How Does Dietary Intake Relate to Dispositional Optimism and Health-Related Quality of Life in Germline BRCA1/2 Mutation Carriers?
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Instruments
2.3. Statistical Analysis
2.4. Ethics
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Characteristic | Mean ± SD/n (%) |
---|---|
Type of cancer • breast cancer (BC) • ovarian cancer (OC) • other | • 165 (88.7%) • 13 (7.0%) • 8 (4.3%) |
Age at diagnosis, years | 40.3 ± 9.0 |
Time since diagnosis, years | 6.1 ± 6.9 |
Tumour biology of breast cancer • hormone receptor-positive • Her2-positive • triple-negative | • 60 (36.3%) • 6 (3.6%) • 85 (51.5%) |
Breast cancer treatment • chemotherapy • chest radiation therapy • antihormonal treatment • HER2-targeted therapy | • 138 (83.6%) • 112 (67.9%) • 65 (39.4%) • 6 (3.6%) |
Characteristic | Estimates (95% CI) a | p-Value | |
---|---|---|---|
Quality of life (QL2) 1 | unadjusted | 0.006 (−0.008; 0.021) | 0.395 |
adjusted for ‘chemotherapy’ | 0.006 (−0.008; 0.021) | 0.392 | |
adjusted for ‘chest radiation therapy’ | 0.006 (−0.008; 0.021) | 0.391 | |
adjusted for ‘antihormonal treatment’ | 0.006 (−0.008; 0.021) | 0.380 | |
adjusted for ‘HER2-targeted therapy’ | 0.006 (−0.008; 0.020) | 0.409 | |
Physical Functioning (PF2) 1 | unadjusted | −0.004 (−0.027; 0.019) | 0.752 |
adjusted for ‘chemotherapy’ | −0.004 (−0.027; 0.020) | 0.761 | |
adjusted for ‘chest radiation therapy’ | −0.004 (−0.027; 0.020) | 0.753 | |
adjusted for ‘antihormonal treatment’ | −0.004 (−0.027; 0.019) | 0.749 | |
adjusted for ‘HER2-targeted therapy’ | −0.004 (−0.027; 0.019) | 0.869 | |
Role Functioning (RF2) 1 | unadjusted | 0.012 (0.001; 0.024) | 0.037 * |
adjusted for ‘chemotherapy’ | 0.013 (0.001; 0.024) | 0.037 * | |
adjusted for ‘chest radiation therapy’ | 0.013 (0.001; 0.026) | 0.031 * | |
adjusted for ‘antihormonal treatment’ | 0.013 (0.001; 0.024) | 0.037 * | |
adjusted for ‘HER2-targeted therapy’ | 0.013 (0.001; 0.024) | 0.034 * | |
Emotional Functioning (EF) 1 | unadjusted | 0.005 (−0.006; 0.015) | 0.379 |
adjusted for ‘chemotherapy’ | 0.005 (−0.006; 0.015) | 0.380 | |
adjusted for ‘chest radiation therapy’ | 0.005 (−0.006; 0.015) | 0.379 | |
adjusted for ‘antihormonal treatment’ | 0.005 (−0.006; 0.015) | 0.377 | |
adjusted for ‘HER2-targeted therapy’ | 0.004 (−0.006; 0.015) | 0.425 | |
Cognitive Functioning (CF) 1 | unadjusted | 0.015 (0.005; 0.026) | 0.005 * |
adjusted for ‘chemotherapy’ | 0.016 (0.005; 0.026) | 0.005 * | |
adjusted for ‘chest radiation therapy’ | 0.016 (0.005; 0.026) | 0.005 * | |
adjusted for ‘antihormonal treatment’ | 0.016 (0.005; 0.026) | 0.004 * | |
adjusted for ‘HER2-targeted therapy’ | 0.015 (0.005; 0.026) | 0.004 * | |
Social Functioning (SF) 1 | unadjusted | 0.011 (0.001; 0.020) | 0.024 * |
adjusted for ‘chemotherapy’ | 0.011 (0.001; 0.020) | 0.024 * | |
adjusted for ‘chest radiation therapy’ | 0.011 (0.002; 0.021) | 0.021 * | |
adjusted for ‘antihormonal treatment’ | 0.011 (0.002; 0.021) | 0.023 * | |
adjusted for ‘HER2-targeted therapy’ | 0.011 (0.002; 0.021) | 0.020 * | |
Fatigue (FA) 1 | unadjusted | −0.010 (−0.021; 0.000) | 0.057 |
adjusted for ‘chemotherapy’ | −0.010 (−0.021; 0.000) | 0.057 | |
adjusted for ‘chest radiation therapy’ | −0.010 (−0.021; 0.000) | 0.058 | |
adjusted for ‘antihormonal treatment’ | −0.010 (−0.021; 0.000) | 0.058 | |
adjusted for ‘HER2-targeted therapy’ | −0.010 (−0.020; 0.001) | 0.070 | |
Nausea and Vomiting (NV) 1 | unadjusted | −0.009 (−0.037; 0.020) | 0.544 |
adjusted for ‘chemotherapy’ | −0.009 (−0.038; 0.020) | 0.539 | |
adjusted for ‘chest radiation therapy’ | −0.009 (−0.038; 0.020) | 0.543 | |
adjusted for ‘antihormonal treatment’ | −0.009 (−0.038; 0.020) | 0.540 | |
adjusted for ‘HER2-targeted therapy’ | −0.011 (−0.039; 0.018) | 0.468 | |
Pain (PA) 1 | unadjusted | −0.010 (−0.019; 0.000) | 0.053 |
adjusted for ‘chemotherapy’ | −0.010 (−0.019; 0.000) | 0.054 | |
adjusted for ‘chest radiation therapy’ | −0.010 (−0.019; 0.000) | 0.052 | |
adjusted for ‘antihormonal treatment’ | −0.009 (−0.019; 0.000) | 0.055 | |
adjusted for ‘HER2-targeted therapy’ | −0.009 (−0.019; 0.000) | 0.060 | |
Dyspnea (DY) 1 | unadjusted | −0.010 (−0.021; −0.002) | 0.089 |
adjusted for ‘chemotherapy’ | −0.010 (−0.021; −0.002) | 0.086 | |
adjusted for ‘chest radiation therapy’ | −0.010 (−0.021; −0.002) | 0.089 | |
adjusted for ‘antihormonal treatment’ | −0.010 (−0.021; −0.002) | 0.091 | |
adjusted for ‘HER2-targeted therapy’ | −0.010 (−0.021; −0.002) | 0.087 | |
Insomnia (SL) 1 | unadjusted | −0.007 (−0.015; 0.001) | 0.088 |
adjusted for ‘chemotherapy’ | −0.007 (−0.015; 0.001) | 0.089 | |
adjusted for ‘chest radiation therapy’ | −0.007 (−0.015; 0.001) | 0.088 | |
adjusted for ‘antihormonal treatment’ | −0.007 (−0.015; 0.001) | 0.091 | |
