Effects of Astaxanthin, Lutein, and Zeaxanthin on Eye–Hand Coordination and Smooth-Pursuit Eye Movement after Visual Display Terminal Operation in Healthy Subjects: A Randomized, Double-Blind Placebo-Controlled Intergroup Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Sample Size
2.4. Intervention
2.5. Schedule
2.6. VDT Operation
2.7. Randomization
2.8. Primary Outcome
2.9. Secondary Outcomes
2.9.1. MPOD
2.9.2. QOL Questionnaire
2.10. Safety Evaluation
2.11. Statistical Analysis
3. Results
3.1. Subject Background
3.2. Eye–Hand Coordination
3.3. Smooth-Pursuit Eye Movements
3.4. The Results of MPOD Levels
3.5. QOL Questionnaire
3.6. Safety Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luberto, F.; Gobba, F.; Broglia, A. Temporary myopia and subjective symptoms in video display terminal operators. Med. Lav. 1989, 80, 155–163. [Google Scholar]
- Lie, I.; Watten, R.G. VDT work, oculomotor strain, and subjective complaints: An experimental and clinical study. Ergonomics 1994, 37, 1419–1433. [Google Scholar] [CrossRef] [PubMed]
- Tatsukawa, Y.; Nanba, T.; Suematsu, O.; Setoguchi, N.; Tabuchi, A. Immediate effect of horizontal/vertical eye movements playing personal computer games on visual function. Kawasaki Med. Welf. J. 2005, 14, 313–321. (In Japanese) [Google Scholar]
- Pernalete, N.; Tang, F.; Chang, S.M.; Cheng, F.Y.; Vetter, P.; Stegemann, M.; Grantner, J. Development of an evaluation function for eye-hand coordination robotic therapy. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar] [CrossRef]
- Leigh, R.; Zee, D. The Neurology of Eye Movements; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Coats, R.O.; Fath, A.J.; Astill, S.L.; Wann, J.P. Eye and hand movement strategies in older adults during a complex reaching task. Exp. Brain Res. 2016, 234, 533–547. [Google Scholar] [CrossRef] [Green Version]
- O’Rielly, J.L.; Ma-Wyatt, A. Saccade dynamics during an online updating task change with healthy aging. J. Vis. 2020, 20, 2. [Google Scholar] [CrossRef]
- Verghese, P.; Vullings, C.; Shanidze, N. Eye Movements in Macular Degeneration. Annu. Rev. Vis. Sci. 2021, 7, 773–791. [Google Scholar] [CrossRef]
- Verheij, S.; Muilwijk, D.; Pel, J.J.; van der Cammen, T.J.; Mattace-Raso, F.U.; van der Steen, J. Visuomotor Impairment in Early-Stage Alzheimer’s Disease: Changes in Relative Timing of Eye and Hand Movements. J. Alzheimer’s Dis. 2012, 30, 131–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, K.; Ng, S.; Kwok, J.; Chow, R.; Tsang, W. Eye–hand coordination and its relationship with sensori-motor impairments in stroke survivors. J. Rehabil. Med. 2010, 42, 368–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caeyenberghs, K.; van Roon, D.; van Aken, K.; De Cock, P.; Linden, C.V.; Swinnen, S.P.; Smits-Engelsman, B.C.M. Static and dynamic visuomotor task performance in children with acquired brain injury: Predictive control deficits under increased temporal pressure. J. Head Trauma Rehabil. 2009, 24, 363–373. [Google Scholar] [CrossRef]
- Sumner, E.; Hutton, S.B.; Kuhn, G.; Hill, E.L. Oculomotor atypicalities in Developmental Coordination Disorder. Dev. Sci. 2018, 21, e12501. [Google Scholar] [CrossRef]
