Rosmarinus officinalis and Mentha piperita Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer’s Disease-like Condition
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemical Reagents
2.2. Plant Materials
Extraction of Essential Oils
2.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Essential Oil
2.4. Experimental Animals
Grouping
2.5. Drug Treatment
2.6. Experimental Design
2.7. Behavioral Tasks and Memory Indices
2.7.1. Passive Avoidance Test
2.7.2. Long-Term Memory Performance Index (LTMI)
2.7.3. Spatial Learning by Radial Eight-Arm Maze Task
2.7.4. Recognition Memory Index (RMI)
Euthanasia
2.8. Blood Samples, Brain Removal, and Hippocampal Isolation
2.8.1. Hippocampal Homogenization by Non-Thermal Sonication Process
2.8.2. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8.3. Tissue Preparation
2.8.4. Immunohistochemical (IHC) Staining
2.9. Statistical Analysis
3. Results
3.1. Vehicle and Normal Saline
3.2. Nootropic Effects of Both Oils
3.3. Therapeutic (Anti-Amnesic) Effect of Both Oils
3.3.1. Acute Anti-Amnesic Effect
3.3.2. Chronic Anti-Amnesic Effect
3.4. Assessment of Hippocampal Neurogenesis
3.5. Immunohistochemistry Findings
3.6. Chemical Composition of Rosmarinus Officinalis and Mentha piperita L. Essential Oils Using GC/MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Xie, C.; Miyasaka, T.; Yoshimura, S.; Hatsuta, H.; Yoshina, S.; Kage-Nakadai, E.; Mitani, S.; Murayama, S.; Ihara, Y. The homologous carboxyl-terminal domains of microtubule-associated protein 2 and TAU induce neuronal dysfunction and have differential fates in the evolution of neurofibrillary tangles. PLoS ONE 2014, 9, e89796. [Google Scholar] [CrossRef]
- Lipsky, R.H.; Marini, A.M. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann. N. Y. Acad. Sci. 2007, 1122, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Zhu, H.; Yan, H.; Tang, N.A.; Li, X.; Pang, P.; Li, H.; Chen, W.; Guo, Y.; Shu, S.; Cai, Y.; et al. Impairments of spatial memory in an Alzheimer’s disease model via degeneration of hippocampal cholinergic synapses. Nat. Commun. 2017, 8, 1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntley, J.D.; Howard, R.J. Working memory in early Alzheimer’s disease: A neuropsychological review. Int. J. Geriatr. Psychiatry A J. Psychiatry Late Life Allied Sci. 2010, 25, 121–132. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
- Sampaio, T.B.; Savall, A.S.; Gutierrez, M.E.Z.; Pinton, S. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: Implications for pathogenesis and therapy. Neural Regen. Res. 2017, 12, 549. [Google Scholar] [CrossRef] [PubMed]
- Khalaf-Nazzal, R.; Stouffer, M.A.; Olaso, R.; Muresan, L.; Roumegous, A.; Lavilla, V.; Carpentier, W.; Moutkine, I.; Dumont, S.; Albaud, B.; et al. Early born neurons are abnormally positioned in the doublecortin knockout hippocampus. Hum. Mol. Genet. 2017, 26, 90–108. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.S.; Shetty, A.K. Efficacy of doublecortin as a marker to analyse the absolute number anddendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci. 2004, 19, 234–246. [Google Scholar] [CrossRef]
- Botterill, J.J.; Brymer, K.J.; Caruncho, H.J.; Kalynchuk, L.E. Aberrant hippocampal neurogenesis after limbic kindling: Relationship to BDNF and hippocampal-dependent memory. Epilepsy Behav. 2015, 47, 83–92. [Google Scholar] [CrossRef]
- Toiber, D.; Berson, A.; Greenberg, D.; Melamed-Book, N.; Diamant, S.; Soreq, H. N-acetylcholinesterase-induced apoptosis in Alzheimer’s disease. PLoS ONE 2008, 3, e3108. [Google Scholar] [CrossRef]
- Birks, J.S. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006, 56, 16575. [Google Scholar] [CrossRef]