adjusted for ‘HER2-targeted therapy’ | −0.007 (−0.014; 0.001) | 0.094 | |
Appetite Loss (AP) 1 | unadjusted | −0.021 (−0.037; −0.006) | 0.010 * |
adjusted for ‘chemotherapy’ | −0.021 (−0.037; −0.005) | 0.010 * | |
adjusted for ‘chest radiation therapy’ | −0.021 (−0.037; −0.005) | 0.010 * | |
adjusted for ‘antihormonal treatment’ | −0.021 (−0.037; −0.005) | 0.010 * | |
adjusted for ‘HER2-targeted therapy’ | −0.022 (−0.038; −0.006) | 0.08 * | |
Constipation (CO) 1 | unadjusted | 0.001 (−0.012; 0.013) | 0.884 |
adjusted for ‘chemotherapy’ | 0.001 (−0.012; 0.013) | 0.884 | |
adjusted for ‘chest radiation therapy’ | 0.001 (−0.012; 0.013) | 0.886 | |
adjusted for ‘antihormonal treatment’ | 0.001 (−0.012; 0.013) | 0.890 | |
adjusted for ‘HER2-targeted therapy’ | 0.002 (−0.012; 0.013) | 0.795 | |
Diarrhea (DI) 1 | unadjusted | −0.007 (−0.025; 0.010) | 0.451 |
adjusted for ‘chemotherapy’ | −0.007 (−0.025; 0.010) | 0.413 | |
adjusted for ‘chest radiation therapy’ | −0.007 (−0.025; 0.010) | 0.416 | |
adjusted for ‘antihormonal treatment’ | −0.007 (−0.026; 0.010) | 0.429 | |
adjusted for ‘HER2-targeted therapy’ | −0.007 (−0.025; 0.011) | 0.423 | |
Financial Difficulties (FI) 1 | unadjusted | −0.002 (−0.012; 0.007) | 0.637 |
adjusted for ‘chemotherapy’ | −0.002 (−0.012; 0.007) | 0.637 | |
adjusted for ‘chest radiation therapy’ | −0.002 (−0.012; 0.007) | 0.636 | |
adjusted for ‘antihormonal treatment’ | −0.002 (−0.012; 0.007) | 0.619 | |
adjusted for ‘HER2-targeted therapy’ | −0.002 (−0.012; 0.008) | 0.682 |
Characteristic | Unadjusted Estimate a [95% CI] | Unadjusted p-Value a | Adjusted Estimate b (96% CI) | Adjusted p-Value b |
---|---|---|---|---|
Quality of Life (QL2) 1 | 0.008 [−0.005; 0.022] | 0.234 | 0.008 (−0.048; 0.034) | 0.730 |
Physical Functioning (PF2) 1 | 0.000 [−0.021; 0.020] | 0.966 | −0.002 (−0.025; 0.022) | 0.896 |
Role Functioning (RF2) 1 | 0.012 [0.001; 0.023] | 0.032 * | 0.014 (0.002; 0.026) | 0.026 * |
Emotional Functioning (EF) 1 | 0.006 [−0.003; 0.016] | 0.203 | 0.006 (−0.004; 0.016) | 0.224 |
Cognitive Functioning (CF) 1 | 0.015 [0.005; 0.025] | 0.003 * | 0.017 (0.006; 0.028) | 0.002 * |
Social Functioning (SF) 1 | 0.011 [0.002; 0.020] | 0.012 * | 0.013 (0.004; 0.022) | 0.005 * |
Fatigue (FA) 1 | −0.010 [−0.020; 0.000] | 0.046 * | −0.012 (−0.022; −0.001) | 0.031 * |
Nausea and Vomiting (NV) 1 | −0.003 [−0.031; 0.024] | 0.802 | −0.009 (−0.038; 0.020) | 0.542 |
Pain (PA) 1 | −0.009 [−0.018; 0.000] | 0.057 | −0.010 (−0.020; −0.001) | 0.034 * |
Dyspnea (DY) 1 | −0.012 [−0.022; −0.001] | 0.029 * | −0.014 (−0.025; −0.002) | 0.018 * |
Insomnia (SL) 1 | −0.006 [−0.014; 0.001] | 0.095 | −0.007 (−0.015; 0.001) | 0.079 |
Appetite Loss (AP) 1 | −0.021 [−0.036; −0.006] | 0.007 * | −0.026 (−0.042; −0.010) | 0.002 * |
Constipation (CO) 1 | 0.000 [−0.011; 0.012] | 0.999 | −0.001 (−0.014; 0.012) | 0.876 |
Diarrhea (DI) 1 | −0.008 [−0.025; 0.008] | 0.331 | −0.009 (−0.027; 0.009) | 0.323 |
Financial Difficulties (FI) 1 | −0.006 [−0.015; 0.003] | 0.217 | −0.006 (−0.016; 0.004) | 0.205 |
Characteristic | Mean ± SD | Unadjusted Estimate a (95% CI) | Unadjusted p-Value a | Adjusted Estimate b (96% CI) | Adjusted p-Value b |
---|---|---|---|---|---|
BKAE-AT | 79.4 ± 7.0 | −0.027 (−0.060; 0.005) | 0.102 | - | - |
BKAE-SN | 77.2 ± 17.3 | −0.008 (−0.021; 0.006) | 0.265 | - | - |
BKAE-PBC | 85.8 ± 9.2 | −0.010 (−0.034; 0.014) | 0.394 | - | - |
Quality of life (QL2) 1 | 67.7 ± 19.1 | 0.008 (−0.005; 0.022) | 0.234 | 0.009 (−0.007; 0.025) | 0.265 |
Physical Functioning (PF2) 1 | 88.8 ± 12.6 | 0.000 (−0.021; 0.020) | 0.966 | −0.005 (−0.029; 0.019) | 0.671 |
Role Functioning (RF2) 1 | 79.8 ± 24.0 | 0.012 (0.001; 0.023) | 0.032 * | 0.014 (0.001; 0.027) | 0.040 * |
Emotional Functioning (EF) 1 | 61.7 ± 27.3 | 0.006 (−0.003; 0.016) | 0.203 | 0.008 (−0.003; 0.019) | 0.148 |
Cognitive Functioning (CF) 1 | 72.9 ± 25.9 | 0.015 (0.005; 0.025) | 0.003 * | 0.011 (0.000; 0.023) | 0.047 * |
Social Functioning (SF) 1 | 72.0 ± 30.0 | 0.011 (0.002; 0.020) | 0.012 * | 0.014 (0.004; 0.024) | 0.005 * |
Fatigue (FA) 1 | 33.6 ± 26.1 | −0.010 (−0.020; 0.000) | 0.046 * | −0.009 (−0.020; 0.003) | 0.143 |
Nausea and Vomiting (NV) 1 | 3.9 ± 9.6 | −0.003 (−0.031; 0.024) | 0.802 | 0.001 (−0.030; 0.033) | 0.928 |
Pain (PA) 1 | 25.6 ± 28.3 | −0.009 (−0.018; 0.000) | 0.057 | −0.010 (−0.020; 0.001) | 0.086 |
Dyspnea (DY) 1 | 16.1 ± 24.6 | −0.012 (−0.022; −0.001) | 0.029 * | −0.010 (−0.022; 0.003) | 0.131 |
Insomnia (SL) 1 | 39.4 ± 35.7 | −0.006 (−0.014; 0.001) | 0.095 | −0.004 (−0.012; 0.005) | 0.411 |
Appetite Loss (AP) 1 | 6.1 ± 16.9 | −0.021 (−0.036; −0.006) | 0.007 * | −0.019 (−0.039; 0.001) | 0.059 |
Constipation (CO) 1 | 10.0 ± 22.9 | 0.000 (−0.011; 0.012) | 0.999 | 0.000 (−0.014; 0.014) | 0.971 |
Diarrhea (DI) 1 | 6.6 ± 15.8 | −0.008 (−0.025; 0.008) | 0.331 | −0.010 (−0.028; 0.008) | 0.284 |
