N. Development and Applicability of an Internet-Based Diet and Lifestyle Questionnaire for College Students in China: A Cross-Sectional Study. Medicine 2015, 94, e2130. [Google Scholar] [CrossRef]
- Bruening, M.; van Woerden, I.; Todd, M.; Brennhofer, S.; Laska, M.N.; Dunton, G. A Mobile Ecological Momentary Assessment Tool (devilSPARC) for Nutrition and Physical Activity Behaviors in College Students: A Validation Study. J. Med. Internet. Res. 2016, 18, e209. [Google Scholar] [CrossRef]
- Ambrosini, G.L.; Hurworth, M.; Giglia, R.; Trapp, G.; Strauss, P. Feasibility of a commercial smartphone application for dietary assessment in epidemiological research and comparison with 24-h dietary recalls. Nutr. J. 2018, 17, 5. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Dixit-Joshi, S.; Potischman, N.; Dodd, K.W.; Kirkpatrick, S.I.; Kushi, L.H.; Alexander, G.L.; Coleman, L.A.; Zimmerman, T.P.; Sundaram, M.E.; et al. Comparison of Interviewer-Administered and Automated Self-Administered 24-h Dietary Recalls in 3 Diverse Integrated Health Systems. Am. J. Epidemiol. 2015, 181, 970–978. [Google Scholar] [CrossRef] [Green Version]
- Wellard-Cole, L.; Chen, J.; Davies, A.; Wong, A.; Huynh, S.; Rangan, A.; Allman-Farinelli, M. Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients 2019, 11, 621. [Google Scholar] [CrossRef] [Green Version]
- Bucher Della Torre, S.; Carrard, I.; Farina, E.; Danuser, B.; Kruseman, M. Development and Evaluation of e-CA, an Electronic Mobile-Based Food Record. Nutrients 2017, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Rangan, A.M.; Tieleman, L.; Louie, J.C.; Tang, L.M.; Hebden, L.; Roy, R.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Relative validity of a mobile phone application to measure intake of food groups. Br. J. Nutr. 2016, 115, 2219–2226. [Google Scholar] [CrossRef] [Green Version]
- Rangan, A.M.; O’Connor, S.; Giannelli, V.; Yap, M.L.; Tang, L.M.; Roy, R.; Louie, J.C.; Hebden, L.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Comparison of a Mobile Phone Digital Entry App for Dietary Data Collection With 24-h Dietary Recalls. JMIR Mhealth Uhealth 2015, 3, e98. [Google Scholar] [CrossRef]
- Touvier, M.; Kesse-Guyot, E.; Méjean, C.; Pollet, C.; Malon, A.; Castetbon, K.; Hercberg, S. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br. J. Nutr. 2011, 105, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Berkman, W.; Bardouh, M.; Ng, C.Y.K.; Allman-Farinelli, M. The use of a food logging app in the naturalistic setting fails to provide accurate measurements of nutrients and poses usability challenges. Nutrition 2019, 57, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. ‘My Meal Mate’ (MMM): Validation of the diet measures captured on a smartphone application to facilitate weight loss. Br. J. Nutr. 2013, 109, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkilic, T.O.; Pekcan, G. Evaluation of validity of digital photograph based dietary intake in school children. Prog. Nutr. 2020, 22, e2020012. [Google Scholar]
- Erkilic, T.O.; Rakicioglu, N. Comparison of different food consumption methods to digital food photography method of elderly in nursing home. Prog. Nutr. 2020, 22, e2020009. [Google Scholar]
