Association between Skeletal Muscle Mass-to-Visceral Fat Ratio and Dietary and Cardiometabolic Health Risk Factors among Korean Women with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Socio-Demographic and Health-Related Characteristics of the Subjects
2.3. Anthropometric and Blood Pressure Measurements
2.4. Biochemical Measurements
2.5. Sarcopenic Obesity Diagnostics and Subject Classification
2.6. Dietary Assessment
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Choi, K.M. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. Int. J. Mol. Sci. 2020, 21, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenova, E.A.; Pranckevičienė, E.; Bondareva, E.A.; Gabdrakhmanova, L.J.; Ahmetov, I.I. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023, 15, 758. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.; Jho, S.; No, J.; Kim, H. Body composition changes were related to nutrient intakes in elderly men but elderly women had a higher prevalence of sarcopenic obesity in a population of Korean adults. Nutr. Res. 2015, 35, 1–6. [Google Scholar] [CrossRef]
- Hwang, B.; Lim, J.; Lee, J.; Choi, N.; Ahn, Y.; Park, B. Prevalence rate and associated factors of sarcopenic obesity in Korean elderly population. J. Korean Med. Sci. 2012, 27, 748–755. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lee, Y.; Chung, Y.; Lee, D.; Joo, N.; Hong, D.; Song, G.e.; Kim, H.; Choi, Y.J.; Kim, K. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J. Gerontol. Biol. Sci. Med. Sci. 2012, 67, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Barbagallo, M. The cardiometabolic syndrome and sarcopenic obesity in older persons. Cardiometab. Syndr. J. 2007, 2, 183–189. [Google Scholar] [CrossRef]
- Després, J.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef] [Green Version]
- Donini, L.M.; Busetto, L.; Bauer, J.M.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cruz-Jentoft, A.J.; Dicker, D.; Frühbeck, G.; Giustina, A. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin. Nutr. 2020, 39, 2368–2388. [Google Scholar] [CrossRef] [PubMed]
- Delmonico, M.J.; Harris, T.B.; Lee, J.; Visser, M.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Newman, A.B. Health, aging and body composition study alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J. Am. Geriatr. Soc. 2007, 55, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Park, M.S.; Lim, K.I.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H. Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: The Korean Sarcopenic Obesity Study (KSOS). Diabetes Res. Clin. Pract. 2011, 93, 285–291. [Google Scholar] [CrossRef]
- Armstrong, T.; Bull, F. Development of the world health organization global physical activity questionnaire (GPAQ). Am. J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- World Health Organization. Global Physical Activity Questionnaire (GPAQ) Analysis Guide; World Health Organization: Geneva, Switzerland, 2012; pp. 1–22.