Financial Difficulties (FI) 1 | 18.5 ± 29.0 | −0.006 (−0.015; 0.003) | 0.217 | −0.008 (−0.018; 0.002) | 0.131 |
References
- Ewertz, M.; Jensen, A.B. Late effects of breast cancer treatment and potentials for rehabilitation. Acta Oncol. 2011, 50, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Sitlinger, A.; Zafar, S.Y. Health-Related Quality of Life: The Impact on Morbidity and Mortality. Surg. Oncol. Clin. N. Am. 2018, 27, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Chantzaras, A.; Yfantopoulos, J. Association between medication adherence and health-related quality of life of patients with diabetes. Hormones 2022, 21, 691–705. [Google Scholar] [CrossRef]
- Park, J.; Rodriguez, J.L.; O’Brien, K.M.; Nichols, H.B.; Hodgson, M.E.; Weinberg, C.R.; Sandler, D.P. Health-related quality of life outcomes among breast cancer survivors. Cancer 2021, 127, 1114–1125. [Google Scholar] [CrossRef]
- Carver, C.S.; Scheier, M.F. Dispositional optimism. Trends Cogn. Sci. 2014, 18, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Imayama, I.; Alfano, C.M.; Neuhouser, M.L.; George, S.M.; Wilder Smith, A.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L.; Wang, C.Y.; Duggan, C.; et al. Weight, inflammation, cancer-related symptoms and health related quality of life among breast cancer survivors. Breast Cancer Res. Treat. 2013, 140, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Sartori, A.C.; Vance, D.E.; Slater, L.Z.; Crowe, M. The impact of inflammation on cognitive function in older adults: Implications for healthcare practice and research. J. Neurosci. Nurs. 2012, 44, 206–217. [Google Scholar] [CrossRef] [Green Version]
- Alfano, C.M.; Imayama, I.; Neuhouser, M.L.; Kiecolt-Glaser, J.K.; Smith, A.W.; Meeske, K.; McTiernan, A.; Bernstein, L.; Baumgartner, K.B.; Ulrich, C.M.; et al. Fatigue, inflammation, and ω-3 and ω-6 fatty acid intake among breast cancer survivors. J. Clin. Oncol. 2012, 30, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Panis, C.; Pavanelli, W.R. Cytokines as Mediators of Pain-Related Process in Breast Cancer. Mediat. Inflamm. 2015, 2015, 129034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, N.L.; Pchejetski, D.; A’Hern, R.; Nguyen, A.T.; Charles, P.; Waxman, J.; Li, L.; Storniolo, A.M.; Hayes, D.F.; Flockhart, D.A.; et al. Inflammatory cytokines and aromatase inhibitor-associated musculoskeletal syndrome: A case-control study. Br. J. Cancer 2010, 103, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Pierce, B.L.; Ballard-Barbash, R.; Bernstein, L.; Baumgartner, R.N.; Neuhouser, M.L.; Wener, M.H.; Baumgartner, K.B.; Gilliland, F.D.; Sorensen, B.E.; McTiernan, A.; et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 2009, 27, 3437–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villaseñor, A.; Flatt, S.W.; Marinac, C.; Natarajan, L.; Pierce, J.P.; Patterson, R.E. Postdiagnosis C-reactive protein and breast cancer survivorship: Findings from the WHEL study. Cancer Epidemiol. Biomark. Prev. 2014, 23, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation: Emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Jin, Y.; Singh, U.P.; Chumanevich, A.A.; Harmon, B.; Cavicchia, P.; Hofseth, A.B.; Kotakadi, V.; Poudyal, D.; Stroud, B.; et al. Suppression of DNA damage in human peripheral blood lymphocytes by a juice concentrate: A randomized, double-blind, placebo-controlled trial. Mol. Nutr. Food Res. 2012, 56, 666–670. [Google Scholar] [CrossRef]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Mærkedahl, R.B.; Bahl, M.I.; Lind, M.V.; Nielsen, R.L.; Frøkiær, H.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Godos, J.; Hébert, J.R.; Wirth, M.D.; Piuri, G.; Speciani, A.F.; Grosso, G. Dietary Inflammatory Index and Cardiovascular Risk and Mortality—A Meta-Analysis. Nutrients 2018, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, Y.; Yao, N.; Wang, L.; Sun, M.; Xu, X.; Yang, H.; Sun, Y.; Li, B. Association between dietary inflammatory index and metabolic syndrome: Analysis of the NHANES 2005–2016. Front. Nutr. 2022, 9, 991907. [Google Scholar] [CrossRef]
- Vahid, F.; Shivappa, N.; Hatami, M.; Sadeghi, M.; Ameri, F.; Jamshidi Naeini, Y.; Hebert, J.R.; Davoodi, S.H. Association between Dietary Inflammatory Index (DII) and Risk of Breast Cancer: A Case-Control Study. Asian Pac. J. Cancer Prev. 2018, 19, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hébert, J.R.; Paddock, L.E.; Rodriguez-Rodriguez, L.; Olson, S.H.; Bandera, E.V. Dietary inflammatory index and ovarian cancer risk in a New Jersey case-control study. Nutrition 2018, 46, 78–82. [Google Scholar] [CrossRef]