- Hwang, I.K.; Yoo, K.Y.; Yi, S.S.; Kwon, Y.G.; Ahn, Y.K.; Seong, J.K.; Lee, I.S.; Yoon, Y.S.; Won, M.H. Age-related differentiation in newly generated DCX immunoreactive neurons in the subgranular zone of the gerbil dentate gyrus. Neurochem Res. 2008, 33, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H. Let’s Pay Attention to the Average. Intl. Neurourol. J. 2014, 18, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Singhal, A.K.; Naithani, V.; Bangar, O.P. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int. J. Nutr. Pharmacol. Neurological. Dis. 2012, 2, 84. [Google Scholar] [CrossRef]
- Mantle, D.; Pickering, A.T.; Perry, E.K. Medicinal plant extracts for the treatment of dementia: A review of their pharmacology, efficacy and tolerability. CNS Drugs 2000, 13, 201–213. [Google Scholar] [CrossRef]
- Wang, W.; Jia, Q.; Mukerjee, S.; Chen, S. Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. Acs Catal. 2019, 9, 10126–10141. [Google Scholar] [CrossRef]
- Khleifat, K.M.; Matar, S.A.; Jaafreh, M.; Qaralleh, H.; Al-limoun, M.O.; Alsharafa, K.Y. Essential oil of Centaurea damascena aerial parts, antibacterial and synergistic effect. J. Essent. Oil Bear. Plants 2019, 22, 356–367. [Google Scholar] [CrossRef]
- Adams, R. Identification of essential oil components by gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 8, 671–672. [Google Scholar]
- Al-Tawarah, N.M.; Qaralleh, H.; Khlaifat, A.M.; Nofal, M.N.; Alqaraleh, M.; Khleifat, K.M.; Al-limoun, M.O.; Al Shhab, M.A. Anticancer and antibacterial properties of verthemia iphionides essential oil/silver nanoparticles. Biomed. Pharmacol. J. 2020, 13, 1175–1185. [Google Scholar] [CrossRef]
- Festing, M.F.; Altman, D.G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002, 43, 244–258. [Google Scholar] [CrossRef]
- Bhuvanendran, S.; Kumari, Y.; Othman, I.; Shaikh, M.F. Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model. Front. Pharmacol. 2018, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.T.; Wu, C.R.; Chen, C.F. Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats. J. Ethnopharmacol. 1997, 56, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Cimadevilla, J.M.; Kaminsky, Y.; Fenton, A.; Bures, J. Passive and active place avoidance as a tool of spatial memory research in rats. J. Neurosci. Methods 2000, 102, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Olton, D.S. The radial arm maze as a tool in behavioral pharmacology. Physiol. Behav. 1987, 40, 793–797. [Google Scholar] [CrossRef]
- Bolhuis, J.J.; Bijlsma, S.; Ansmink, P. Exponential decay of spatial memory of rats in a radial maze. Behav. Neural Biol. 1986, 46, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Batool, Z.; Sadir, S.; Liaquat, L.; Tabassum, S.; Madiha, S.; Rafiq, S.; Tariq, S.; Batool, T.S.; Saleem, S.; Naqvi, F.; et al. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res. Bull. 2016, 120, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Leary, S.; Anthony, R.; Gwaltney-Brant, S.; DeNicola, A. AVMA Guidelines for the Depopulation of Animals; American Veterinary Medical Association: Schaumburg, IL, USA, 2019; p. 60173. [Google Scholar]
- Haider, S.; Saleem, S.; Perveen, T.; Tabassum, S.; Batool, Z.; Sadir, S.; Liaquat, L.; Madiha, S. Age-related learning and memory deficits in rats: Role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age 2014, 36, 1291–1302. [Google Scholar] [CrossRef]
- Shojaei, S.; Panjehshahin, M.R.; Shafiee, S.M.; Khoshdel, Z.; Borji, M.; Ghasempour, G.; Owji, A.A. Differential effects of resveratrol on the expression of brain-derived neurotrophic factor transcripts and protein in the hippocampus of rat brain. Iran. J. Med. Sci. 2017, 42, 32. [Google Scholar] [PubMed]
- Bancroft, J.D.; Gamble, M. (Eds.) Theory and Practice of Histological Techniques. Elsevier Health Sciences, 6th ed.; Churchill Livingstone, Elsevier: London, UK, 2008. [Google Scholar]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 2nd ed.; Elsevier Academic Press: San Diego, CA, USA, 1986. [Google Scholar]