- Nagaki, Y.; Hayasaka, S.; Yamada, T.; Hayasaka, Y.; Sanada, M.; Uonomi, T. Effects of Astaxanthin on Accommodation, Critical Flicker Fusion, and Pattern Visual Evoked Potential in Visual Display Terminal Workers. J. Trad. Med. 2002, 19, 170–173. [Google Scholar]
- Nagaki, Y.; Mihara, M.; Tsukuhara, H.; Ohno, S. The supplementation effect of astaxanthin on accommodation and asthenopia. J. Clin. Ther. Med. 2006, 22, 1–25. [Google Scholar]
- Ma, L.; Lin, X.-M.; Zou, Z.; Xu, X.-R.; Li, Y.; Xu, R. A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. Br. J. Nutr. 2009, 102, 186–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J.-S.; Lee, D.-J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol. Adv. 2018, 36, 54–67. [Google Scholar] [CrossRef]
- Miki, W. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 1991, 63, 141–146. [Google Scholar] [CrossRef]
- Shimidzu, N.; Goto, M.; Miki, W. Carotenoids as Singlet Oxygen Quenchers in Marine Organisms. Fish. Sci. 1996, 62, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Hussein, G.; Nakamura, M.; Zhao, Q.; Iguchi, T.; Goto, H.; Sankawa, U.; Watanabe, H. Antihypertensive and Neuroprotective Effects of Astaxanthin in Experimental Animals. Biol. Pharm. Bull. 2005, 28, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Yasunori, N.; Miharu, M.; Jiro, T.; Akitoshi, K.; Yoshiharu, H.; Yuri, S.; Hiroki, T. The Effect of Astaxanthin on Retinal Capillary Blood Flow in Normal Volunteers. J. Clin. Ther. Med. 2005, 21, 1–9. [Google Scholar]
- Suzuki, Y.; Ohgami, K.; Shiratori, K.; Jin, X.-H.; Ilieva, I.; Koyama, Y.; Yazawa, K.; Yoshida, K.; Kase, S.; Ohno, S. Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-κB signaling pathway. Exp. Eye Res. 2006, 82, 275–281. [Google Scholar] [CrossRef]
- Khachik, F.; Spangler, C.J.; Smith, J.C., Jr.; Canfield, L.M.; Steck, A.; Pfander, H. Identification, Quantification, and Relative Concentrations of Carotenoids and Their Metabolites in Human Milk and Serum. Anal. Chem. 1997, 69, 1873–1881. [Google Scholar] [CrossRef]
- Sommerburg, O.; Keunen, J.E.; Bird, A.C.; van Kuijk, F.J. Fruits and vegetables that are sources for lutein and zeaxanthin: The macular pigment in human eyes. Br. J. Ophthalmol. 1998, 82, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa-Crespo, J.; Montero, Z.; Fuentes, J.L.; García-Galbis, M.R.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Mar. Drugs 2018, 16, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, Y.; Shigeno, Y.; Nagai, N.; Suzuki, M.; Kurihara, T.; Minami, S.; Hirano, E.; Shinoda, H.; Kobayashi, S.; Tsubota, K. Absolute and estimated values of macular pigment optical density in young and aged Asian participants with or without age-related macular degeneration. BMC Ophthalmol. 2017, 17, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R., Jr.; Miller, L.S.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. Front. Aging Neurosci. 