Estimated Phytate Intake Is Associated with Bone Mineral Density in Mediterranean Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Estimated Phytate Intake and Other Nutritional Variables
2.3. Bone Parameters’ Assessment
2.4. Assessment of Other Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeman, E. Pathogenesis of bone fragility in women and men. Lancet 2002, 359, 1841–1850. [Google Scholar] [CrossRef]
- Chen, L.R.; Hou, P.H.; Chen, K.H. Nutritional Support and Physical Modalities for People with Osteoporosis: Current Opinion. Nutrients 2019, 11, 2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, M.X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpouzos, A.; Diamantis, E.; Farmaki, P.; Savvanis, S.; Troupis, T. Nutritional Aspects of Bone Health and Fracture Healing. J. Osteoporos. 2017, 2017, 4218472. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D. Diet, Nutrition, and Bone Health. J. Nutr. 2007, 137, 2507S–2512S. [Google Scholar] [CrossRef] [Green Version]
- Sunyecz, J.A. The use of calcium and vitamin D in the management of osteoporosis. Ther. Clin. Risk Manag. 2008, 4, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Orchard, T.S.; Pan, X.; Cheek, F.; Ing, S.W.; Jackson, R.D. A systematic review of omega-3 fatty acids and osteoporosis. Br. J. Nutr. 2012, 107, S253–S260. [Google Scholar] [CrossRef] [Green Version]
- García Gavilán, J.F.; Bulló, M.; Camacho-Barcia, L.; Rosique-Esteban, N.; Hernández-Alonso, P.; Basora, J.; Martínez-González, M.A.; Estruch, R.; Fitó, M.; Salas-Salvadó, J. Higher dietary glycemic index and glycemic load values increase the risk of osteoporotic fracture in the PREvención con DIeta MEDiterránea (PREDIMED)-Reus trial. Am. J. Clin. Nutr. 2018, 107, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Kontogianni, M.D.; Melistas, L.; Yannakoulia, M.; Malagaris, I.; Panagiotakos, D.B.; Yiannakouris, N. Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition 2009, 25, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Rivas, A.; Romero, A.; Mariscal-Arcas, M.; Monteagudo, C.; Feriche, B.; Lorenzo, M.L.; Olea, F. Mediterranean diet and bone mineral density in two age groups of women. Int. J. Food Sci. Nutr. 2013, 64, 155–161. [Google Scholar] [CrossRef]
- Pérez-Rey, J.; Roncero-Martín, R.; Rico-Martín, S.; Rey-Sánchez, P.; Pedrera-Zamorano, J.D.; Pedrera-Canal, M.; López-Espuela, F.; Lavado García, J.M. Adherence to a Mediterranean Diet and Bone Mineral Density in Spanish Premenopausal Women. Nutrients 2019, 11, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon-Garcia, J.F.; Moran, J.M.; Roncero-Martin, R.; Rey-Sanchez, P.; Rodriguez-Velasco, F.J.; Pedrera-Zamorano, J.D. Dietary habits, nutrients and bone mass in Spanish premenopausal women: The contribution of fish to better bone health. Nutrients 2012, 5, 10–22. [Google Scholar] [CrossRef] [Green Version]
- García-Gavilán, J.F.; Bulló, M.; Canudas, S.; Martínez-González, M.A.; Estruch, R.; Giardina, S.; Fitó, M.; Corella, D.; Ros, R.E.; Salas-Salvadó, J. Extra virgin olive oil consumption reduces the risk of osteoporotic fractures in the PREDIMED trial. Clin. Nutr. 2018, 37, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Raboy, V. Myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 2003, 64, 1033–1043. [Google Scholar] [CrossRef]
- Grases, F.; Sanchis, P.; Prieto, R.M.; Perelló, J.; López-González, Á.A. Effect of tetracalcium dimagnesium phytate on bone characteristics in ovariectomized rats. J. Med. Food 2010, 13, 1301–1306. [Google Scholar] [CrossRef]