- Son, J.W.; Lee, S.S.; Kim, S.R.; Yoo, S.J.; Cha, B.Y.; Son, H.Y.; Cho, N.H. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: Findings from the KoGES. Diabetologia 2017, 60, 865–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Strien, T.; Frijters, J.E.; Bergers, G.P.; Defares, P.B. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int. J. Eat. Disord. 1986, 5, 295–315. [Google Scholar] [CrossRef]
- Li, G.; Rios, R.S.; Wang, X.; Yu, Y.; Zheng, K.I.; Huang, O.; Tang, L.; Ma, H.; Jin, Y.; Targher, G. Sex influences the association between appendicular skeletal muscle mass to visceral fat area ratio and non-alcoholic steatohepatitis in patients with biopsy-proven non-alcoholic fatty liver disease. Br. J. Nutr. 2022, 11, 1613–1620. [Google Scholar] [CrossRef]
- Chung, J.; Kang, H.; Lee, D.; Lee, H.; Lee, Y. Body composition and its association with cardiometabolic risk factors in the elderly: A focus on sarcopenic obesity. Arch. Gerontol. Geriatr. 2013, 56, 270–278. [Google Scholar] [CrossRef]
- Kim, T.N.; Park, M.S.; Lim, K.I.; Choi, H.Y.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Choi, H.; Baik, S.H. Relationships between sarcopenic obesity and insulin resistance, inflammation, and vitamin D status: The Korean Sarcopenic Obesity Study. Clin. Endocrinol. 2013, 78, 525–532. [Google Scholar] [CrossRef]
- Stephen, W.; Janssen, I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J. Nutr. Health Aging 2009, 13, 460–466. [Google Scholar] [CrossRef]
- Elffers, T.W.; de Mutsert, R.; Lamb, H.J.; de Roos, A.; Willems van Dijk, K.; Rosendaal, F.R.; Jukema, J.W.; Trompet, S. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PloS ONE 2017, 12, e0185403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, B.H.; Krishnaswami, S.; Resnick, H.; Kelley, D.E.; Haggerty, C.; Harris, T.B.; Schwartz, A.V.; Kritchevsky, S.; Newman, A.B. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 2003, 26, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Goodpaster, B.H.; Thaete, F.L.; Kelley, D.E. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am. J. Clin. Nutr. 2000, 71, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesari, M.; Kritchevsky, S.B.; Baumgartner, R.N.; Atkinson, H.H.; Penninx, B.W.; Lenchik, L.; Palla, S.L.; Ambrosius, W.T.; Tracy, R.P.; Pahor, M. Sarcopenia, obesity, and inflammation—Results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am. J. Clin. Nutr. 2005, 82, 428–434. [Google Scholar] [CrossRef]
- Nazare, J.; Smith, J.D.; Borel, A.; Haffner, S.M.; Balkau, B.; Ross, R.; Massien, C.; Almeras, N.; Despres, J. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: The International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship with Cardiometabolic Risk/Intra-Abdominal Adiposity. Am. J. Clin. Nutr. 2012, 96, 714–726. [Google Scholar]
- Nimptsch, K.; Berg-Beckhoff, G.; Linseisen, J. Effect of dietary fatty acid intake on prospective weight change in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition. Public Health Nutr. 2010, 13, 1636–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil–derived n− 3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Jyväkorpi, S.; Urtamo, A.; Kivimäki, M.; Strandberg, T. Macronutrient composition and sarcopenia in the oldest-old men: The Helsinki Businessmen Study (HBS). Clin. Nutr. 2020, 39, 3839–3841. [Google Scholar] [CrossRef]