2017, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Barker, F.M.; Snodderly, D.M.; Johnson, E.J.; Schalch, W.; Koepcke, W.; Gerss, J.; Neuringer, M. Nutritional Manipulation of Primate Retinas, V: Effects of Lutein, Zeaxanthin, and n–3 Fatty Acids on Retinal Sensitivity to Blue-Light–Induced Damage. Investig. Opthalmol. Vis. Sci. 2011, 52, 3934–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, B.R.; Fletcher, L.M.; Roos, F.; Wittwer, J.; Schalch, W. A Double-Blind, Placebo-Controlled Study on the Effects of Lutein and Zeaxanthin on Photostress Recovery, Glare Disability, and Chromatic Contrast. Investig. Opthalmol. Vis. Sci. 2014, 55, 8583–8589. [Google Scholar] [CrossRef] [Green Version]
- Obana, A.; Gohto, Y.; Moriyama, T.; Seto, T.; Sasano, H.; Okazaki, S. Reliability of a commercially available heterochromatic flicker photometer, the MPS2, for measuring the macular pigment optical density of a Japanese population. Jpn. J. Ophthalmol. 2018, 62, 473–480. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, R.L.P.; Berendschot, T.T.J.M.; Hendrikse, F.; Carden, D.; Makridaki, M.; Murray, I.J. A new desktop instrument for measuring macular pigment optical density based on a novel technique for setting flicker thresholds. Ophthalmic Physiol. Opt. 2009, 29, 127–137. [Google Scholar] [CrossRef]
- Saito, S.; Sotoyama, M.; Saito, S.; Taptagaporn, S. Physiological Indices of Visual Fatigue due to VDT Operation: Pupillary Reflexes and Accommodative Responses. Ind. Health 1994, 32, 57–66. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Cho, H.-Y.; Kang, C.-K. Effects of a Traction Device for Head Weight Reduction and Neutral Alignment during Sedentary Visual Display Terminal (VDT) Work on Postural Alignment, Muscle Properties, Hemodynamics, Preference, and Working Memory Performance. Int. J. Environ. Res. Public Health 2022, 19, 14254. [Google Scholar] [CrossRef]
- Ozawa, Y.; Nagai, N.; Suzuki, M.; Kurihara, T.; Shinoda, H.; Watanabe, M.; Tsubota, K. Effects of Constant Intake of Lutein-rich Spinach on Macular Pigment Optical Density: A Pilot Study. Nippon. Ganka Gakkai Zasshi 2016, 120, 41–48. [Google Scholar]
- Renzi, L.M.; Bovier, E.R.; Hammond, B.R. A role for the macular carotenoids in visual motor response. Nutr. Neurosci. 2013, 16, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Renzi, L.M.; Hammond, B.R. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol. Opt. 2010, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Bovier, E.R.; Hammond, B.R. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch. Biochem. Biophys. 2015, 572, 54–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilg, U.J. Slow eye movements. Prog. Neurobiol. 1997, 53, 293–329. [Google Scholar] [CrossRef]
- Keller, E.; Heinen, S. Generation of smooth-pursuit eye movements: Neuronal mechanisms and pathways. Neurosci. Res. 1991, 11, 79–107. [Google Scholar] [CrossRef]
- Lisberger, S.G.; Morris, E.J.; Tychsen, L. Visual Motion Processing and Sensory-Motor Integration for Smooth Pursuit Eye Movements. Annu. Rev. Neurosci. 1987, 10, 97–129. [Google Scholar] [CrossRef]
- Munoz, D.P. Commentary: Saccadic eye movements: Overview of neural circuitry. Prog. Brain Res. 2002, 140, 89–96. [Google Scholar] [CrossRef]