- Al-Saraireh, Y.M.; Alshammari, F.O.; Youssef, A.M.; Al-Tarawneh, F.; Al-Sarayreh, S.; Almuhaisen, G.H.; Satari, A.O.; Al-Shuneigat, J.; Alrawashdeh, H.M. Cytochrome 4Z1 expression is associated with unfavorable survival in triple-negative breast cancers. Breast Cancer Targets Ther. 2021, 13, 565–574. [Google Scholar] [CrossRef]
- Kotani, S.; Yamauchi, T.; Teramoto, T.; Ogura, H. Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience 2006, 142, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Zaki, H.F.; Abd-El-Fattah, M.A.; Attia, A.S. Naringenin protects against scopolamine-induced dementia in rats. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Jasira, M.; Sai-Sailesh, K.; Mukkadan, J.K. Oral administration of peppermint in Wistar albino rats: Memory boosting and regaining. Indones. J. Biomed Sci. 2013, 7, 2085–4773. [Google Scholar] [CrossRef]
- Rasoul, A.; Maryam, H.G.; Taghi, G.M.; Taghi, L. Antioxidant activity of oral administration of Rosmarinus officinalis leaves extract on rat’s hippocampus which exposed to 6-hydroxydopamine. Braz. Arch. Biol. Technol. 2016, 59, 1678–4324. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.L.; Ganaraja, B.; Murlimanju, B.V.; Joy, T.; Krishnamurthy, A.; Agrawal, A. Hippocampus and its involvement in Alzheimer’s disease: A review. 3 Biotech 2022, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement Altern. Med. 2016, 2016, 2680409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozarowski, M.; Mikolajczak, P.L.; Bogacz, A.; Gryszczynska, A.; Kujawska, M.; Jodynis-Liebert, J.; Piasecka, A.; Napieczynska, H.; Szulc, M.; Kujawski, R.; et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 2013, 91, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Ko, I.G.; Kim, S.E.; Kim, B.K.; Kim, T.S.; Lee, S.H.; Hwang, D.S.; Kim, C.J.; Park, J.K.; Lim, B.V. Treadmill exercise ameliorates symptoms of methimazole-induced hypothyroidism through enhancing neurogenesis and suppressing apoptosis in the hippocampus of rat pups. Int. J. Dev. Neurosci. 2013, 31, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Béjot, Y.; Mossiat, C.; Giroud, M.; Prigent-Tessier, A.; Marie, C. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies. PLoS ONE 2011, 6, e29405. [Google Scholar] [CrossRef]
- Klein, A.B.; Williamson, R.; Santini, M.A.; Clemmensen, C.; Ettrup, A.; Rios, M.; Knudsen, G.M.; Aznar, S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int. J. Neuropsychopharmacol. 2011, 14, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trouche, S.; Bontempi, B.; Roullet, P.; Rampon, C. Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc. Natl. Acad. Sci. USA 2009, 106, 5919–5924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karl, C.; Couillard-Despres, S.; Prang, P.; Munding, M.; Kilb, W.; Brigadski, T.; Plötz, S.; Mages, W.; Luhmann, H.; Winkler, J.; et al. Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J. Neurochem. 2005, 92, 264–282. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.; Huang, Y.; Feng, X.; Feng, G.; Xiong, Z.Q. Pulse labeling and long-term tracing of newborn neurons in the adult subgranular zone. Cell Res. 2011, 21, 338–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, R.; Deshmukh, R. Embelin attenuates intracerebroventricular streptozotocin-induced behavioral, biochemical, and neurochemical abnormalities in rats. Mol. Neurobiol. 2017, 54, 6670–6680. [Google Scholar] [CrossRef]