- Konstantinidou, V.; Covas, M.; Muñoz-Aguayo, D.; Khymenets, O.; de la Torre, R.; Saez, G.; del Carmen Tormos, M.; Toledo, E.; Marti, A.; Ruiz-Gutiérrez, V. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: A randomized controlled trial. FASEB J. 2010, 24, 2546–2557. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, Y.M.; Bermúdez, B.; López, S.; Abia, R.; Villar, J.; Muriana, F.J. Ratio of oleic to palmitic acid is a dietary determinant of thrombogenic and fibrinolytic factors during the postprandial state in men. Am. J. Clin. Nutr. 2006, 84, 342–349. [Google Scholar] [CrossRef]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Sieber, C.C. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin. Nutr. 2017, 36, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Nachtigal, M.; Patterson, R.E.; Stratton, K.L.; Adams, L.A.; Shattuck, A.L.; White, E. Dietary supplements and weight control in a middle-age population. J. Altern. Complement. Med. 2005, 11, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Valdés, S.; Tostes, M.d.G.V.; Anunciação, P.C.; da Silva, B.P.; Sant’Ana, H.M.P. Association between vitamin deficiency and metabolic disorders related to obesity. Crit. Rev. Food Sci. Nutr. 2017, 57, 3332–3343. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Heber, D. Sarcopenic obesity in the elderly and strategies for weight management. Nutr. Rev. 2012, 70, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Margioris, A.N. Sarcopenic obesity. Hormones 2018, 17, 321–331. [Google Scholar] [CrossRef]
- Alkerwi, A.; Sauvageot, N.; Buckley, J.D.; Donneau, A.; Albert, A.; Guillaume, M.; Crichton, G.E. The potential impact of animal protein intake on global and abdominal obesity: Evidence from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study. Public Health Nutr. 2015, 18, 1831–1838. [Google Scholar] [CrossRef] [Green Version]
Variables | Low SVR Group (n = 26) | High SVR Group (n = 27) | p-Value 1,2 |
---|---|---|---|
Age (y) 1 | 53.4 ± 6.7 | 51.7 ± 6.7 | 0.365 |
Education level, n (%) 2 | |||
≤Elementary school graduate | 0 (0.00) | 1 (3.70) | |
Middle school graduate | 2 (7.69) | 3 (11.11) | |
High school graduate | 8 (30.77) | 10 (37.04) | |
≥University graduate | 16 (61.54) | 13 (48.15) | |
Household members, n (%) 2 | |||
First generation | 4 (15.38) | 6 (22.22) | |
Second generation | 20 (76.92) | 21 (77.78) | |
Third generation | 2 (7.69) | 0 (0.00) | |
Menopause status, n (%) 2 | 0.449 | ||
Yes | 18 (69.23) | 16 (59.26) | |
No | 8 (30.77) | 11 (40.74) | |
Medical history, n (%) 2 | 0.928 | ||
Yes | 8 (30.77) | 8 (29.63) | |
Hypertension | 3 (11.54) | 2 (7.41) | |
Dyslipidemia | 0 (0) | 1 (3.70) | |
Hypertension and dyslipidemia | 2 (7.69) | 3 (11.11) | |
No | 18 (69.23) | 19 (70.37) | |