- Gonzalez, A.A.L.; Grases, F.; Mari, B.; Tomas-Salva, M.; Rodriguez, A. Urinary phytate concentration and risk of fracture determined by the FRAX index in a group of postmenopausal women. Turk. J. Med. Sci. 2019, 49, 458–463. [Google Scholar] [CrossRef]
- López-González, A.A.; Grases, F.; Roca, P.; Mari, B.; Vicente-Herrero, M.T.; Costa-Bauzá, A. Phytate (myo-inositol hexaphosphate) and risk factors for osteoporosis. J. Med. Food 2008, 11, 747–752. [Google Scholar] [CrossRef] [PubMed]
- López-González, A.A.; Grases, F.; Monroy, N.; Marí, B.; Vicente-Herrero, M.T.; Tur, F.; Perelló, J. Protective effect of myo-inositol hexaphosphate (phytate) on bone mass loss in postmenopausal women. Eur. J. Nutr. 2013, 52, 717–726. [Google Scholar] [CrossRef]
- Arriero, M.M.; Ramis, J.M.; Perelló, J.; Monjo, M. Inositol hexakisphosphate inhibits osteoclastogenesis on RAW 264.7 cells and human primary osteoclasts. PLoS ONE 2012, 7, e43187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchis, P.; López-González, Á.A.; Costa-Bauzá, A.; Busquets-Cortés, C.; Riutord, P.; Calvo, P.; Grases, F. Understanding the Protective Effect of Phytate in Bone Decalcification Related-Diseases. Nutrients 2021, 13, 2859. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Buil-Cosiales, P.; Corella, D.; Bulló, M.; Fitó, M.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; López-Miranda, J.; et al. Cohort profle: Design and methods of the PREDIMED-Plus randomized trial. Int. J. Epidemiol. 2019, 48, 387–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayón-Orea, C.; Razquin, C.; Bulló, M.; Corella, D.; Fitó, M.; Romaguera, D.; Vioque, J.; Alonso-Gómez, A.M.; Wärnberg, J.; Martínez, J.A.; et al. Effect of a Nutritional and Behavioral Intervention on Energy-Reduced Mediterranean Diet Adherence Among Patients With Metabolic Syndrome Interim Analysis of the PREDIMED-Plus Randomized Clinical Trial. JAMA 2019, 322, 1486–1499. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Prieto, R.M.; Fiol, M.; Perello, J.; Estruch, R.; Ros, E.; Sanchis, P.; Grases, F. Effects of Mediterranean diets with low and high proportions of phytate-rich foods on the urinary phytate excretion. Eur. J. Nutr. 2010, 49, 321–326. [Google Scholar] [CrossRef]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.A.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente-Arrillaga, C.; Vazquez Ruiz, Z.; Bes-Rastrollo, M.; Sampson, L.; Martinez-González, M.A. Reproducibility of an FFQ validated in Spain. Public Health Nutr. 2010, 13, 1364–1372. [Google Scholar] [CrossRef] [Green Version]
- Harland, B.F.; Oberleas, D. Phytate in foods. World Rev. Nutr. Diet. 1987, 52, 235–259. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Rev. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- Harland, B.F.; Smikle-Williams, S.; Oberleas, D. High performance liquid chromatography analysis of phytate (IP6) in selected foods. J. Food Comp. Anal. 2004, 17, 227–233. [Google Scholar] [CrossRef]
- Chan, S.S.L.; Ferguson, E.L.; Bailey, K.; Fahmidab, U.; Harpera, T.B.; Gibsona, R.S. The concentrations of iron, calcium, zinc and phytate in cereals and legumes habitually consumed by infants living in East Lombok, Indonesia. J. Food Comp. Anal. 2007, 20, 609–617. [Google Scholar] [CrossRef]