- Pandareesh, M.D.; Anand, T.; Khanum, F. Cognition enhancing and neuromodulatory propensity of Bacopa monniera extract against scopolamine induced cognitive impairments in rat hippocampus. Neurochem. Res. 2016, 41, 985–999. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhou, G.S.; Tan, Y.J.; Tao, H.J.; Chen, J.Q.; Pu, Z.J.; Ma, J.Y.; She, W.; Kang, A.; et al. Studies of the anti-amnesic effects and mechanisms of single and combined use of donepezil and ginkgo ketoester tablet on scopolamine-induced memory impairment in mice. Oxid. Med. Cell Longev. 2019, 2019, 8636835. [Google Scholar] [CrossRef] [PubMed]
- Meamarbashi, A.; Rajabi, A. The effects of peppermint on exercise performance. J. Int. Soc. Sports Nutr. 2013, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Rasoolijazi, H.; Mehdizadeh, M.; Soleimani, M.; Nikbakhte, F.; Farsani, M.E.; Ababzadeh, S. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats. Medl. J. Islam. Repub. Iran. 2015, 29, 187. [Google Scholar]
- He, M.T.; Kim, J.H.; Kim, J.H.; Park, C.H.; Cho, E.J. Combination of Carthamus tinctorius L. seed and Taraxacum coreanum exerts synergistic effects on learning and memory function by regulating metabolism of amyloid beta in mice. J. Funct. Foods 2020, 72, 104048. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Zhao, R.; Dong, X.; Hu, Y.; Liu, P. Synergistic neuroprotective effects of two herbal ingredients via CREB-dependent pathway. Front. Pharmacol. 2016, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Hudaib, M.M.; Tawaha, K.A.; Hudaib, H.S.; Battah, A.H. Chemical composition of volatile oil from the aerial parts of Rosmarinus officinalis L. grown in Jordan. J. Essent. Oil Bear. Plants 2015, 18, 1282–1286. [Google Scholar] [CrossRef]
- Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-Kaf, A.G.; Setzer, W.N. Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhadi, N.; Hosseini, S.M.A. Composition and antifungal activity of peppermint (Mentha piperita) essential oil from Iran. J. Essent. Oil Bear. Plants 2013, 16, 506–512. [Google Scholar] [CrossRef]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the synergistic action of Mentha Piperita essential oil with common antimicrobials. PLoS ONE 2018, 13, e0200902. [Google Scholar] [CrossRef]
- Chagas, E.C.; Majolo, C.; Monteiro, P.C.; Oliveira, M.R.D.; Gama, P.E.; Bizzo, H.R.; Chaves, F.C.M. Composition of essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. J. Essent. Oil Res. 2020, 2, 209–215. [Google Scholar] [CrossRef]
- Al Hafi, M.; El Beyrouthy, M.; Ouaini, N.; Stien, D.; Rutledge, D.; Chaillou, S. Chemical composition and antimicrobial activity of Satureja, Thymus, and Thymbra species grown in Lebanon. Chem. Biodiverse 2017, 14, e1600236. [Google Scholar] [CrossRef]
- Boyle, R.R.; McLean, S.; Brandon, S.; Wiggins, N. Rapid absorption of dietary 1, 8-cineole results in critical blood concentration of cineole and immediate cessation of eating in the common brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 2005, 31, 2775–2790. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.; Oliver, L. Plasma 1, 8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther. Adv. Psychopharmaco. 2012, 2, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Majmudar, F.; Mital Bhadania, H.J. Menthol causes reduction of Scopolamine induced Glutamatergic neurotoxicity and cognitive deficits. Asian J. Pharm. Pharmacol. 2018, 4, 256–264. [Google Scholar] [CrossRef]
- Kennedy, D.; Okello, E.; Chazot, P.; Howes, M.J.; Ohiomokhare, S.; Jackson, P.; Haskell-Ramsay, C.; Khan, J.; Forster, J.; Wightman, E. Volatile terpenes, and brain function: Investigation of the cognitive and mood effects of Mentha× Piperita L. essential oil with in vitro properties relevant to central nervous system function. Nutrients 2018, 10, 1029. [Google Scholar] [CrossRef] [Green Version]
Group | RMI% | LTMI% | ||
---|---|---|---|---|
Nootropic Phase | Therapeutic Phase | Nootropic Phase | Therapeutic Phase | |