- Higgins, J.A.; LaSalle, A.L.; Zhaoxing, P.; Kasten, M.Y.; Bing, K.N.; Ridzon, S.E.; Witten, T.L. Validation of photographic food records in children: Are pictures really worth a thousand words? Eur. J. Clin. Nutr. 2009, 63, 1025–1033. [Google Scholar] [CrossRef] [Green Version]
- Rumpler, W.V.; Kramer, M.; Rhodes, D.G.; Moshfegh, A.J.; Paul, D.R. Identifying sources of reporting error using measured food intake. Eur. J. Clin. Nutr. 2008, 62, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Landig, J.; Erhardt, J.G.; Bode, J.C.; Bode, C. Validation and comparison of two computerized methods of obtaining a diet history. Clin. Nutr. 1998, 17, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Kretsch, M.J.; Fong, A.K.H. Validity and reproducibility of a new computerized dietary assessment method: Effects of gender and educational level. Nutr. Res. 1993, 13, 133–146. [Google Scholar] [CrossRef]
- Gregorič, M.; Zdešar Kotnik, K.; Pigac, I.; Gabrijelčič Blenkuš, M. A Web-Based 24-H Dietary Recall Could Be a Valid Tool for the Indicative Assessment of Dietary Intake in Older Adults Living in Slovenia. Nutrients 2019, 11, 2234. [Google Scholar] [CrossRef] [Green Version]
- Fukuo, W.; Yoshiuchi, K.; Ohashi, K.; Togashi, H.; Sekine, R.; Kikuchi, H.; Sakamoto, N.; Inada, S.; Sato, F.; Kadowaki, T.; et al. Development of a hand-held personal digital assistant-based food diary with food photographs for Japanese subjects. J. Am. Diet. Assoc. 2009, 109, 1232–1236. [Google Scholar] [CrossRef]
- Kretsch, M.J.; Fong, A.K. Validation of a new computerized technique for quantitating individual dietary intake: The Nutrition Evaluation Scale System (NESSy) vs the weighed food record. Am. J. Clin. Nutr. 1990, 51, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, C.A.; Covents, M.; Sichert-Hellert, W.; Alvira, J.M.; Le Donne, C.; De Henauw, S.; De Vriendt, T.; Phillipp, M.K.; Béghin, L.; Manios, Y.; et al. Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int. J. Obes. 2008, 32, S26–S34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensink, G.B.; Haftenberger, M.; Thamm, M. Validity of DISHES 98, a computerised dietary history interview: Energy and macronutrient intake. Eur. J. Clin. Nutr. 2001, 55, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, C.A.; Covents, M.; Matthys, C.; Maes, L. Young adolescents’ nutrition assessment on computer (YANA-C). Eur. J. Clin. Nutr. 2005, 59, 658–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedik, E.; Seljak, B.K.; Simčič, M.; Rogelj, I.; Bratanič, B.; Ding, E.L.; Orel, R.; Mis, N.F. Comparison of paper- and web-based dietary records: A pilot study. Ann. Nutr. Metab. 2014, 64, 156–166. [Google Scholar] [CrossRef]
- Griffiths, C.; Harnack, L.; Pereira, M.A. Assessment of the accuracy of nutrient calculations of five popular nutrition tracking applications. Public Health Nutr. 2018, 21, 1495–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, R.; de Assis, M.A.A.; Lobo, A.S.; Leal, D.B.; Vieira, F.G.K.; Di Pietro, P.F. Validation of the Online version of the Previous Day Food Questionnaire for schoolchildren. Rev. Nutr. 2017, 30, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Kong, K.; Zhang, L.; Huang, L.; Tao, Y. Validity and practicability of smartphone-based photographic food