- Vahid, F.; Shivappa, N.; Faghfoori, Z.; Khodabakhshi, A.; Zayeri, F.; Hebert, J.R.; Davoodi, S.H. Validation of a Dietary Inflammatory Index (DII) and Association with Risk of Gastric Cancer: A Case-Control Study. Asian Pac. J. Cancer Prev. 2018, 19, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Godos, J.; Hébert, J.R.; Wirth, M.D.; Piuri, G.; Speciani, A.F.; Grosso, G. Dietary Inflammatory Index and Colorectal Cancer Risk—A Meta-Analysis. Nutrients 2017, 9, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golmohammadi, M.; Kheirouri, S.; Ebrahimzadeh Attari, V.; Moludi, J.; Sulistyowati, R.; Nachvak, S.M.; Mostafaei, R.; Mansordehghan, M. Is there any association between dietary inflammatory index and quality of life? A systematic review. Front Nutr. 2022, 9, 1067468. [Google Scholar] [CrossRef]
- Toopchizadeh, V.; Dolatkhah, N.; Aghamohammadi, D.; Rasouli, M.; Hashemian, M. Dietary inflammatory index is associated with pain intensity and some components of quality of life in patients with knee osteoarthritis. BMC Res. Notes 2020, 13, 448. [Google Scholar] [CrossRef]
- Yaseri, M.; Alipoor, E.; Hafizi, N.; Maghsoudi-Nasab, S.; Shivappa, N.; Hebert, J.R.; Hosseinzadeh-Attar, M.J. Dietary Inflammatory Index Is a Better Determinant of Quality of Life Compared to Obesity Status in Patients with Hemodialysis. J. Ren. Nutr. 2021, 31, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; Bassett, J.K.; Shivappa, N.; Hébert, J.R.; English, D.R.; Giles, G.G.; Severi, G. Dietary inflammatory index, Mediterranean diet score, and lung cancer: A prospective study. Cancer Causes Control 2016, 27, 907–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402s–1406s. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Di Daniele, N.; Noce, A.; Vidiri, M.F.; Moriconi, E.; Marrone, G.; Annicchiarico-Petruzzelli, M.; D’Urso, G.; Tesauro, M.; Rovella, V.; De Lorenzo, A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; De Lucia, F.; Pounis, G.; Zito, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Adherence to a Mediterranean diet is associated with a better health-related quality of life: A possible role of high dietary antioxidant content. BMJ Open 2013, 3, e003003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galilea-Zabalza, I.; Buil-Cosiales, P.; Salas-Salvadó, J.; Toledo, E.; Ortega-Azorín, C.; Díez-Espino, J.; Vázquez-Ruiz, Z.; Zomeño, M.D.; Vioque, J.; Martínez, J.A.; et al. Mediterranean diet and quality of life: Baseline cross-sectional analysis of the PREDIMED-PLUS trial. PLoS ONE 2018, 13, e0198974. [Google Scholar] [CrossRef] [Green Version]
- Porciello, G.; Montagnese, C.; Crispo, A.; Grimaldi, M.; Libra, M.; Vitale, S.; Palumbo, E.; Pica, R.; Calabrese, I.; Cubisino, S.; et al. Mediterranean diet and quality of life in women treated for breast cancer: A baseline analysis of DEDiCa multicentre trial. PLoS ONE 2020, 15, e0239803. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, C.L.; Recht, A. Side Effects of Adjuvant Treatment of Breast Cancer. N. Engl. J. Med. 2001, 344, 1997–2008. [Google Scholar] [CrossRef]
- Bouillon, K.; Haddy, N.; Delaloge, S.; Garbay, J.R.; Garsi, J.P.; Brindel, P.; Mousannif, A.; Lê, M.G.; Labbe, M.; Arriagada, R.; et al. Long-term cardiovascular mortality after radiotherapy for breast cancer. J. Am. Coll. Cardiol. 2011, 57, 445–452. [Google Scholar] [CrossRef]
- Tao, J.J.; Visvanathan, K.; Wolff, A.C. Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast 2015, 24 (Suppl. S2), S149–S153. [Google Scholar] [CrossRef] [Green Version]
- Ramchand, S.K.; Cheung, Y.M.; Yeo, B.; Grossmann, M. The effects of adjuvant endocrine therapy on bone health in women with breast cancer. J. Endocrinol. 2019, 241, R111–R124. [Google Scholar] [CrossRef] [Green Version]
- Barish, R.; Gates, E.; Barac, A. Trastuzumab-Induced Cardiomyopathy. Cardiol. Clin. 2019, 37, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.E.; Scherer, S.; Wiskemann, J.; Steindorf, K. Return to work after breast cancer: The role of treatment-related side effects and potential impact on quality of life. Eur. J. Cancer Care 2019, 28, e13051. [Google Scholar] [CrossRef]
- Hickey, I.; Jha, S.; Wyld, L. The psychosexual effects of risk-reducing bilateral salpingo-oophorectomy in female BRCA1/2 mutation carriers: A systematic review of qualitative studies. Gynecol. Oncol. 2021, 160, 763–770. [Google Scholar] [CrossRef]
- D’Alonzo, M.; Piva, E.; Pecchio, S.; Liberale, V.; Modaffari, P.; Ponzone, R.; Biglia, N. Satisfaction and Impact on Quality of Life of Clinical and Instrumental Surveillance and Prophylactic Surgery in BRCA-mutation Carriers. Clin. Breast Cancer 2018, 18, e1361–e1366. [Google Scholar] [CrossRef] [PubMed]
- Kassianos, A.P.; Raats, M.M.; Gage, H.; Peacock, M. Quality of life and dietary changes among cancer patients: A systematic review. Qual. Life Res. 2015, 24, 705–719. [Google Scholar] [CrossRef]