Alcohol consumption, n (%) 2 | 0.947 | ||
Non-drinker | 12 (46.15) | 14 (51.85) | |
Former drinker | 2 (7.69) | 2 (7.41) | |
Current drinker | 12 (46.15) | 11 (40.74) | |
Smoking, n (%) 2 | 0.530 | ||
Non-smoker | 24 (92.31) | 26 (96.3) | |
Former smoker | - | - | |
Current smoker | 2 (7.69) | 1 (3.70) | |
Protein supplement intake, n (%) 2 | 0.322 | ||
Yes | 0 (0.00) | 1 (3.70) | |
No | 26 (100.00) | 26 (96.30) | |
Physical activity (GPAQ) 1 | |||
Activity at work (METs) | 36.92 ± 188.27 | 0.00 ± 0.00 | 0.327 |
Travel to and from places (METs) | 1420.00 ± 1203.69 | 2263.70 ± 1836.46 | 0.053 |
Recreational activity (METs) | 175.38 ± 346.52 | 366.67 ± 915.15 | 0.318 |
Total physical activity (METs) | 1632.31 ± 1280.10 | 2630.37 ± 2161.66 | 0.046 |
Sedentary time (min) | 471.92 ± 179.31 | 517.78 ± 192.20 | 0.374 |
SVR | SBR | SFR | SWR | |||||
---|---|---|---|---|---|---|---|---|
Variables | r | P | r | P | r | P | r | P |
Biochemical measurements | ||||||||
FBS (mg/dL) | −0.278 | 0.044 | −0.002 | 0.989 | −0.187 | 0.180 | −0.124 | 0.375 |
Insulin (uIU/mL) | −0.102 | 0.466 | 0.077 | 0.585 | −0.112 | 0.425 | −0.017 | 0.901 |
HOMA-IR | −0.149 | 0.287 | 0.061 | 0.663 | −0.141 | 0.314 | −0.044 | 0.756 |
hs-CRP (mg/L) | −0.345 | 0.012 | −0.146 | 0.298 | −0.402 | 0.003 | −0.109 | 0.438 |
TG (mg/dL) | −0.187 | 0.180 | −0.045 | 0.751 | −0.150 | 0.284 | −0.040 | 0.779 |
Total cholesterol (mg/dL) | −0.379 | 0.005 | −0.196 | 0.159 | −0.299 | 0.029 | −0.184 | 0.188 |
HDL-C (mg/dL) | −0.038 | 0.790 | −0.111 | 0.429 | −0.081 | 0.562 | −0.171 | 0.220 |
LDL-C (mg/dL) | −0.360 | 0.008 | −0.172 | 0.218 | −0.289 | 0.036 | −0.133 | 0.343 |
Leptin (ng/mL) | −0.304 | 0.027 | −0.381 | 0.005 | −0.673 | <0.0001 | −0.389 | 0.004 |
Adiponectin (μg/mL) | 0.063 | 0.655 | −0.049 | 0.729 | 0.074 | 0.598 | 0.000 | 0.999 |
Blood pressure | ||||||||
SBP (mmHg) | −0.104 | 0.460 | 0.075 | 0.596 | 0.106 | 0.451 | −0.012 | 0.933 |
DBP (mmHg) | 0.098 | 0.487 | 0.075 | 0.593 | 0.010 | 0.945 | 0.090 | 0.521 |
Obesity-related factors | ||||||||
BMI (kg/m2) | −0.322 | 0.019 | −0.277 | 0.045 | −0.567 | <0.0001 | −0.177 | 0.205 |
Waist circumference (cm) | −0.302 | 0.028 | −0.174 | 0.212 | −0.448 | 0.001 | −0.305 | 0.026 |
WHR | −0.362 | 0.008 | −0.222 | 0.111 | −0.148 | 0.291 | −0.430 | 0.001 |
Total fat mass (kg) | −0.267 | 0.053 | −0.224 | 0.107 | −0.756 | <0.0001 | −0.158 | 0.259 |
Total fat (%) | −0.426 | 0.002 | −0.634 | <0.0001 | −0.967 | <0.0001 | −0.564 | <0.0001 |
Life-style factors | ||||||||
Alcohol consumption | 0.024 | 0.864 | 0.009 | 0.951 | 0.013 | 0.927 | −0.010 | 0.945 |
Smoking Status | −0.118 | 0.400 | −0.204 | 0.143 | −0.070 | 0.620 | −0.140 | 0.319 |
Physical activity (METs) | 0.358 | 0.009 | 0.055 | 0.697 | 0.067 | 0.634 | 0.055 | 0.697 |
Variables | Low SVR Group (n = 26) | High SVR Group (n = 27) | p-Value 1,2 |
---|---|---|---|
Biochemical measurements 1 | |||
FBS (mg/dL) | 97.74 ± 2.05 | 93.84 ± 2.01 | 0.199 |
Insulin (uIU/mL) | 9.75 ± 0.76 | 7.94 ± 0.74 | 0.109 |
HOMA-IR | 2.42 ± 0.21 | 1.85 ± 0.20 | 0.070 |