- Plaami, S. Myo-inositol phosphates: Analysis, content in foods and effects in nutrition. LWT Food Sci. Technol. 1997, 30, 633–647. [Google Scholar] [CrossRef]
- Mataix, J. Tablas de Composición de Alimentos, 4th ed.; Universidad de Granada: Granada, Spain, 2003. [Google Scholar]
- Moreiras, O.; Carvajal, A.; Cabrera, L. Tablas de Composición de Alimentos Food Composition Tables, 9th ed.; Ediciones Pirámide: Madrid, Spain, 2005. [Google Scholar]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Prevention and management of osteoporosis. World Health Organ. Tech. Rep. Ser. 2003, 921, 161–164. [Google Scholar]
- Molina, L.; Sarmiento, M.; Peñafiel, J.; Donaire, D.; Garcia-Aymerich, J.; Gomez, M.; Ble, M.; Ruiz, S.; Frances, A.; Schröder, H.; et al. Validation of the regicor short physical activity questionnaire for the adult population. PLoS ONE 2017, 12, 168148. [Google Scholar] [CrossRef] [Green Version]
- Grases, F.; Costa-Bauza, A. Key Aspects of Myo-Inositol Hexaphosphate (Phytate) and Pathological Calcifications. Molecules 2019, 24, 4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleisch, H.A. Bisphosphonates: Preclinical aspects and use in osteoporosis. Ann. Med. 1997, 29, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleisch, H.; Bisaz, S. Isolation from urine of pyrophosphate, a calcification inhibitor. Am. J. Physiol. 1962, 203, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Fleisch, H.; Neuman, W.F. Mechanism of calcification: Role of collagen, polyphosphates, and phosphatases. Am. J. Phisiol. 1961, 200, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Fleisch, H.; Russell, R.G.; Francis, M.D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969, 165, 1262–1264. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.G.; Muhlbauer, R.C.; Bisaz, S.; Williams, D.A.; Fleisch, H. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif. Tissue Res. 1970, 6, 183–196. [Google Scholar] [CrossRef]
- Pujol, A.; Sanchis, P.; Grases, F.; Masmiquel, L. Phytate Intake, Health and Disease: Let Thy Food Be Thy Medicine and Medicine Be Thy Food. Antioxidants 2023, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Isern, B.; Sanchis, P.; Perello, J.; Torres, J.J.; Costa-Bauza, A. Phytate acts as an inhibitor in formation of renal calculi. Front. Biosci. 2007, 12, 2580–2587. [Google Scholar] [CrossRef]
- Grases, F.; Perello, J.; Sanchis, P.; Isern, B.; Prieto, R.M.; Costa-Bauzá, A.; Santiago, C.; Ferragut, M.L.; Frontera, G. Anticalculus effect of a triclosan mouthwash containing phytate: A doubleblind, randomized, three-period crossover trial. J. Periodontal. Res. 2009, 44, 616–621. [Google Scholar] [CrossRef]
- Grases, F.; Sanchis, P.; Perello, J.; Isern, B.; Prieto, R.M.; Fernandez-Palomeque, C.; Saus, C. Phytate reduces age-related cardiovascular calcification. Front. Biosci. 2008, 13, 7115–7122. [Google Scholar] [CrossRef] [Green Version]
- Sanchis, P.; Buades, J.M.; Berga, F.; Gelabert, M.M.; Molina, M.; Íñigo, M.V.; García, S.; Gonzalez, J.; Bernabeu, M.R.; Costa-Bauzá, A.; et al. Protective Effect of Myo-Inositol Hexaphosphate (Phytate) on Abdominal Aortic Calcification in Patients with Chronic Kidney Disease. J. Ren. Nutr. 2016, 26, 226–236. [Google Scholar] [CrossRef]
- Fernández-Palomeque, C.; Grau, A.; Perelló, J.; Sanchis, P.; Isern, B.; Prieto, R.M.; Costa-Bauzá, A.; Caldés, O.J.; Bonnin, O.; Garcia-Raja, A.; et al. Relationship between Urinary Level of Phytate and Valvular Calcification in an Elderly Population: A Cross-Sectional Study. PLoS ONE 2015, 10, 0136560. [Google Scholar] [CrossRef] [Green Version]