- Kiechle, M.; Engel, C.; Berling, A.; Hebestreit, K.; Bischoff, S.; Dukatz, R.; Gerber, W.D.; Siniatchkin, M.; Pfeifer, K.; Grill, S.; et al. Lifestyle intervention in BRCA1/2 mutation carriers: Study protocol for a prospective, randomized, controlled clinical feasibility trial (LIBRE-1 study). Pilot Feasibil. Stud. 2016, 2, 74. [Google Scholar] [CrossRef] [Green Version]
- Kiechle, M.; Engel, C.; Berling, A.; Hebestreit, K.; Bischoff, S.C.; Dukatz, R.; Siniatchkin, M.; Pfeifer, K.; Grill, S.; Yahiaoui-Doktor, M.; et al. Effects of lifestyle intervention in BRCA1/2 mutation carriers on nutrition, BMI, and physical fitness (LIBRE study): Study protocol for a randomized controlled trial. Trials 2016, 17, 368. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fiol, M.; Wärnberg, J.; Arós, F.; Ruíz-Gutiérrez, V.; Lamuela-Raventós, R.M.; et al. Cohort profile: Design and methods of the PREDIMED study. Int. J. Epidemiol. 2012, 41, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Hebestreit, K.; Yahiaoui-Doktor, M.; Engel, C.; Vetter, W.; Siniatchkin, M.; Erickson, N.; Halle, M.; Kiechle, M.; Bischoff, S.C. Validation of the German version of the Mediterranean Diet Adherence Screener (MEDAS) questionnaire. BMC Cancer 2017, 17, 341. [Google Scholar] [CrossRef]
- Seethaler, B.; Basrai, M.; Vetter, W.; Lehnert, K.; Engel, C.; Siniatchkin, M.; Halle, M.; Kiechle, M.; Bischoff, S.C. Fatty acid profiles in erythrocyte membranes following the Mediterranean diet—Data from a multicenter lifestyle intervention study in women with hereditary breast cancer (LIBRE). Clin. Nutr. 2020, 39, 2389–2398. [Google Scholar] [CrossRef]
- Boeing, H.; Bohlscheid-Thomas, S.; Voss, S.; Schneeweiss, S.; Wahrendorf, J. The relative validity of vitamin intakes derived from a food frequency questionnaire compared to 24-hour recalls and biological measurements: Results from the EPIC pilot study in Germany. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S82–S90. [Google Scholar] [CrossRef] [Green Version]
- Bohlscheid-Thomas, S.; Hoting, I.; Boeing, H.; Wahrendorf, J. Reproducibility and relative validity of energy and macronutrient intake of a food frequency questionnaire developed for the German part of the EPIC project. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S71–S81. [Google Scholar] [CrossRef] [Green Version]
- Gholamalizadeh, M.; Afsharfar, M.; Fathi, S.; Tajadod, S.; Mohseni, G.K.; Shekari, S.; Vahid, F.; Doaei, S.; Shafaei Kachaei, H.; Majidi, N.; et al. Relationship between breast cancer and dietary inflammatory index; a case-control study. Clin. Nutr. ESPEN 2022, 51, 353–358. [Google Scholar] [CrossRef]
- Jalali, S.; Shivappa, N.; Hébert, J.R.; Heidari, Z.; Hekmatdoost, A.; Rashidkhani, B. Dietary Inflammatory Index and Odds of Breast Cancer in a Case-Control Study from Iran. Nutr. Cancer 2018, 70, 1034–1042. [Google Scholar] [CrossRef]
- Huang, W.Q.; Mo, X.F.; Ye, Y.B.; Shivappa, N.; Lin, F.Y.; Huang, J.; Hébert, J.R.; Yan, B.; Zhang, C.X. A higher Dietary Inflammatory Index score is associated with a higher risk of breast cancer among Chinese women: A case-control study. Br. J. Nutr. 2017, 117, 1358–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaesmer, H.; Hoyer, J.; Klotsche, J.; Herzberg, P.Y. Die deutsche Version des Life-Orientation-Tests (LOT-R) zum dispositionellen Optimismus und Pessimismus. Z. Gesundh. 2008, 16, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Flanders, N.A.; Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley Publishing Company: Boston, MA, USA, 1975. [Google Scholar]
- Berling-Ernst, A.; Yahiaoui-Doktor, M.; Kiechle, M.; Engel, C.; Lammert, J.; Grill, S.; Dukatz, R.; Rhiem, K.; Baumann, F.T.; Bischoff, S.C.; et al. Predictors of cardiopulmonary fitness in cancer-affected and -unaffected women with a pathogenic germline variant in the genes BRCA1/2 (LIBRE-1). Sci. Rep. 2022, 12, 2907. [Google Scholar] [CrossRef]
- Lee, E.; McKean-Cowdin, R.; Ma, H.; Spicer, D.V.; Van Den Berg, D.; Bernstein, L.; Ursin, G. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: Results from a population-based study of young women. J. Clin. Oncol. 2011, 29, 4373–4380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomark. Prev. 2012, 21, 134–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Arocho, Y.D.; Rosenberg, S.M.; Garber, J.E.; Vardeh, H.; Poorvu, P.D.; Ruddy, K.J.; Kirkner, G.; Snow, C.; Tamimi, R.M.; Peppercorn, J.; et al. Clinicopathological features and BRCA1 and BRCA2 mutation status in a prospective cohort of young women with breast cancer. Br. J. Cancer 2022, 126, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R.; Raina, V.; Abraham, M.; Medeiros Alencar, V.H.; Badran, A.; Bonfill, X.; et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013, 381, 805–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, R.G.; Rea, D.; Handley, K.; Bowden, S.J.; Perry, P.; Earl, H.M.; Poole, C.J.; Bates, T.; Chetiyawardana, S.; Dewar, J.A. aTTom: Long-Term Effects of Continuing Adjuvant Tamoxifen to 10 Years versus Stopping at 5 Years in 6953 Women with Early Breast Cancer; American Society of Clinical Oncology: Alexandria, VA, USA, 2013. [Google Scholar]