- Sparks, D.L. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 2002, 3, 952–964. [Google Scholar] [CrossRef]
- Ando, S. Peripheral visual perception during exercise: Why we cannot see. Exerc. Sport Sci. Rev. 2013, 41, 87–92. [Google Scholar] [CrossRef]
- Ando, S.; Komiyama, T.; Kokubu, M.; Sudo, M.; Kiyonaga, A.; Tanaka, H.; Higaki, Y. Slowed response to peripheral visual stimuli during strenuous exercise. Physiol. Behav. 2016, 161, 33–37. [Google Scholar] [CrossRef] [PubMed]
Item | Enrollment | Test Period | ||||
---|---|---|---|---|---|---|
0 Weeks | 2 Weeks | 4 Weeks | 8 Weeks | |||
Informed consent | ● | |||||
Background investigation | ● | |||||
Selection | ● | |||||
Allocation | ● | |||||
Physical examinations | ● | ● | ● | ● | ||
Visual function test | Eye–hand coordination | ●● | ●● | ●● | ●● | |
Smooth pursuit eye movement | ●● | ●● | ●● | ●● | ||
QOL questionnaire | ●● | ●● | ●● | ●● | ||
MPOD | ● | ● | ● | ● | ||
Ingestion of test foods or placebo | ||||||
Diary record |
Item | Active Group (n = 28) | Placebo Group (n = 29) | |
---|---|---|---|
Age (years) | 31.1 ± 8.2 | 30.1 ± 8.6 | |
Sex (Male/Female) | 25/3 | 27/2 | |
BMI (kg/m2) | 23.0 ± 4.0 | 22.2 ± 4.1 | |
change of visual function pre- and post-VDT operation | Eye−hand coordination time (s) | 1.10 ± 0.93 | 1.32 ± 2.16 |
Eye−hand coordination accuracy rate (%) | −4.77 ± 6.03 | −6.34 ± 12.0 | |
Smooth pursuit eye movement (s) | 0.066 ± 0.115 | 0.120 ± 0.127 | |
MPOD | 0.576 ± 0.151 | 0.581 ± 0.136 |
Baseline | 2 Weeks | 4 Weeks | 8 Weeks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Active Group (n = 28) | Placebo Group (n = 29) | p Value * | Active Group (n = 28) | Placebo Group (n = 29) | p Value * | Active Group (n = 27) | Placebo Group (n = 29) | p Value * | Active Group (n = 28) | Placebo Group (n = 29) | p Value * | |
Time | ||||||||||||
Pre-VDT operation (s) | 22.53 ± 1.57 | 22.92 ± 1.40 | 0.318 | 22.42 ± 1.27 | 22.78 ± 1.95 | 0.406 | 21.67 ± 1.55 | 22.09 ± 1.94 | 0.382 | 21.40 ± 1.23 | 21.72 ± 1.69 | 0.424 |
Post-VDT operation (s) | 23.62 ± 1.63 | 24.24 ± 2.41 | 0.262 | 22.64 ± 1.44 | 23.37 ± 1.47 | 0.064 | 22.12 ± 1.66 | 22.43 ± 1.53 | 0.473 | 21.45 ± 1.59 | 22.53 ± 1.76 | 0.019 |
Change between pre- and post-VDT operation (s) | 1.10 ± 0.93 | 1.32 ± 2.16 | 0.613 | 0.23 ± 1.06 | 0.59 ± 1.60 | 0.320 | 0.45 ± 1.28 | 0.34 ± 1.30 | 0.756 | 0.05 ± 1.39 | 0.81 ± 1.37 | 0.041 |
Accuracy rate | ||||||||||||
Pre-VDT operation (%) | 80.71 ± 6.29 | 78.17 ± 7.41 | 0.170 | 81.59 ± 5.30 | 77.71 ± 9.38 | 0.061 | 82.13 ± 4.93 | 80.35 ± 9.56 | 0.390 | 82.95 ± 5.31 | 80.44 ± 7.03 | 0.135 |
Post-VDT operation (%) | 75.94 ± 7.84 | 71.83 ± 12.7 | 0.149 | 79.45 ± 5.55 | 75.26 ± 8.61 | 0.034 | 80.92 ± 6.72 | 78.80 ± 8.71 | 0.314 | 83.72 ± 6.51 | 77.30 ± 8.55 | 0.002 |
Change between pre- and post- VDT operation (%) | −4.77 ± 6.03 | −6.34 ± 12.0 | 0.536 | −2.15 ± 6.59 | −2.46 ± 8.32 | 0.877 | −1.21 ± 6.04 | −1.55 ± 6.24 | 0.836 | 0.77 ± 6.19 | −3.14 ± 6.58 | 0.025 |