- Vucenik, I.; Shamsuddin, A.M. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: From laboratory to clinic. J. Nutr. 2003, 133, 3778–3784. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Kanthasamya, A.G.; Reddy, M.B. Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson’s disease. Toxicology 2008, 245, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Larvie, D.Y.; Armah, S.M. Estimated Phytate Intake Is Associated with Improved Cognitive Function in the Elderly, NHANES 2013–2014. Antioxidants 2021, 10, 1104. [Google Scholar] [CrossRef]
- Sanchis, P.; Rivera, R.; Berga, F.; Fortuny, R.; Adrover, M.; Costa-Bauza, A.; Grases, F.; Masmiquel, L. Phytate Decreases Formation of Advanced Glycation End-Products in Patients with Type II Diabetes: Randomized Crossover Trial. Sci. Rep. 2018, 8, 9619. [Google Scholar] [CrossRef] [Green Version]
- Omoruyi, F.O.; Stennett, D.; Foster, S.; Dilworth, L. New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review. Molecules 2020, 25, 1720. [Google Scholar] [CrossRef] [Green Version]
- Grases, F.; Simonet, B.M.; Prieto, R.M.; March, J.G. Variation of InsP4, InsP5, InsP6 levels in tissues and biological fluids depending on dietary phytate. J. Nutr. Biochem. 2001, 12, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Simonet, B.M.; Vucenik, I.; Prieto, R.M.; Costa-Bauzá, A.; March, J.G.; Shamsuddin, A.M. Absorption and excretion of orally administered inositol hexaphosphate (IP6 or phytate) in humans. BioFactors 2001, 15, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Isern, B.; Perelló, J.; Sanchis, P.; Prieto, R.M. Absorption of myo-inositol hexakisphosphate (InsP6) through the skin: Study of the matrix effects. Mechanism of phytate topical absorption. Front. Biosci. 2005, 10, 799–802. [Google Scholar] [CrossRef] [Green Version]
- Grases, F.; Isern, B.; Perelló, J.; Sanchis, P.; Prieto, R.M.; Costa-Bauzá, A. Absorption of myo-inositol hexakisphosphate (InsP6) through the skin in humans. Pharmazie 2006, 61, 652. [Google Scholar]
- Weaver, C.M.; Kannan, S. Phytate and mineral bioavailability. Food Phytates, 1st ed.; Reddy, N.R., Sathe, S.K., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 227–240. [Google Scholar]
- Zhang, Y.Y.; Stockmann, R.; Ng, K.; Ajlouni, S. Crit Revisiting phytate-element interactions: Implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Rev. Food Sci. Nutr. 2022, 62, 1696–1712. [Google Scholar] [CrossRef]
- Castro-Alba, V.; Lazarte, C.E.; Bergenståhl, B.; Granfeldt, Y. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Food Sci. Nutr. 2019, 7, 2854–2865. [Google Scholar] [CrossRef] [Green Version]
- Kim, O.H.; Booth, C.J.; Choi, H.S.; Lee, J.; Kang, J.; Hur, J.; Jung, W.J.; Jung, Y.S.; Choi, H.J.; Kim, H.; et al. High-phytate/low-calcium diet is a risk factor for crystal nephropathies, renal phosphate wasting, and bone loss. eLife 2020, 9, e52709. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Seth, A.; Aneja, S.; Sharma, B.; Sonkar, P.; Singh, S.; Marwaha, R.K. Role of calcium deficiency in development of nutritional rickets in indian children: A case control study. J. Clin. Endocrinol. Metab. 2012, 97, 3461–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Hasan, S.M.; Hassan, M.; Saha, S.; Islam, M.; Billah, M.; Islam, S. Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: A cross-sectional study. BMC Nutr. 2016, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef] [PubMed]