- Burstein, H.; Griggs, J.; Prestrud, A.; Temin, S. American society of clinical oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Oncol. Pract. 2010, 5, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Condorelli, R.; Vaz-Luis, I. Managing side effects in adjuvant endocrine therapy for breast cancer. Expert Rev. Anticancer Ther. 2018, 18, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Maunsell, E.; Drolet, M.; Brisson, J.; Robert, J.; Deschênes, L. Dietary change after breast cancer: Extent, predictors, and relation with psychological distress. J. Clin. Oncol. 2002, 20, 1017–1025. [Google Scholar] [CrossRef]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Mammakarzinoms, Version 4.0, 2017 AWMF Registernummer: 032-045OL. Available online: http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/ (accessed on 5 March 2023).
- Deutsche Gesellschaft für Ernährung e. V., DGE-Ernährungskreis. 2019. Available online: https://www.dge-ernaehrungskreis.de/orientierungswerte/ (accessed on 5 March 2023).
- Scheier, M.F.; Carver, C.S. Optimism, coping, and health: Assessment and implications of generalized outcome expectancies. Health Psychol. 1985, 4, 219–247. [Google Scholar] [CrossRef]
- Tindle, H.A.; Chang, Y.F.; Kuller, L.H.; Manson, J.E.; Robinson, J.G.; Rosal, M.C.; Siegle, G.J.; Matthews, K.A. Optimism, cynical hostility, and incident coronary heart disease and mortality in the Women’s Health Initiative. Circulation 2009, 120, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S.; Hagan, K.A.; Grodstein, F.; DeMeo, D.L.; De Vivo, I.; Kubzansky, L.D. Optimism and Cause-Specific Mortality: A Prospective Cohort Study. Am. J. Epidemiol. 2017, 185, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Friedman, L.C.; Kalidas, M.; Elledge, R.; Chang, J.; Romero, C.; Husain, I.; Dulay, M.F.; Liscum, K.R. Optimism, social support and psychosocial functioning among women with breast cancer. Psychooncology 2006, 15, 595–603. [Google Scholar] [CrossRef]
- Thieme, M.; Einenkel, J.; Zenger, M.; Hinz, A. Optimism, pessimism and self-efficacy in female cancer patients. Jpn. J. Clin. Oncol. 2017, 47, 849–855. [Google Scholar] [CrossRef]
- Boehm, J.K.; Williams, D.R.; Rimm, E.B.; Ryff, C.; Kubzansky, L.D. Association between optimism and serum antioxidants in the midlife in the United States study. Psychosom. Med. 2013, 75, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Scheier, M.F.; Carver, C.S. Dispositional optimism and physical health: A long look back, a quick look forward. Am. Psychol. 2018, 73, 1082–1094. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.L.; Flink, I.K.; Boersma, K.; Linton, S.J. Manipulating optimism: Can imagining a best possible self be used to increase positive future expectancies? J. Posit. Psychol. 2010, 5, 204–211. [Google Scholar] [CrossRef]
- Meevissen, Y.M.C.; Peters, M.L.; Alberts, H.J.E.M. Become more optimistic by imagining a best possible self: Effects of a two week intervention. J. Behav. Ther. Exp. Psychiatry 2011, 42, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Bruno, E.; Manoukian, S.; Venturelli, E.; Oliverio, A.; Rovera, F.; Iula, G.; Morelli, D.; Peissel, B.; Azzolini, J.; Roveda, E.; et al. Adherence to Mediterranean Diet and Metabolic Syndrome in BRCA Mutation Carriers. Integr. Cancer Ther. 2018, 17, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Li, C. Metabolic syndrome and health-related quality of life among U.S. adults. Ann. Epidemiol. 2008, 18, 165–171. [Google Scholar] [CrossRef]
- Tziallas, D.; Kastanioti, C.; Kostapanos, M.S.; Skapinakis, P.; Elisaf, M.S.; Mavreas, V. The impact of the metabolic syndrome on health-related quality of life: A cross-sectional study in Greece. Eur. J. Cardiovasc. Nurs. 2012, 11, 297–303. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.S. Factors Affecting the Health-Related Quality of Life of Cancer Survivors According to Metabolic Syndrome. Cancer Nurs. 2022; adhead of print. [Google Scholar] [CrossRef]
- Cohen, B.E.; Panguluri, P.; Na, B.; Whooley, M.A. Psychological risk factors and the metabolic syndrome in patients with coronary heart disease: Findings from the Heart and Soul Study. Psychiatry Res. 2010, 175, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Bundesamt, S. Bevölkerung Nach FamilienStand 2011 bis 2021 Deutschland. 2022. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/familienstand-jahre-5.html(accessed on 15 February 2023).