records for estimating energy and nutrient intake. Asia. Pac. J. Clin. Nutr. 2017, 26, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Subar, A.F.; Douglass, D.; Zimmerman, T.P.; Thompson, F.E.; Kahle, L.L.; George, S.M.; Dodd, K.W.; Potischman, N. Performance of the Automated Self-Administered 24-h Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am. J. Clin. Nutr. 2014, 100, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Lemacks, J.L.; Adams, K.; Lovetere, A. Dietary Intake Reporting Accuracy of the Bridge2U Mobile Application Food Log Compared to Control Meal and Dietary Recall Methods. Nutrients 2019, 11, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béjar, L.M.; García-Perea, M.D.; Reyes, Ó.A.; Vázquez-Limón, E. Relative Validity of a Method Based on a Smartphone App (Electronic 12-Hour Dietary Recall) to Estimate Habitual Dietary Intake in Adults. JMIR Mhealth Uhealth 2019, 7, e11531. [Google Scholar] [CrossRef] [Green Version]
- Diep, C.S.; Hingle, M.; Chen, T.A.; Dadabhoy, H.R.; Beltran, A.; Baranowski, J.; Subar, A.F.; Baranowski, T. The Automated Self-Administered 24-h Dietary Recall for Children, 2012 Version, for Youth Aged 9 to 11 Years: A Validation Study. J. Acad. Nutr. Diet. 2015, 115, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Song, S.; Ahn, J.S.; Kim, Y.; Lee, J.E. Use of a Mobile Application for Self-Monitoring Dietary Intake: Feasibility Test and an Intervention Study. Nutrients 2017, 9, 748. [Google Scholar] [CrossRef]
- Astell, A.J.; Hwang, F.; Brown, L.J.; Timon, C.; Maclean, L.M.; Smith, T.; Adlam, T.; Khadra, H.; Williams, E.A. Validation of the NANA (Novel Assessment of Nutrition and Ageing) touch screen system for use at home by older adults. Exp. Gerontol. 2014, 60, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Hillier, F.C.; Batterham, A.M.; Crooks, S.; Moore, H.J.; Summerbell, C.D. The development and evaluation of a novel Internet-based computer program to assess previous-day dietary and physical activity behaviours in adults: The Synchronised Nutrition and Activity Program for Adults (SNAPA™). Br. J. Nutr. 2012, 107, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.K.; Han, H.; Coulon, S.M.; Allen, H.R.; Champagne, C.M.; Anton, S.D. A novel method to remotely measure food intake of free-living individuals in real time: The remote food photography method. Br. J. Nutr. 2009, 101, 446–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranowski, T.; Islam, N.; Baranowski, J.; Cullen, K.W.; Myres, D.; Marsh, T.; de Moor, C. The food intake recording software system is valid among fourth-grade children. J. Am. Diet. Assoc. 2002, 102, 380–385. [Google Scholar] [CrossRef] [PubMed]
- De Keyzer, W.; Huybrechts, I.; De Vriendt, V.; Vandevijvere, S.; Slimani, N.; Van Oyen, H.; De Henauw, S. Repeated 24-h recalls versus dietary records for estimating nutrient intakes in a national food consumption survey. Food Nutr. Res. 2011, 55, 7307. [Google Scholar] [CrossRef] [Green Version]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National Health and Nutrition Examination Survey: Plan and Operations, 1999–2010; Vital and Health Statistics Series 1; U.S. Department of Health and Human Services: Washington, DC, USA, 2013; Volume 56, pp. 1–37.