Food | Estimate mg Phytate/100 g Edible | Serving Size (g) | Phytate per Serving (mg) |
---|---|---|---|
Green beans | 180 | 200 * | 360 |
Almonds, peanuts, hazelnuts, pistachio or pine seed | 1000 | 30 | 300 |
Walnuts | 1600 | 30 | 480 |
Lentils | 400 | 150 * | 600 |
Beans (pinto, kidney or lima) | 700 | 150 * | 1050 |
Chickpeas | 400 | 150 * | 600 |
Beans and broadbeans | 600 | 150 * | 900 |
Whole bread | 350 | 75 | 263 |
Whole cereals (muesli, oatmeal, all-bran) | 350 | 30 | 90 |
Whole rice | 350 | 60 | 210 |
Wholemeal cookies | 300 | 50 | 150 |
Whole-wheat pasta | 300 | 60 | 180 |
Tertile 1 | Tertile 2 | Tertile 3 | |||||
---|---|---|---|---|---|---|---|
<15.0 mg/100 kcal | [15.0–28.4] mg/100 kcal | >28.4 mg/100 kcal | |||||
Variable | (n = 187) | (n = 187) | (n = 187) | p-Value | |||
Age, years | 66.3 ± 4.1 | 67.1 ± 3.9 | 66.2 ± 4.1 | 0.062 | |||
BMI, kg/m2 | 33.4 ± 3.5 | 32.5 ± 3.3 a | 33.1 ± 3.8 | 0.046 | |||
Physical activity, MET•min/week | 1709 ± 1602 | 2389 ± 2153 a | 2331 ± 1738 a | <0.001 | |||
Menopausal age, years | 48.7 ± 5.6 | 49.4 ± 5.3 | 48.6 ± 6.3 | 0.387 | |||
Educational level, n (%) | |||||||
Higher education | 22 | (11.8%) | 20 | (10.8%) | 28 | (15.2%) | 0.341 |
Technician or secondary education | 43 | (23.1%) | 40 | (21.5%) | 50 | (27.2%) | |
Primary education or less | 121 | (65.1%) | 126 | (67.7%) | 106 | (57.6%) | |
Smoking status, n (%) | |||||||
Never | 119 | (64.0%) | 132 | (70.6%) | 122 | (65.2%) | 0.126 |
Former | 44 | (23.7%) | 43 | (23.0%) | 53 | (28.3%) | |
Current | 23 | (12.4%) | 12 | (6.4%) | 12 | (6.4%) | |
Type 2 diabetes, n (%) | 47 | (25.1%) | 46 | (24.6%) | 48 | (25.7%) | 0.972 |
Osteporotic fractures, n (%) | 4 | (2.1%) | 5 | (2.7%) | 2 | (1.1%) | 0.523 |
Nutrients | |||||||
Total energy intake, kcal/day | 2376 ± 520 | 2338 ± 630 | 2250 ± 576 | 0.099 | |||
Phytate, mg/100 kcal | 9.4 ± 3.2 | 21.1 ± 4.0 a | 40.5 ± 9.8 a,b | <0.001 | |||
Phytate, mg/day | 225 ± 98 | 490 ± 155 a | 912 ± 331 a,b | <0.001 | |||
Vitamin D, µg/day | 5.8 ± 3.3 | 6.3 ± 3.3 | 6.6 ± 3.5 | 0.057 | |||
Calcium, mg/day | 1067 ± 353 | 1084 ± 377 | 1037 ± 366 | 0.454 | |||
Phosphorous, mg/day | 1731 ± 419 | 1812 ± 479 | 1877 ± 458 a | 0.008 | |||
Zinc, mg/day | 12.7 ± 3.1 | 13.2 ± 3.4 | 14.1 ± 3.8 a,b | 0.001 | |||
Glycemic index | 55.5 ± 4.4 | 53.7 ± 5.0 a | 52.4 ± 6.0 a | <0.001 | |||
Food | |||||||
Vegetables (g/day) | 300 ± 109 | 344 ± 126 a | 354 ± 131 a | <0.001 | |||
Fruits (g/day) | 362 ± 217 | 371 ± 238 | 353 ± 180 | 0.701 | |||
Legumes (g/day) | 18 ± 8 | 21 ± 11 a | 21 ± 13 a | 0.007 | |||
Cereals (g/day) | 153 ± 81 | 144 ± 78 | 152 ± 78 | 0.520 | |||
Whole cereals (g/day) | 11 ± 22 | 43 ± 38 a | 123 ± 84 a,b | <0.001 | |||
Dairy (g/day) | 395 ± 205 | 371 ± 216 | 363 ± 218 | 0.335 | |||
Meat (g/day) | 159 ± 52 | 154 ± 59 | 140 ± 54 a,b | 0.004 | |||
Olive oil (g/day) | 45 ± 15 | 42 ± 15 | 40 ± 15 a | 0.007 | |||
Fish (g/day) | 100 ± 43 | 104 ± 44 | 104 ± 45 | 0.530 | |||
Nuts (g/day) | 5 ± 8 | 15 ± 15 a | 25 ± 21 a,b | <0.001 | |||
Pastries and sweets (g/day) | 34 ± 37 | 27 ± 35 a | 21 ± 25 a | 0.001 |
Variable | Tertile 1 <15.0 mg/100 kcal | Tertile 2 [15.0–28.4] mg/100 kcal | Tertile 3 >28.4 mg/100 kcal | p-Value |
---|---|---|---|---|
BMD g/cm2 | ||||
Femoral Neck, g/cm2 | 0.86 ± 0.11 | 0.86 ± 0.12 | 0.90 ± 0.12 a,b | 0.004 |
Femoral Ward’s Triangle, g/cm2 | 0.66 ± 0.11 | 0.67 ± 0.13 | 0.71 ± 0.16 a,b | 0.000 |