hs-CRP (mg/dL) | 0.18 ± 0.02 | 0.07 ± 0.02 | 0.006 |
TG (mg/dL) | 153.88 ± 16.07 | 129.71 ± 15.75 | 0.308 |
Total cholesterol (mg/dL) | 233.06 ± 8.69 | 197.87 ± 8.52 | 0.008 |
HDL-C (mg/dL) | 67.67 ± 2.58 | 64.02 ± 2.52 | 0.337 |
LDL-C (mg/dL) | 142.38 ± 6.62 | 119.45 ± 6.49 | 0.022 |
Leptin (ng/mL) | 18.18 ± 1.60 | 11.98 ± 1.56 | 0.011 |
Adiponectin (μg/mL) | 8.25 ± 0.63 | 8.10 ± 0.62 | 0.875 |
Adiponectin/leptin ratio | 0.66 ± 0.12 | 0.86 ± 0.12 | 0.268 |
Blood pressure 1 | |||
SBP (mmHg) | 122.70 ± 2.68 | 122.73 ± 2.63 | 0.993 |
DBP (mmHg) | 79.09 ± 1.59 | 80.03 ± 1.56 | 0.688 |
Obesity-related factors 1 | |||
Weight (kg) | 69.18 ± 1.31 | 68.60 ± 1.28 | 0.761 |
Body mass index (kg/m2) | 28.19 ± 0.36 | 27.04 ± 0.36 | 0.036 |
Waist circumference (cm) | 91.81 ± 1.29 | 88.13 ± 1.27 | 0.057 |
Hip circumference (cm) | 100.45 ± 0.94 | 99.70 ± 0.92 | 0.586 |
WHR | 0.91 ± 0.01 | 0.88 ± 0.01 | 0.106 |
Visceral fat area (cm2) | 144.20 ± 5.15 | 94.74 ± 5.04 | <0.0001 |
Subcutaneous fat area (cm2) | 280.19 ± 14.42 | 230.85 ± 14.13 | 0.024 |
Total fat (%) | 43.59 ± 0.81 | 39.79 ± 0.79 | 0.003 |
Total fat mass (kg) | 28.97 ± 0.90 | 26.08 ± 0.88 | 0.033 |
Total lean mass (kg) | 37.07 ± 0.69 | 39.38 ± 0.67 | 0.026 |
Variables | Low SVR Group (n = 26) | High SVR Group (n = 27) | p-Value 1,2 |
---|---|---|---|
Energy (Kcal/day) 1 | 2007.68 ± 112.23 | 2250.47 ± 109.97 | 0.144 |
Macronutrients 1 | |||
Carbohydrates (g/day) | 268.73 ± 8.26 | 285.25 ± 8.09 | 0.180 |
Protein (g/day) | 86.74 ± 4.23 | 84.14 ± 4.14 | 0.677 |
Fat (g/day) | 69.55 ± 2.78 | 66.23 ± 2.72 | 0.420 |
Fiber (g/day) | 25.48 ± 1.49 | 27.05 ± 1.46 | 0.479 |
C:P:F ratio (%) | 51:17:13 | 54:16:12 | |
Cholesterol (mg/day) | 446.42 ± 35.51 | 364.31 ± 34.78 | 0.123 |
Total FA (g/day) | 49.48 ± 3.32 | 38.12 ± 3.25 | 0.024 |
SFA (g/day) | 13.79 ± 1.29 | 11.86 ± 1.27 | 0.315 |
MUFA (g/day) | 18.48 ± 1.58 | 13.58 ± 1.55 | 0.040 |
PUFA (g/day) | 16.96 ± 1.15 | 12.80 ± 1.13 | 0.018 |
MUFA/SFA ratio | 1.36 ± 0.06 | 1.20 ± 0.06 | 0.065 |
ω-3 FA (g/day) | 0.75 ± 0.16 | 0.55 ± 0.16 | 0.395 |
ω-6 FA (g/day) | 4.52 ± 0.93 | 3.13 ± 0.92 | 0.318 |
ω-3 FA/ω-6 FA ratio | 0.20 ± 0.06 | 0.22 ± 0.06 | 0.830 |
Fat-soluble Vitamins 1 | |||
Vitamin A (μg RAE/day) | 469.56 ± 46.69 | 593.00 ± 45.73 | 0.079 |
Vitamin D (μg/day) | 5.41 ± 2.29 | 6.49 ± 2.25 | 0.749 |
Vitamin E (mg/day) | 23.96 ± 1.35 | 22.41 ± 1.33 | 0.439 |
Vitamin K (μg/day) | 162.39 ± 29.70 | 258.09 ± 29.09 | 0.033 |
Water-soluble Vitamins 1 | |||
Thiamin (mg/day) | 1.99 ± 0.10 | 2.03 ± 0.10 | 0.792 |
Riboflavin (mg/day) | 1.65 ± 0.06 | 1.65 ± 0.06 | 0.959 |
Niacin (mg/day) | 16.08 ± 1.22 | 16.22 ± 1.19 | 0.936 |
Pantothenic acid (mg/day) | 4.78 ± 0.18 | 4.59 ± 0.18 | 0.494 |
Vitamin B6 (mg/day) | 1.81 ± 0.40 | 3.00 ± 0.39 | 0.050 |
Vitamin B12 (μg/day) | 10.58 ± 2.20 | 14.55 ± 2.15 | 0.226 |
Vitamin C (mg/day) | 111.80 ± 14.39 | 125.36 ± 14.09 | 0.524 |
Folate (μg/day) | 534.11 ± 32.70 | 546.52 ± 32.03 | 0.797 |
Minerals (mg/day) 1 | |||
Ca | 502.67 ± 33.13 | 591.64 ± 32.45 | 0.074 |