- Luevano-Contreras, C.; Durkin, T.; Pauls, M.; Chapman-Novakofski, K. Development, relative validity, and reliability of a food frequency questionnaire for a case-control study on dietary advanced glycation end products and diabetes complications. Int. J. Food Sci. Nutr. 2013, 64, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Harmouche-Karaki, M.; Mahfouz, M.; Obeyd, J.; Salameh, P.; Mahfouz, Y.; Helou, K. Development and validation of a quantitative food frequency questionnaire to assess dietary intake among Lebanese adults. Nutr. J. 2020, 19, 65. [Google Scholar] [CrossRef]
Study | Country | Survey Year | Participants | Web-Based Dietary Assessment | Conventional Dietary Assessment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample Size (M, F) | Age, Means ± SD (Range) | Exclusion Criteria (Regarding the Internet or E-Mails) | No. of Survey Days | Tool Names | Database | Devices | Dietary Assessment Methods | No. of Survey Days | |||
Web-based dietary records | |||||||||||
Matsuzaki E et al. (2017) [35] | Japan | 2013–2014 | 163 (F: 100%) | 39.3 ± 10.3 | Not using e-mails | 1 | Internet website dish-based dietary records | Approximately 100,000 dishes | NA | Dietary Record | 1 |
Monnerie B et al. (2015) [37] | France | 2010 | 246 (F: 59%) | (18–60) | Not having the internet connection at home and not being accustomed to using the internet | 7 | MXS-Epidemio | NA | NA | Dietary Record | 7 |
Vereecken CA et al. (2009) [48] a | Belgium | 2008 | Web-based: 216 (NA) | 3.5 ± 0.4 | Not providing e-mail addresses | 3 | Young Children’s Nutrition Assessment on the Web | Approximately 800 different food items | NA | Dietary Record | 3 |
Conventional: 39 (NA) | |||||||||||
Raatz SK et al. (2015) [46] | US | 2010–2011 | 19 (F: 58%) | 51.6 ± 1.5 | NA | 3 | Nutrihand | USDA-NND for Standard Reference (Release 21 as of 9/2013) | PC | Dietary Record | 3 |
Storey KE et al. (2012) [38] | Canada | 2005 | 459 (F: 51%, missing = 1) | 12.8 (11–15) | Not contacting by e-mails | 2 | On-line Web-SPAN | NA | NA | Dietary Record | 3 |
Beasley J et al. (2005) [44] | US | NA | 39 (F: 54%) | 53 ± 1.7 (19–69) | Lacked familiarity with personal computers | 3 | DietMatePro program | NA | NA | 24-h Dietary Recall | 1 |
Teixeira V et al. (2017) [49] | Brazil | NA | 30 (F: 73%) | 22.8 ± 2.6 (18–30) | NA | 2 | MyFitnessPal | More than three million food items | Smartphone, PC | Dietary Record | 2 |
Web-based 24-h dietary recalls | |||||||||||
Lafrenière J et al. (2018) [34] | Canada | 2015 | 107 (F: 53%) | 47.4 ± 13.3 (18–65) | No recruited other than e-mails and e-newsletters | 3 | R24W | 2568 food items and 687 recipes | NA | Dietary Record | 3 |
Timon CM et al. (2017) [36] | Ireland | NA | 39 (F: 51%) | 32.2 ± 13.4 (18–64) | Recruited other than via e-mails, and posters | 3 | Foodbook24 | 751 food and beverage items | NA | Dietary Record | 4 |