- Bundesamt, S. Zusammengefasste Geburtenziffer nach Kalenderjahren. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Geburten/Tabellen/geburtenziffer.html (accessed on 15 February 2023).
- Bundesamt, S. Bevölkerung im Alter von 15 Jahren und Mehr Nach Allgemeinen und Beruflichen Bildungsabschlüssen nach Jahren. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Bildungsstand/Tabellen/bildungsabschluss.html (accessed on 15 February 2023).
- Bundesamt, S. Statistik zu Einkommen und Lebensbedingungen (Mikrozensus-Unterstichprobe zu Einkommen und Lebensbedingungen), Fachserie 15, Reihe 3, EU-SILC 2021. Statistisches Bundesamt: Wiesbaden, Germany, 2022; p. 23. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Einkommen-Konsum-Lebensbedingungen/Lebensbedingungen-Armutsgefaehrdung/Publikationen/Downloads-Lebensbedingungen/einkommen-lebensbedingungen-2150300217004.html (accessed on 15 February 2023).
- Grill, S.; Yahiaoui-Doktor, M.; Dukatz, R.; Lammert, J.; Ullrich, M.; Engel, C.; Pfeifer, K.; Basrai, M.; Siniatchkin, M.; Schmidt, T.; et al. Smoking and physical inactivity increase cancer prevalence in BRCA-1 and BRCA-2 mutation carriers: Results from a retrospective observational analysis. Arch. Gynecol. Obs. 2017, 296, 1135–1144. [Google Scholar] [CrossRef]
Characteristic | Diseased | Non-Diseased | p-Value |
---|---|---|---|
n (%) | 186 (59.6%) | 126 (40.4%) | |
Socio-demographic Data | |||
Age, years, mean ± SD | 46.5 ± 9.2 | 39.1 ± 10.4 | <0.001 * |
Married, n (%) | (125) 67 % | 70 (55%) | 0.026 * |
Number of children, mean ± SD | 1.3 ± 0.9 | 1.1 ± 1.1 | 0.110 |
Education, n (%) | |||
• General university entrance qualification | 104 (58%) | 95 (75%) | 0.002 * |
• University degree | 82 (44%) | 68 (54%) | 0.074 |
Net income, EUR, mean ± SD, n | 4043.8 ± 1982.3; n = 126 | 3851.4 ± 2258.8; n = 84 | 0.515 |
Anthropometric Data | |||
BMI, kg/m2, mean ± SD | 25.6 ± 4.9 | 25 ± 5.5 | 0.301 |
Waist-to-hip ratio, mean ± SD | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.256 |
Metabolic Data | |||
Metabolic syndrome, n (%) | 45 (24%) | 26 (21%) | 0.426 |
VO2peak, mL/min/kg, mean ± SD | 16.0 ± 5.0 | 17.3 ± 4.7 | 0.029 * |
Nutritional Data | |||
DII, mean ± SD | −1.1 ± 1.8 | −0.5 ± 1.2 | 0.011 * |
MEDAS, mean ± SD | 47.9 ± 16.6 | 46.5 ± 15.3 | 0.478 |
Psychological Data | |||
LOTR-O, mean ± SD | 4.2 ± 2.9 | 4.1 ± 3.0 | 0.792 |
LOTR-P, mean ± SD | 4.3 ± 2.1 | 4.0 ± 2.4 | 0.267 |
Quality of life (QL2), mean ± SD | 67.7 ± 19.1 | 72.2 ± 8.6 | 0.041 * |
Physical Functioning (PF2), mean ± SD | 88.8 ± 12.6 | 91.4 ± 11.0 | 0.054 |
Role Functioning (RF2), mean ± SD | 79.8 ± 24.0 | 90.3 ± 18.5 | <0.001 * |
Emotional Functioning (EF), mean ± SD | 61.7 ± 27.3 | 62.6 ± 24.2 | 0.770 |
Cognitive Functioning (CF), mean ± SD | 72.9 ± 25.9 | 82.5 ± 19.2 | <0.001 * |
Social Functioning (SF), mean ± SD | 72.0 ± 30.0 | 85.2 ± 23.0 | <0.001 * |
Fatigue (FA), mean ± SD | 33.6 ± 26.1 | 28.9 ± 19.9 | 0.085 |
Nausea and vomiting (NV), mean ± SD | 3.9 ± 9.6 | 6.3 ± 14.9 | 0.096 |
Pain (PA), mean ± SD | 25.6 + 28.3 | 15.7 ± 21.6 | 0.001 * |
Dyspnea (DY), mean ± SD | 16.1 ± 24.6 | 9.6 ± 20.7 | 0.015 * |
Insomnia (SL), mean ± SD | 39.4 ± 35.7 | 28.0 ± 29.8 | 0.003 * |
Appetite loss (AP), mean ± SD | 6.1 ± 16.9 | 4.0 ± 10.9 | 0.223 |
Constipation (CO), mean ± SD | 10.0 ± 22.9 | 8.5 ± 20.3 | 0.543 |