Femoral Trochanter, g/cm2 | 0.78 ± 0.10 | 0.77 ± 0.11 | 0.80 ± 0.12 b | 0.014 |
Femoral Diaphysis, g/cm2 | 1.16 ± 0.14 | 1.16 ± 0.15 | 1.19 ± 0.16 a,b | 0.038 |
Total Femur, g/cm2 | 0.95 ± 0.10 | 0.95 ± 0.12 | 0.98 ± 0.13 a,b | 0.010 |
Lumbar Spine L1–L2, g/cm2 | 1.02 ± 0.15 | 1.01 ± 0.15 | 1.07 ± 0.18 a,b | 0.001 |
Lumbar Spine L1–L3, g/cm2 | 1.06 ± 0.16 | 1.05 ± 0.15 | 1.11 ± 0.17 a,b | 0.002 |
Lumbar Spine L1–L4, g/cm2 | 1.07 ± 0.16 | 1.08 ± 0.16 | 1.12 ± 0.17 a,b | 0.012 |
Lumbar Spine L2–L3, g/cm2 | 1.09 ± 0.18 | 1.09 ± 0.16 | 1.13 ± 0.18 b | 0.018 |
Lumbar Spine L2–L4, g/cm2 | 1.10 ± 0.18 | 1.11 ± 0.17 | 1.15 ± 0.18 b | 0.042 |
Lumbar Spine L3–L4, g/cm2 | 1.12 ± 0.19 | 1.14 ± 0.18 | 1.17 ± 0.19 | 0.054 |
BMD T–scores | ||||
Femoral Neck | −1.00 ± 0.87 | −1.01 ± 0.99 | −0.71 ± 1.03 a,b | 0.003 |
Femoral Ward’s Triangle | −1.82 ± 0.87 | −1.79 ± 1.03 | −1.49 ± 1.26 a,b | 0.005 |
Femoral Trochanter | −0.09 ± 0.92 | −0.20 ± 1.00 | 0.05 ± 1.07 | 0.061 |
Total Femur | −0.28 ± 0.84 | −0.38 ± 0.99 | −0.13 ± 1.03 a,b | 0.045 |
Lumbar Spine L1–L2 | −1.21 ± 1.23 | −1.31 ± 1.22 | −0.77 ± 1.47 a,b | 0.001 |
Lumbar Spine L1–L3 | −0.96 ± 1.31 | −1.01 ± 1.24 | −0.53 ± 1.45 a,b | 0.002 |
Lumbar Spine L1–L4 | −0.91 ± 1.34 | −0.86 ± 1.33 | −0.48 ± 1.44 a,b | 0.009 |
Lumbar Spine L2–L3 | −0.91 ± 1.49 | −0.93 ± 1.33 | −0.54 ± 1.50 ab | 0.018 |
Lumbar Spine L2–L4 | −0.83 ± 1.49 | −0.75 ± 1.41 | −0.44 ± 1.50 a | 0.033 |
Lumbar Spine L3–L4 | −0.65 ± 1.57 | −0.54 ± 1.50 | −0.26 ± 1.56 | 0.054 |
Tertile 1 <15.0 mg/100 kcal | Tertile 2 [15.0–28.4] mg/100 kcal | Tertile 3 >28.4 mg/100 kcal | p-Value for Trend | Phytate (per 25 mg/100 kcal) | p-Value | |
---|---|---|---|---|---|---|
Femoral Neck, n | 186 | 187 | 183 | 556 | ||
Crude Model | 0 (reference) | −0.002 (−0.026–0.022) | 0.034 (0.010–0.058) | 0.005 | 0.026 (0.009–0.043) | 0.003 |
Adjusted Model * | 0 (reference) | 0.003 (−0.021–0.026) | 0.031 (0.007–0.056) | 0.011 | 0.023 (0.006–0.040) | 0.008 |
Femoral Ward’s Triangle, n | 186 | 187 | 183 | 556 | ||
Crude Model | 0 (reference) | 0.005 (−0.023–0.032) | 0.050 (0.022–0.077) | <0.001 | 0.035 (0.016–0.055) | <0.001 |
Adjusted Model * | 0 (reference) | 0.009 (−0.019–0.037) | 0.048 (0.020–0.077) | 0.001 | 0.033 (0.013–0.054) | 0.001 |
Femoral Trochanter, n | 186 | 187 | 183 | 556 | ||
Crude Model | 0 (reference) | −0.011 (−0.033–0.011) | 0.022 (0.000–0.044) | 0.055 | 0.018(0.002–0.034) | 0.027 |
Adjusted Model * | 0 (reference) | −0.006 (−0.027–0.016) | 0.020 (−0.002–0.043) | 0.075 | 0.015 (−0.001–0.031) | 0.064 |
Femoral Diaphysis, n | 178 | 184 | 180 | 542 | ||
Crude Model | 0 (reference) | 0.000 (−0.031–0.031) | 0.035 (0.004–0.066) | 0.026 | 0.023 (0.001–0.045) | 0.041 |
Adjusted Model * | 0 (reference) | 0.009 (−0.021–0.039) | 0.033 (0.002–0.063) | 0.035 | 0.020 (−0.002–0.041) | 0.072 |
Total Femur, n | 178 | 184 | 180 | 542 | ||
Crude Model | 0 (reference) | −0.004 (−0.028–0.019) | 0.030 (0.006–0.054) | 0.015 | 0.021 (0.004–0.038) | 0.015 |
Adjusted Model * | 0 (reference) | 0.003 (−0.020–0.026) | 0.027 (0.004–0.051) | 0.023 | 0.018 (0.001–0.035) | 0.034 |
Lumbar Spine L1–L2, n | 148 | 157 | 164 | 469 | ||
Crude Model | 0 (reference) | −0.012 (−0.047–0.023) | 0.052 (0.017–0.088) | 0.003 | 0.043 (0.018–0.067) | 0.001 |
Adjusted Model * | 0 (reference) | −0.004 (−0.039–0.032) | 0.043 (0.007–0.080) | 0.016 | 0.035 (0.010–0.060) | 0.006 |
Lumbar Spine L1–L3, n | 147 | 157 | 164 | 468 | ||