Lindroos AK et al. (2019) [39] | Sweden | 2016–2017 | 78 (F: 69%) | (11–18) | NA | 2 | RiksmatenFlexDiet | 761 core food and approximately 2300 possible food item combinations | PC, tablet, smartphone | 24-h Dietary Recall | 2 |
Timon CM et al. (2017) [40] | Ireland | 2015 | 79 (F: 51%) | 33.2 ± 12.5 (18–60) | Recruited other than by e-mails, posters, and social media and not having regular access to the internet | 2 | Foodbook24 | 751 food and beverage items | NA | 24-h Dietary Recall | 2 |
Albar SA et al. (2016) [41] | UK | NA | 75 (F: 51%) | 14.6 (11–18) | Having any limitation that could inhibit the adolescent’s ability to use a computer | 2 | Measure Your Food on One Day (myfood24) | approximately 50,000 food items | PC | 24-h Dietary Recall | 2 |
Bradley J et al. (2016) [42] | UK | 2013–2014 | 11–16 years old: 52 (F: 63%) | (11–16) | Recruited through e-mail advertisements and snowballing techniques (aged 17–24 years). | 4 | INTAKE24 | Over 3000 food photographs (the NDNS Nutrient Databank) | NA | 24-h Dietary Recall | 4 |
17–24 years old: 116 F: 53%) | (17–24) | ||||||||||
Brassard D et al. (2020) [43] a | Canada | 2015–2017 | Web-based (PREDISE study): 1147 (F: 50%) | (18–65) | Not having a computer, access to the internet, and a valid e-mail address | 3 | R24W | NA | NA | 24-h Dietary Recall | 1 |
Conventional (CCHS): 875 (F: 50%) | |||||||||||
Frankenfeld CL et al. (2012) [47] | US | 2010 | 93 (F: 65%) | 27 ± 11 (18–62) | Recruited other than using flyers and web posting | 2 | Automated Self-Administered 24-h Dietary Records | NA | NA | Dietary Record | 4 |
Mescoloto SB et al. (2017) [50] | Brazil | NA | 40 (F: 85%) | 21 (20–24) | Not owing a smartphone, people who had used the Nutrabem app before the start of the study | 3 | Nutrabem app | NA | NA | 24-h Dietary Recall | 3 |
Liu B et al. (2011) [45] | UK | 2008 | 116 (F: 72%) | 42 (19–82) | Recruited other than through e-mails using the mailing lists | 1 | Oxford WebQ | NA | NA | 24-h Dietary Recall | 1 |
Study | Energy (kcal/day) | Protein (g/day) | Fat (g/day) | ||||||||||||||||||||
Web-Based (Mean) | Conventional (Mean) | Difference | % Difference | Web-Based (Mean) | Conventional (Mean) | Difference | % Difference | Web-Based (Mean) | Conventional (Mean) | Difference | % Difference | ||||||||||||
Web-based dietary records | |||||||||||||||||||||||
Dietary records as the conventional method | |||||||||||||||||||||||
Matsuzaki E et al. (2017) [35] a | 1554 | 1472 | 82.0 | 5.6 | 61.3 | 61.6 | −0.3 | −0.5 | 45.7 | 45.9 | −0.2 | −0.4 | |||||||||||
Monnerie B et al. (2015) [37] | 1825 | 1836 | −11.0 | −0.6 | 75.2 | 77.1 | −1.9 | −2.5 | 73.2 | 73.8 | −0.6 | −0.8 | |||||||||||
Vereecken CA et al. (2009) [48] | 1294 | 1329 | −35.0 | −2.6 | 51.0 | 51.0 | 0.0 | 0.0 | 45.0 | 45.0 | 0.0 | 0.0 | |||||||||||