P | 1294.03 ± 59.35 | 1259.32 ± 58.13 | 0.692 |
Na | 4504.55 ± 276.43 | 3942.64 ± 270.75 | 0.173 |
K | 2880.69 ± 160.26 | 3238.61 ± 156.96 | 0.135 |
Mg | 132.26 ± 10.54 | 129.51 ± 10.32 | 0.860 |
Fe | 20.16 ± 1.59 | 19.28 ± 1.55 | 0.706 |
SVR Value | ||||||||
---|---|---|---|---|---|---|---|---|
Crude | Multivariate a | |||||||
β | B | SE | p 1 | β | B | SE | p 1 | |
Biochemical measurements 1 | ||||||||
FBS (mg/dL) | −0.278 | −0.056 | 0.027 | 0.044 | −0.174 | −0.035 | 0.035 | 0.316 |
Insulin (uIU/mL) | −0.102 | −0.009 | 0.012 | 0.466 | −0.033 | −0.003 | 0.013 | 0.824 |
HOMA-IR | −0.149 | −0.004 | 0.003 | 0.287 | −0.068 | −0.002 | 0.004 | 0.655 |
hs-CRP (mg/dL) | −0.345 | −0.001 | 0.000 | 0.011 | −0.305 | −0.001 | 0.000 | 0.043 |
TG (mg/dL) | −0.187 | −0.344 | 0.253 | 0.180 | −0.071 | −0.131 | 0.286 | 0.648 |
Total cholesterol (mg/dL) | −0.379 | −0.355 | 0.121 | 0.005 | −0.369 | −0.346 | 0.145 | 0.022 |
HDL-C (mg/dL) | −0.038 | −0.010 | 0.039 | 0.790 | −0.102 | −0.028 | 0.045 | 0.530 |
LDL-C (mg/dL) | −0.360 | −0.248 | 0.090 | 0.008 | −0.326 | −0.225 | 0.111 | 0.049 |
Leptin (ng/mL) | −0.304 | −0.052 | 0.023 | 0.027 | −0.252 | −0.043 | 0.025 | 0.097 |
Adiponectin (μg/mL) | 0.063 | 0.004 | 0.010 | 0.655 | −0.133 | −0.009 | 0.011 | 0.401 |
Blood pressure 1 | ||||||||
SBP (mmHg) | −0.104 | −0.028 | 0.037 | 0.460 | −0.209 | −0.056 | 0.046 | 0.236 |
DBP (mmHg) | 0.098 | 0.016 | 0.023 | 0.487 | −0.045 | −0.008 | 0.028 | 0.788 |
Obesity-related factors 1 | ||||||||
BMI (kg/m2) | −0.322 | −0.013 | 0.005 | 0.019 | −0.362 | −0.014 | 0.006 | 0.020 |
Waist circumference (cm) | −0.302 | −0.040 | 0.017 | 0.028 | −0.058 | −0.008 | 0.013 | 0.563 |
WHR | −0.362 | 0.000 | 0.000 | 0.008 | −0.184 | 0.000 | 0.000 | 0.228 |
Total fat mass (kg) | −0.267 | −0.025 | 0.013 | 0.053 | −0.074 | −0.007 | 0.008 | 0.368 |
Total fat (%) | −0.426 | −0.036 | 0.011 | 0.001 | −0.330 | −0.028 | 0.011 | 0.011 |
Lifestyle factors 1 | ||||||||
Alcohol consumption | 0.024 | 0.001 | 0.004 | 0.864 | −0.124 | −0.004 | 0.005 | 0.434 |
Smoking | −0.118 | −0.001 | 0.001 | 0.400 | −0.135 | −0.001 | 0.002 | 0.434 |
Physical activity (METs) | 0.358 | 0.009 | 0.003 | 0.008 | 0.390 | 0.010 | 0.004 | 0.011 |
SVR Value | ||||||||
---|---|---|---|---|---|---|---|---|
Crude | Multivariate a | |||||||
β | B | SE | p 1 | β | B | SE | p 1 | |
Energy (Kcal) 1 | 0.012 | 0.011 | 0.012 | 0.387 | 0.166 | 0.015 | 0.012 | 0.226 |
Macronutrients 1 | ||||||||
Carbohydrates (g) | 0.214 | 0.145 | 0.092 | 0.124 | 0.434 | 0.293 | 0.157 | 0.068 |
Protein (g) | 0.043 | 0.081 | 0.264 | 0.760 | 0.103 | 0.195 | 0.318 | 0.544 |
Fat (g) | 0.094 | 0.159 | 0.238 | 0.505 | −0.161 | −0.274 | 0.481 | 0.572 |
Cholesterol (mg) | −0.011 | −0.003 | 0.036 | 0.937 | −0.098 | −0.025 | 0.037 | 0.494 |
Total FA (g) | −0.208 | −0.529 | 0.348 | 0.135 | −0.367 | −0.933 | 0.356 | 0.012 |
SFA (g) | −0.144 | −1.030 | 0.989 | 0.303 | −0.287 | −2.047 | 0.985 | 0.044 |
MUFA (g) | −0.205 | −1.152 | 0.770 | 0.141 | −0.282 | −1.581 | 0.779 | 0.048 |
PUFA (g) | −0.166 | −1.250 | 1.039 | 0.235 | −0.301 | −2.268 | 1.045 | 0.035 |