Crude Model | 0 (reference) | −0.007 (−0.043–0.029) | 0.050 (0.014–0.086) | 0.005 | 0.040 (0.015–0.065) | 0.002 |
Adjusted Model * | 0 (reference) | 0.001 (−0.036–0.037) | 0.042 (0.005–0.079) | 0.003 | 0.033 (0.008–0.059) | 0.011 |
Lumbar Spine L1–L4, n | 147 | 158 | 167 | 472 | ||
Crude Model | 0 (reference) | 0.005 (−0.032–0.043) | 0.050 (0.013–0.087) | 0.007 | 0.038 (0.013–0.063) | 0,003 |
Adjusted Model * | 0 (reference) | 0.013 (−0.024–0.050) | 0.045 (0.007–0.083) | 0.019 | 0.033 (0.007–0.059) | 0.013 |
Lumbar Spine L2–L3, n | 167 | 171 | 176 | 514 | ||
Crude Model | 0 (reference) | −0.003 (−0.040–0.034) | 0.044 (0.008–0.081) | 0.017 | 0.033 (0.007–0.059) | 0,012 |
Adjusted Model * | 0 (reference) | 0.006 (−0.031–0.043) | 0.041 (0.006–0.083) | 0.032 | 0.030 (0.003–0.056) | 0.028 |
Lumbar Spine L2–L4, n | 167 | 173 | 179 | 519 | ||
Crude Model | 0 (reference) | 0.008 (−0.029–0.046) | 0.045 (0.007–0.082) | 0.018 | 0.033 (0.007–0.060) | 0.012 |
Adjusted Model * | 0 (reference) | 0.017 (−0.021–0.055) | 0.044 (0.006–0.083) | 0.023 | 0.032 (0.005–0.058) | 0.019 |
Lumbar Spine L3–L4, n | 167 | 170 | 176 | 513 | ||
Crude Model | 0 (reference) | 0.013 (−0.026–0.053) | 0.047 (0.008–0.086) | 0.019 | 0.036 (0.008–0.063) | 0.012 |
Adjusted Model * | 0 (reference) | 0.022 (−0.018–0.062) | 0.047 (0.006–0.087) | 0.025 | 0.034 (0.005–0.062) | 0.020 |
Tertile 1 <15.0 mg/100 kcal | Tertile 2 [15.0–28.4] mg/100 kcal | Tertile 3 >28.4 mg/100 kcal | p-Value for Trend | Phytate (per 25 mg/100 kcal) | p-Value | |
---|---|---|---|---|---|---|
Femoral Neck, n | 185 | 187 | 182 | 554 | ||
Crude Model | 0 (ref.) | −0.004 (−0.201–0.193) | 0.297 (0.099–0.496) | 0.004 | 0.221 (0.080–0.363) | 0.002 |
Adjusted Model * | 0 (ref.) | 0.040 (−0.156–0.236) | 0.274 (0.072–0.475) | 0.008 | 0.200 (0.058–0.342) | 0.006 |
Femoral Ward’s Triangle, n | 185 | 187 | 181 | 553 | ||
Crude Model | 0 (ref.) | 0.022 (−0.194–0.238) | 0.327 (0.109–0.545) | 0.004 | 0.225 (0.070–0.380) | 0.004 |
Adjusted Model * | 0 (ref.) | 0.053 (−0.165–0.271) | 0.319 (0.095–0.544) | 0.005 | 0.218 (0.060–0.376) | 0.007 |
Femoral Trochanter, n | 185 | 187 | 181 | 553 | ||
Crude Model | 0 (ref.) | −0.109 (−0.313–0.095) | 0.138 (−0.067–0.344) | 0.192 | 0.144 (−0.002–0.290) | 0.053 |
Adjusted Model * | 0 (ref.) | −0.067 (−0.270–0.137) | 0.132 (−0.078–0.342) | 0.213 | 0.134 (−0.014–0.282) | 0.075 |
Total Femur, n | 177 | 184 | 177 | 538 | ||
Crude Model | 0 (ref.) | −0.094 (−0.293–0.104) | 0.156 (−0.044–0.356) | 0.128 | 0.136 (−0.006–0.278) | 0.061 |
Adjusted Model * | 0 (ref.) | −0.034 (−0.229–0.161) | 0.152 (−0.049–0.353) | 0.133 | 0.130 (−0.011–0.271) | 0.071 |
Lumbar Spine L1–L2, n | 148 | 157 | 164 | 469 | ||
Crude Model | 0 (ref.) | −0.100 (−0.396–0.196) | 0.436 (0.143–0.728) | 0.003 | 0.353 (0.149–0.557) | 0.001 |
Adjusted Model * | 0 (ref.) | −0.032 (−0.328–0.264) | 0.360 (0.059–0.661) | 0.016 | 0.291 (0.084–0.499) | 0.006 |
Lumbar Spine L1–L3, n | 147 | 157 | 164 | 468 | ||
Crude Model | 0 (ref.) | −0.057 (−0.359–0.245) | 0.421 (0.122–0.720) | 0.005 | 0.331 (0.123–0.539) | 0.002 |
Adjusted Model * | 0 (ref.) | 0.009 (−0.294–0.312) | 0.355 (0.047–0.663) | 0.021 | 0.276 (0.064–0.488) | 0.011 |
Lumbar Spine L1–L4, n | 147 | 156 | 165 | 468 | ||
Crude Model | 0 (ref.) | 0.055 (−0.256–0.365) | 0.435 (0.129–0.742) | 0.005 | 0.333 (0.120–0.546) | 0.002 |
Adjusted Model * | 0 (ref.) | 0.115 (−0.198–0.427) | 0.388 (0.071–0.705) | 0.015 | 0.287 (0.069–0.505) | 0.010 |