Baseline | 2 Weeks | 4 Weeks | 8 Weeks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Active Group (n = 28) | Placebo Group (n = 29) | p Value * | Active Group (n = 28) | Placebo Group (n = 29) | p Value * | Active Group (n = 27) | Placebo Group (n = 29) | p Value * | Active Group (n = 28) | Placebo Group (n = 29) | p Value * | |
Pre-VDT operation (s) | 1.368 ± 0.207 | 1.317 ± 0.152 | 0.297 | 1.413 ± 0.205 | 1.338 ± 0.112 | 0.093 | 1.458 ± 0.221 | 1.399 ± 0.166 | 0.255 | 1.358 ± 0.239 | 1.397 ± 0.257 | 0.561 |
Post-VDT operation (s) | 1.434 ± 0.203 | 1.437 ± 0.135 | 0.938 | 1.428 ± 0.214 | 1.443 ± 0.173 | 0.781 | 1.482 ± 0.231 | 1.447 ± 0.149 | 0.501 | 1.454 ± 0.276 | 1.442 ± 0.146 | 0.848 |
Change between pre- and post-VDT operation (s) | 0.066 ± 0.115 | 0.120 ± 0.127 | 0.098 | 0.016 ± 0.156 | 0.104 ± 0.149 | 0.033 | 0.023 ± 0.177 | 0.048 ± 0.138 | 0.560 | 0.095 ± 0.141 | 0.046 ± 0.251 | 0.364 |
Baseline | 2 Weeks | 4 Weeks | 8 Weeks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Active Group (n = 28) | Placebo Group (n = 29) | p Value * | Active Group (n = 28) | Placebo Group (n = 29) | p Value * | Active Group (n = 27) | Placebo Group (n = 29) | p Value * | Active Group (n = 28) | Placebo Group (n = 29) | p Value * | |
MPOD | 0.576 ± 0.151 | 0.581 ± 0.136 | 0.904 | 0.587 ± 0.149 | 0.572 ± 0.151 | 0.712 | 0.567 ± 0.161 | 0.560 ± 0.156 | 0.855 | 0.591 ± 0.148 | 0.565 ± 0.145 | 0.502 |
Change of MPOD levels from 0 week | 0.011 ± 0.052 | −0.009 ± 0.065 | 0.220 | −0.029 ± 0.136 | −0.021 ± 0.066 | 0.781 | 0.015 ± 0.052 | −0.016 ± 0.052 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, K.; Sakai, O.; Honda, T.; Kikuya, T.; Takeda, R.; Sawabe, A.; Inaba, M.; Koike, C. Effects of Astaxanthin, Lutein, and Zeaxanthin on Eye–Hand Coordination and Smooth-Pursuit Eye Movement after Visual Display Terminal Operation in Healthy Subjects: A Randomized, Double-Blind Placebo-Controlled Intergroup Trial. Nutrients 2023, 15, 1459. https://doi.org/10.3390/nu15061459
Yoshida K, Sakai O, Honda T, Kikuya T, Takeda R, Sawabe A, Inaba M, Koike C. Effects of Astaxanthin, Lutein, and Zeaxanthin on Eye–Hand Coordination and Smooth-Pursuit Eye Movement after Visual Display Terminal Operation in Healthy Subjects: A Randomized, Double-Blind Placebo-Controlled Intergroup Trial. Nutrients. 2023; 15(6):1459. https://doi.org/10.3390/nu15061459
Chicago/Turabian StyleYoshida, Keisuke, Osamu Sakai, Tomoo Honda, Tomio Kikuya, Ryuji Takeda, Akiyoshi Sawabe, Masamaru Inaba, and Chieko Koike. 2023. "Effects of Astaxanthin, Lutein, and Zeaxanthin on Eye–Hand Coordination and Smooth-Pursuit Eye Movement after Visual Display Terminal Operation in Healthy Subjects: A Randomized, Double-Blind Placebo-Controlled Intergroup Trial" Nutrients 15, no. 6: 1459. https://doi.org/10.3390/nu15061459
APA StyleYoshida, K., Sakai, O., Honda, T., Kikuya, T., Takeda, R., Sawabe, A., Inaba, M., & Koike, C. (2023). Effects of Astaxanthin, Lutein, and Zeaxanthin on Eye–Hand Coordination and Smooth-Pursuit Eye Movement after Visual Display Terminal Operation in Healthy Subjects: A Randomized, Double-Blind Placebo-Controlled Intergroup Trial. Nutrients, 15(6), 1459. https://doi.org/10.3390/nu15061459