Storey KE et al. (2012) [38] b | 2019 | 1893 | 125.4 | 6.6 | 67.9 | 73.0 | −5.1 | −6.9 | 71.5 | 68.0 | 3.4 | 5.1 | |||||||||||
Raatz SK et al. (2015) [46] | 1961 | 1876 | 85.3 | 4.5 | 82.1 | 79.0 | 3.1 | 3.9 | 79.9 | 77.4 | 2.5 | 3.2 | |||||||||||
Teixeira V et al. (2017) [49] | 1820 c | 1834 c | −14.0 | −0.8 | 77.7 | 88.1 | −10.4 | −11.8 | 50.2 | 60.3 | −10.1 | −16.7 | |||||||||||
24-h dietary recalls as the conventional method | |||||||||||||||||||||||
Beasley J et al. (2005) [44] | 2091 | 2159 | −68.0 | −3.1 | 72.0 | 71.0 | 1.0 | 1.4 | 74.9 | 63.7 | 11.2 | 17.6 | |||||||||||
Web-based 24-h dietary recalls | |||||||||||||||||||||||
24-h dietary recalls as the conventional method | |||||||||||||||||||||||
Lindroos AK et al. (2019) [39] d | 2131 e | 1920 e | 210.2 | 10.9 | 85.0 | 74.0 | 11.0 | 14.9 | 86.0 | 76.0 | 10.0 | 13.2 | |||||||||||
Timon CM et al. (2017) [40] f | 1st | 1888 | 2168 | −241.0 | −11.5 | 77.0 | 88.0 | −11.0 | −10.3 | 73.0 | 88.0 | −15.0 | −15.4 | ||||||||||
2nd | 1817 | 2019 | −202.0 | −10.0 | 79.0 | 86.0 | −7.0 | −8.1 | 70.0 | 81.0 | −11.0 | −13.6 | |||||||||||
Albar SA et al. (2016) [41] d | 1935 | 1989 | −54.8 | −2.8 | 68.1 | 70.1 | −2.0 | −2.8 | 68.3 | 71.3 | −3.0 | −4.2 | |||||||||||
Bradley J et al. (2016) [42] b | 11–16 y | 1597 | 1631 | −34.0 | −2.1 | 52.4 | 52.4 | 0.0 | 0.0 | 52.3 | 55.8 | −3.5 | −6.3 | ||||||||||
17–24 y | 1771 | 1796 | −25.7 | −1.4 | 64.2 | 62.9 | 1.3 | 2.1 | 63.1 | 62.7 | 0.4 | 0.6 | |||||||||||
Brassard D et al. (2020) [43] | 2460 | 2118 | 342.0 | 16.1 | - | - | - | - | - | - | - | - | |||||||||||
Mescoloto SB et al. (2017) [50] | 1804 | 1950 | −145.1 | −7.4 | 88.7 | 86.6 | 2.1 | 2.4 | 65.1 | 76.3 | −11.2 | −14.7 | |||||||||||
Liu B et al. (2011) [45] | 2082 c | 2080 c | 2.6 | 0.1 | 74.3 | 75.3 | −1.0 | −1.0 | 79.3 | 75.8 | 3.5 | 5.0 | |||||||||||
Dietary records as the conventional method | |||||||||||||||||||||||
Lafrenière J et al. (2018) [34] | 2595 | 2408 | 187.0 | 7.8 | 104.3 | 99.7 | 4.6 | 4.6 | 105.5 | 95.8 | 9.7 | 10.1 | |||||||||||
Timon CM et al. (2017) [36] | 1971 | 2100 | −129.0 | −6.1 | 83.5 | 95.0 | −11.5 | −12.1 | 78.4 | 85.7 | −7.3 | −8.5 | |||||||||||
Frankenfeld CL et al. (2012) [47] | 1831 | 1850 | −19.0 | −1.0 | 75.8 | 72.4 | 3.4 | 4.7 | 69.7 | 69.0 | 0.7 | 1.0 | |||||||||||
Study | Carbohydrate (g/day), Mean | Sodium (mg/day), Mean | Vegetables (g/day), Mean | Fruits (g/day), Mean | |||||||||||||||||||
Web-Based | Conventional | Difference | % difference | Web-Based | Conventional | Difference | % Difference | Web-Based | Conventional | Difference | % Difference | Web-Based | Conventional | Difference | % Difference | ||||||||
Web-based dietary records | |||||||||||||||||||||||
Dietary records as the conventional method | |||||||||||||||||||||||
Matsuzaki E et al. (2017) [35] a | 215.6 | 208.1 | 7.5 | 3.5 | 7700 | 7300 | 400 | 5.5 | - | - | - | - | - | - | - | - | |||||||