Lumbar Spine L2–L3, n | 167 | 171 | 176 | 514 | ||
Crude Model | 0 (ref.) | −0.020(−0.328–0.289) | 0.370 (0.064–0.676) | 0.017 | 0.276 (0.060–0.492) | 0.012 |
Adjusted Model * | 0 (ref.) | 0.055 (−0.256–0.366) | 0.343 (0.027–0.659) | 0.032 | 0.248 (0.028–0.469) | 0.027 |
Lumbar Spine L2–L4, n | 167 | 170 | 177 | 514 | ||
Crude Model | 0 (ref.) | 0.0073(−0.241–0.387) | 0.389 (0.078–0.699) | 0.014 | 0.296 (0.077–0.515) | 0.008 |
Adjusted Model * | 0 (ref.) | 0.145 (−0.171–0.462) | 0.384 (0.063–0.705) | 0.018 | 0.280 (0.056–0.504) | 0.014 |
Lumbar Spine L3–L4, n | 167 | 170 | 176 | 513 | ||
Crude Model | 0 (ref.) | 0.114 (−0.217–0.444) | 0.391 (0.063–0.719) | 0.019 | 0.295 (0.065–0.526) | 0.012 |
Adjusted Model * | 0 (ref.) | 0.185 (−0.150–0.520) | 0.390 (0.049–0.073) | 0.025 | 0.281 (0.044–0.519) | 0.020 |
Tertile 1 <15.0 mg/100 kcal | Tertile 2 [15.0–28.4] mg/100 kcal | Tertile 3 >28.4 mg/100 kcal | p-Value for Trend | Phytate (per 25 mg/100 kcal) | p-Value | |
---|---|---|---|---|---|---|
Age | ||||||
≤66 years | 72 | 69 | 100 | 241 | ||
0 (ref.) | 0.149 (−0.316–0.615) | 0.860 (0.424–1.296) | <0.001 | 0.580 (0.260–0.901) | <0.001 | |
>66 years | 75 | 87 | 65 | 227 | ||
0 (ref.) | −0.015 (−0.452–0.421) | −0.274 (−0.757–0.210) | 0.279 | −0.021 (−0.443–0.400) | 0.920 | |
p for interaction | 0.021 | 0.008 | ||||
BMI | ||||||
≤32.6 kg/cm2 | 66 | 82 | 78 | 226 | ||
0 (ref.) | 0.081 (−0.370–0.533) | 0.185 (−0.283–0.654) | 0.432 | 0.221 (−0.151–0.593) | 0.243 | |
>32.6 kg/cm2 | 84 | 74 | 87 | 242 | ||
0 (ref.) | 0.181 (−0.262–0.624) | 0.607 (0.168–1.046) | 0.007 | 0.425 (0.080–0.770) | 0.016 | |
p for interaction | <0.001 | <0.001 | ||||
Type 2 Diabetes | ||||||
No | 112 | 120 | 121 | 353 | ||
0 (ref.) | 0.332 (−0.017–0.681) | 0.528 (0.170–0.887) | 0.004 | 0.332 (0.083–0.581) | 0.009 | |
Yes | 35 | 36 | 44 | 115 | ||
0 (ref.) | −0.511 (−1.209–0.188) | 0.078 (−0.583–0.739) | 0.697 | 0.321 (−0.135–0.776) | 0.165 | |
p for interaction | 0.023 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis, P.; Prieto, R.M.; Konieczna, J.; Grases, F.; Abete, I.; Salas-Salvadó, J.; Martín, V.; Ruiz-Canela, M.; Babio, N.; García-Gavilán, J.F.; et al. Estimated Phytate Intake Is Associated with Bone Mineral Density in Mediterranean Postmenopausal Women. Nutrients 2023, 15, 1791. https://doi.org/10.3390/nu15071791
Sanchis P, Prieto RM, Konieczna J, Grases F, Abete I, Salas-Salvadó J, Martín V, Ruiz-Canela M, Babio N, García-Gavilán JF, et al. Estimated Phytate Intake Is Associated with Bone Mineral Density in Mediterranean Postmenopausal Women. Nutrients. 2023; 15(7):1791. https://doi.org/10.3390/nu15071791
Chicago/Turabian StyleSanchis, Pilar, Rafael María Prieto, Jadwiga Konieczna, Félix Grases, Itziar Abete, Jordi Salas-Salvadó, Vicente Martín, Miguel Ruiz-Canela, Nancy Babio, Jesús Francisco García-Gavilán, and et al. 2023. "Estimated Phytate Intake Is Associated with Bone Mineral Density in Mediterranean Postmenopausal Women" Nutrients 15, no. 7: 1791. https://doi.org/10.3390/nu15071791
APA StyleSanchis, P., Prieto, R. M., Konieczna, J., Grases, F., Abete, I., Salas-Salvadó, J., Martín, V., Ruiz-Canela, M., Babio, N., García-Gavilán, J. F., Goday, A., Costa-Bauza, A., Martínez, J. A., & Romaguera, D. (2023). Estimated Phytate Intake Is Associated with Bone Mineral Density in Mediterranean Postmenopausal Women. Nutrients, 15(7), 1791. https://doi.org/10.3390/nu15071791