ω−3 FA (g) | −0.087 | −5.358 | 8.548 | 0.534 | −0.016 | −1.003 | 8.502 | 0.907 |
ω−6 FA (g) | −0.105 | −1.120 | 1.487 | 0.455 | −0.076 | −0.814 | 1.421 | 0.569 |
Fat-soluble vitamins 1 | ||||||||
Vitamin A (μg RAE) | 0.217 | 0.038 | 0.024 | 0.119 | 0.207 | 0.036 | 0.028 | 0.198 |
Vitamin D (μg) | 0.074 | 0.338 | 0.634 | 0.596 | 0.058 | 0.265 | 0.585 | 0.653 |
Vitamin E (mg) | 0.033 | 0.187 | 0.784 | 0.813 | −0.047 | −0.264 | 1.000 | 0.793 |
Vitamin K (μg) | 0.193 | 0.057 | 0.041 | 0.166 | 0.228 | 0.067 | 0.042 | 0.114 |
Water-soluble vitamins 1 | ||||||||
Thiamin (mg) | 0.102 | 6.459 | 8.804 | 0.467 | −0.129 | −8.163 | 12.955 | 0.532 |
Riboflavin (mg) | 0.165 | 15.224 | 12.740 | 0.238 | 0.134 | 12.318 | 22.243 | 0.583 |
Niacin (mg) | 0.060 | 0.475 | 1.099 | 0.668 | 0.090 | 0.706 | 1.097 | 0.523 |
Pantothenic acid (mg) | 0.134 | 5.104 | 5.297 | 0.340 | −0.069 | −2.644 | 7.408 | 0.723 |
Vitamin B6 (mg) | 0.169 | 3.943 | 3.223 | 0.227 | 0.338 | 7.903 | 3.000 | 0.012 |
Vitamin B12 (μg) | 0.253 | 1.197 | 0.642 | 0.068 | 0.281 | 1.329 | 0.570 | 0.024 |
Vitamin C (mg) | 0.139 | 0.093 | 0.093 | 0.320 | 0.088 | 0.059 | 0.093 | 0.532 |
Folate (μg) | 0.027 | 0.007 | 0.035 | 0.846 | 0.030 | 0.008 | 0.041 | 0.854 |
Minerals 1 | ||||||||
Ca (mg) | 0.170 | 0.039 | 0.032 | 0.223 | 0.260 | 0.060 | 0.038 | 0.124 |
P (mg) | −0.053 | −0.007 | 0.018 | 0.707 | 0.040 | 0.005 | 0.023 | 0.820 |
Na (mg) | 0.054 | 0.002 | 0.005 | 0.698 | 0.010 | 0.000 | 0.005 | 0.947 |
K (mg) | 0.149 | 0.007 | 0.007 | 0.287 | 0.320 | 0.016 | 0.008 | 0.055 |
Mg (mg) | −0.047 | −0.039 | 0.117 | 0.737 | 0.057 | 0.047 | 0.127 | 0.713 |
Fe (mg) | 0.098 | 0.528 | 0.750 | 0.485 | 0.068 | 0.366 | 0.847 | 0.668 |
Eating behavior 1 | ||||||||
Restrained Eating | 0.037 | 2.064 | 7.876 | 0.794 | 0.080 | 4.516 | 7.142 | 0.530 |
Emotional Eating | 0.012 | 0.769 | 8.903 | 0.932 | 0.017 | 1.076 | 8.285 | 0.897 |
External Eating | 0.081 | 6.967 | 11.968 | 0.563 | 0.085 | 7.291 | 11.530 | 0.530 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.; Son, K.; Lim, H. Association between Skeletal Muscle Mass-to-Visceral Fat Ratio and Dietary and Cardiometabolic Health Risk Factors among Korean Women with Obesity. Nutrients 2023, 15, 1574. https://doi.org/10.3390/nu15071574
Lim H, Son K, Lim H. Association between Skeletal Muscle Mass-to-Visceral Fat Ratio and Dietary and Cardiometabolic Health Risk Factors among Korean Women with Obesity. Nutrients. 2023; 15(7):1574. https://doi.org/10.3390/nu15071574
Chicago/Turabian StyleLim, Heeju, Kumhee Son, and Hyunjung Lim. 2023. "Association between Skeletal Muscle Mass-to-Visceral Fat Ratio and Dietary and Cardiometabolic Health Risk Factors among Korean Women with Obesity" Nutrients 15, no. 7: 1574. https://doi.org/10.3390/nu15071574
APA StyleLim, H., Son, K., & Lim, H. (2023). Association between Skeletal Muscle Mass-to-Visceral Fat Ratio and Dietary and Cardiometabolic Health Risk Factors among Korean Women with Obesity. Nutrients, 15(7), 1574. https://doi.org/10.3390/nu15071574