Monnerie B et al. (2015) [37] | 202.0 | 199.0 | 3.0 | 1.5 | 2698 | 2641 | 57 | 2.2 | - | - | - | - | - | - | - | - | |||||||
Vereecken CA et al. (2009) [48] | 171.0 | 180.0 | −9.0 | −5.0 | - | - | - | - | 49 | 57 | −8.0 | −14.0 | 125 | 124 | 1.0 | 0.8 | |||||||
Storey KE et al. (2012) [38] b | 273.8 | 253.8 | 19.9 | 7.8 | - | - | - | - | - | - | - | - | - | - | - | - | |||||||
Raatz SK et al. (2015) [46] | 224.6 | 209.1 | 15.5 | 7.4 | 3150 | 3107 | 43 | 1.4 | - | - | - | - | - | - | - | ||||||||
Teixeira V et al. (2017) [49] | 207.8 | 232.9 | −25.1 | −10.8 | - | - | - | - | - | - | - | - | - | - | - | - | |||||||
24-h dietary recalls as the conventional method | |||||||||||||||||||||||
Beasley J et al. (2005) [44] | 292.0 | 327.0 | −35.0 | −10.7 | - | - | - | - | - | - | - | - | - | - | - | - | |||||||
Web-based 24-h dietary recalls | |||||||||||||||||||||||
24-h dietary recalls as the conventional method | |||||||||||||||||||||||
Lindroos AK et al. (2019) [39] d | 243.0 | 225.0 | 18.0 | 8.0 | - | - | - | - | 137 | 139 | −2.0 | −1.4 | 87 | 88 | −1.0 | −1.1 | |||||||
Timon CM et al. (2017) [40] f | 1st | 226.0 | 247.0 | −21.0 | −7.9 | 2566 | 2583 | −17 | −4.2 | 142 | 150 | −8.0 | −5.3 | 259 | 273 | −14.0 | −5.1 | ||||||
2nd | 216.0 | 233.0 | −17.0 | −7.3 | 2168 | 2358 | −190 | −8.1 | 151 | 168 | −17.0 | −10.1 | 269 | 249 | 20 | 8 | |||||||
Albar SA et al. (2016) [41] d | 264.4 | 275.5 | −11.1 | −4.0 | 2650 | 2700 | −50 | −1.9 | 89 | 86 | 3.3 | 3.9 | 159 | 158 | 1.3 | 0.8 | |||||||
Bradley J et al. (2016) [42] b | 11–16 y | 234.2 | 236.0 | −1.8 | −0.8 | - | - | - | - | - | - | - | - | - | - | - | - | ||||||
17–24 y | 229.1 | 230.3 | −1.2 | −0.5 | - | - | - | - | - | - | - | - | - | - | - | - | |||||||
Brassard D et al. (2020) [43] | - | - | - | - | 3470 | 3165 | 305 | 9.6 | - | - | - | - | - | - | - | ||||||||
Mescoloto SB et al. (2017) [50] | 217.5 | 230.0 | −12.5 | −5.4 | - | - | - | - | 1.02 g | 1.12 g | −0.1 | −0.1 | 0.69 g | 0.73 g | −0.04 | −0.1 | |||||||
Liu B et al. (2011) [45] | 261.9 | 267.3 | −5.4 | −2.0 | - | - | - | - | - | - | - | - | - | - | - | - | |||||||
Dietary records as the conventional method | |||||||||||||||||||||||
Lafrenière J et al. (2018) [34] | 290.6 | 277.7 | 12.9 | 4.6 | 3455 | 3155 | 301 | 9.5 | - | - | - | - | - | - | - | - | |||||||
Timon CM et al. (2017) [36] | 221.0 | 238.0 | −17.0 | −7.1 | 2265 | 2552 | −287 | −11.2 | 172 | 237 | −65.0 | −27.4 | 372 | 252 | 120.0 | 47.6 | |||||||
Frankenfeld CL et al. (2012) [47] | 233.0 | 233.0 | 0.0 | 0.0 | 3340 | 3500 | −160 | −4.6 | - | - | - | - | - | - | - | - |
Correlation Coefficients | ||||||||
---|---|---|---|---|---|---|---|---|
Energy | Protein | Fat | Carbohydrate | Sodium | Vegetable | Fruit | ||
Web-based dietary records | ||||||||
Dietary records as the conventional method | ||||||||