Positive | 2.5 | ----- | −16 | ----- |
P50 | 0 | −9 | 18 | −8 |
P100 | 2 | −2 | 13 | −15 |
R50 | −5 | −8 | 15 | −12 |
R100 | 0 | −10 | 8 | 0 |
M50 | 2.6 | 3 | 20 | 13 |
M100 | 5 | 4 | 32 | 18 |
No | KIexp | KIlet | Compound | % |
---|---|---|---|---|
1 | 927 | 925 | alpha thujene | 0.11 |
2 | 933 | 933 | alpha Pinene | 8.03 |
3 | 949 | 950 | Camphene | 5.36 |
4 | 969 | 979 | Sabinene | 1.75 |
5 | 990 | 989 | Beta Pinene | 0.46 |
6 | 1003 | 1009 | α-Phellandrene | 1.30 |
7 | 1017 | 1018 | alpha terpinine | 0.10 |
8 | 1021 | 1026 | p-Cymene | 7.03 |
9 | 1025 | 1024 | Limonene | 3.81 |
10 | 1029 | 1026 | 1,8-Cineole | 30.67 |
11 | 1095 | 1095 | linalool | 0.43 |
12 | 1141 | 1141 | camphor | 19.92 |
13 | 1166 | 1165 | borneol | 4.40 |
14 | 1173 | 1174 | terpinene-4-ol | 1.40 |
15 | 1188 | 1186 | alpha terpineol | 2.81 |
16 | 1204 | 1204 | verbenone | 1.73 |
17 | 1287 | 1283 | Isobornyl acetate | 1.56 |
18 | 1415 | 1417 | beta-caryophyllene | 1.67 |
19 | 1512 | 1513 | gamma cadinene | 0.43 |
21 | 1525 | 1522 | delta cadinene | 0.6 |
22 | 1581 | 1582 | Caryophyllene oxide | 0.56 |
Classification of the listed compounds (1–22) | Monoterpene hydrocarbons | 27.95 | ||
Oxygenated monoterpens | 62.92 | |||
Sesquiterpene hydrocarbons | 2.7 | |||
Oxygenated sesquiterpens | 0.56 | |||
Total | 94.13 |
No. | KIexp | KIlet | Compound | % |
---|---|---|---|---|
1 | 977 | 975 | beta pinene | 0.1 |
2 | 989 | 988 | 3-Octanol | 0.8 |
3 | 1027 | 1024 | Limonene | 1.1 |
4 | 1037 | 1026 | 1,8-Cineole | 0.4 |
5 | 1147 | 1146 | Isopulegol | 0.5 |
6 | 1148 | 1148 | Menthone | 25.6 |
7 | 1160 | 1159 | Menthofuran | 6.2 |
8 | 1166 | 1166 | Isomenthone | 2.4 |
9 | 1168 | 1167 | menthol | 41.4 |
10 | 1179 | 1177 | Terpinen-4-ol | 0.3 |
11 | 1181 | 1182 | iso-menthol | 2.4 |
12 | 1185 | 1184 | neo-iso-Menthol | 0.6 |
13 | 1230 | 1233 | pulegone | 2.4 |
14 | 1244 | 1243 | carvone | 0.5 |
15 | 1255 | 1253 | Piperitone | 3.2 |
16 | 1295 | 1294 | p-Menth-1-en-9-ol | 2.8 |
17 | 1298 | 1298 | Carvacrol | 0.4 |
18 | 1388 | 1387 | β-Bourbonene | 0.6 |
19 | 1393 | 1392 | Beta elemene | 0.2 |
20 | 1418 | 1416 | Caryophyllene | 2.5 |
21 | 1585 | 1581 | caryophyllene oxide | 1.7 |
Classification of the listed compounds (1–21) | Monoterpene hydrocarbons | 1.2 | ||
Oxygenated monoterpens | 89.2 | |||
Sesquiterpene hydrocarbons | 3.3 | |||
Oxygenated sesquiterpens | 1.7 | |||
Total | 95.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tawarah, N.M.; Al-dmour, R.H.; Abu Hajleh, M.N.; Khleifat, K.M.; Alqaraleh, M.; Al-Saraireh, Y.M.; Jaradat, A.Q.; Al-Dujaili, E.A.S. Rosmarinus officinalis and Mentha piperita Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer’s Disease-like Condition. Nutrients 2023, 15, 1547. https://doi.org/10.3390/nu15061547
Al-Tawarah NM, Al-dmour RH, Abu Hajleh MN, Khleifat KM, Alqaraleh M, Al-Saraireh YM, Jaradat AQ, Al-Dujaili EAS. Rosmarinus officinalis and Mentha piperita Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer’s Disease-like Condition. Nutrients. 2023; 15(6):1547. https://doi.org/10.3390/nu15061547
Chicago/Turabian StyleAl-Tawarah, Nafe M., Rawand H. Al-dmour, Maha N. Abu Hajleh, Khaled M. Khleifat, Moath Alqaraleh, Yousef M. Al-Saraireh, Ahmad Q. Jaradat, and Emad A. S. Al-Dujaili. 2023. "Rosmarinus officinalis and Mentha piperita Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer’s Disease-like Condition" Nutrients 15, no. 6: 1547. https://doi.org/10.3390/nu15061547
APA StyleAl-Tawarah, N. M., Al-dmour, R. H., Abu Hajleh, M. N., Khleifat, K. M., Alqaraleh, M., Al-Saraireh, Y. M., Jaradat, A. Q., & Al-Dujaili, E. A. S. (2023). Rosmarinus officinalis and Mentha piperita Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer’s Disease-like Condition. Nutrients, 15(6), 1547. https://doi.org/10.3390/nu15061547