Matsuzaki E et al. (2017) [35] a | 0.87 | 0.78 | 0.75 | 0.82 | 0.59 | - | - | |
Storey KE et al. (2012) [38] b | 0.37 | 0.41 | 0.33 | 0.31 | - | - | - | |
Teixeira V et al. (2017) [49] a | 0.67 | 0.53 | 0.59 | 0.58 | - | - | - | |
24-h dietary recalls as the conventional method | ||||||||
Beasley J et al. (2005) [44] | 0.71 | 0.62 | 0.51 | 0.80 | - | - | - | |
Web-based 24-h dietary recalls | ||||||||
24-h dietary recalls as the conventional method | ||||||||
Lindroos AK et al. (2019) [39] b, e | 0.53 | 0.57 | 0.57 | - | - | 0.23 | 0.56 | |
Timon CM et al. (2017) [40] | 1st | 0.62 | 0.77 | 0.75 | 0.65 | 0.75 | 0.84 a | 0.76 a |
2nd | 0.72 | 0.79 | 0.61 | 0.80 | 0.63 | 0.84 a | 0.85 a | |
Albar SA et al. (2016) [41] d, e | 0.88 | 0.77 | 0.75 | 0.81 | 0.46 | 0.47 | 0.67 | |
Mescoloto SB et al. (2017) [50] | 0.77 | 0.83 | 0.71 | 0.82 | - | 0.43 f | 0.78 f | |
Liu B et al. (2011) [45] a | 0.58 | 0.59 | 0.57 | 0.66 | - | - | - | |
Dietary records as the conventional method | ||||||||
Lafrenière J et al. (2018) [34] | 0.57 | 0.61 | 0.54 | 0.53 | 0.55 | - | - | |
Timon CM et al. (2017) [36] c | 0.54 | 0.75 | 0.33 | 0.53 | 0.30 | - | - | |
Frankenfeld CL et al. (2012) [47] | 0.44 | 0.41 | 0.46 | 0.36 | 0.17 | - | - |
Web-Based Dietary Assessments | |
---|---|
Negative Points | Positive Points |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murai, U.; Tajima, R.; Matsumoto, M.; Sato, Y.; Horie, S.; Fujiwara, A.; Koshida, E.; Okada, E.; Sumikura, T.; Yokoyama, T.; et al. Validation of Dietary Intake Estimated by Web-Based Dietary Assessment Methods and Usability Using Dietary Records or 24-h Dietary Recalls: A Scoping Review. Nutrients 2023, 15, 1816. https://doi.org/10.3390/nu15081816
Murai U, Tajima R, Matsumoto M, Sato Y, Horie S, Fujiwara A, Koshida E, Okada E, Sumikura T, Yokoyama T, et al. Validation of Dietary Intake Estimated by Web-Based Dietary Assessment Methods and Usability Using Dietary Records or 24-h Dietary Recalls: A Scoping Review. Nutrients. 2023; 15(8):1816. https://doi.org/10.3390/nu15081816
Chicago/Turabian StyleMurai, Utako, Ryoko Tajima, Mai Matsumoto, Yoko Sato, Saki Horie, Aya Fujiwara, Emiko Koshida, Emiko Okada, Tomoko Sumikura, Tetsuji Yokoyama, and et al. 2023. "Validation of Dietary Intake Estimated by Web-Based Dietary Assessment Methods and Usability Using Dietary Records or 24-h Dietary Recalls: A Scoping Review" Nutrients 15, no. 8: 1816. https://doi.org/10.3390/nu15081816
APA StyleMurai, U., Tajima, R., Matsumoto, M., Sato, Y., Horie, S., Fujiwara, A., Koshida, E., Okada, E., Sumikura, T., Yokoyama, T., Ishikawa, M., Kurotani, K., & Takimoto, H. (2023). Validation of Dietary Intake Estimated by Web-Based Dietary Assessment Methods and Usability Using Dietary Records or 24-h Dietary Recalls: A Scoping Review. Nutrients, 15(8), 1816. https://doi.org/10.3390/nu15081816