Diarrhea (DI), mean ± SD | 6.6 ± 15.8 | 11.5 ± 21.6 | 0.033 * |
Financial difficulties (FI), mean ± SD | 18.5 ± 29.0 | 4.3 ± 15.3 | <0.001 * |
BKAE-AT, mean ± SD | 79.8 ± 6.8 | 78.9 ± 7.2 | 0.308 |
BKAE-SN, mean ± SD | 79.6 ± 15.8 | 73.7 ± 18.7 | 0.008 * |
BKAE-PBC, mean ± SD | 86.9 ± 7.8 | 84.2 ± 10.7 | 0.010 * |
BKAE-IT, mean ± SD | 78.2 ± 9.8 | 76.2 ± 11.3 | 0.108 |
BKAE-PB, mean ± SD | 58.5 ± 20.0 | 51.6 ± 23.0 | 0.008 * |
Characteristic | Mean ± SD | Unadjusted Estimate a (95% CI) | Unadjusted p-Value a | Adjusted Estimate b (95% CI) | Adjusted p-Value b |
---|---|---|---|---|---|
MEDAS | 47.3 ± 16.8 | −2.340 (−3.579; −1.101) | <0.001 * | −2.266 (−3.520; −1.011) | <0.001 * |
Role functioning (RF2) 1 | 79.8 ± 24.0 | 0.012 (0.001; 0.023) | 0.032 * | 0.014 (0.003; 0.025) | 0.010 * |
Cognitive functioning (CF) 1 | 72.9 ± 25.9 | 0.015 (0.005; 0.025) | 0.003 * | 0.016 (0.006; 0.026) | 0.002 * |
Social functioning (SF) 1 | 72.0 ± 30.0 | 0.011 (0.002; 0.020) | 0.012 * | 0.013 (0.004; 0.021) | 0.005 * |
Fatigue (FA) 1 | 33.6 ± 26.1 | −0.010 (−0.020; 0.000) | 0.046 * | −0.012 (−0.022; −0.002) | 0.017 * |
Pain (PA) 1 | 25.6 ± 28.3 | −0.009 (−0.018; 0.000) | 0.057 | −0.011 (−0.021; −0.002) | 0.017 * |
Dyspnea (DY) 1 | 16.1 ± 24.6 | −0.012 (−0.022; −0.001) | 0.029 * | −0.016 (−0.027; −0.005) | 0.004 * |
Appetite loss (AP) 1 | 6.1 ± 16.9 | −0.021 (−0.036; −0.006) | 0.007 * | −0.021 (−0.036; −0.006) | 0.008 * |
Characteristic | Mean ± SD | Unadjusted Estimate a (95% CI) | Unadjusted p-Value a | Adjusted Estimate b (95% CI) | Adjusted p-Value b |
---|---|---|---|---|---|
VO2peak, mL/min/kg | 16.7 ± 4.9 | 0.005 (0.001; 0.009) | 0.014 * | 0.004 (0.000; 0.008) | 0.053 |
DII | −0.9 ± 1.9 | −0.018 (−0.028; −0.009) | <0.001 * | −0.017 (−0.027; −0.008) | <0.001 * |
LOTR-O | 4.2 ± 2.9 | 0.011 (0.004; 0.017) | <0.001 * | 0.010 (0.004; 0.016) | 0.002 * |
Predictor | Unadjusted OR a (95% CI) | Unadjusted p-Value a | Adjusted OR b (95% CI) | Adjusted p-Value b |
---|---|---|---|---|
High adherence to MD (MEDAS ≥ 0.50) vs. low adherence to MD (<0.50) | 0.538 (0.314; 0.922) | 0.024 * | 0.602 (0.343; 1.058) | 0.078 |
LOTR-P | 1.147 (1.019; 1.292) | 0.023 * | 1.150 (1.012; 1.307) | 0.032 * |
Physical functioning (PF2) 1 | 0.955 (0.930; 0.980) | <0.001 * | 0.963 (0.937; 0.990) | 0.007 * |
Dyspnea (DY) 1 | 1.017 (1.004; 1.030) | 0.012 * | 1.013 (0.999; 1.026) | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esser, A.; Neirich, L.; Grill, S.; Bischoff, S.C.; Halle, M.; Siniatchkin, M.; Yahiaoui-Doktor, M.; Kiechle, M.; Lammert, J. How Does Dietary Intake Relate to Dispositional Optimism and Health-Related Quality of Life in Germline BRCA1/2 Mutation Carriers? Nutrients 2023, 15, 1396. https://doi.org/10.3390/nu15061396
Esser A, Neirich L, Grill S, Bischoff SC, Halle M, Siniatchkin M, Yahiaoui-Doktor M, Kiechle M, Lammert J. How Does Dietary Intake Relate to Dispositional Optimism and Health-Related Quality of Life in Germline BRCA1/2 Mutation Carriers? Nutrients. 2023; 15(6):1396. https://doi.org/10.3390/nu15061396
Chicago/Turabian StyleEsser, Anne, Leonie Neirich, Sabine Grill, Stephan C. Bischoff, Martin Halle, Michael Siniatchkin, Maryam Yahiaoui-Doktor, Marion Kiechle, and Jacqueline Lammert. 2023. "How Does Dietary Intake Relate to Dispositional Optimism and Health-Related Quality of Life in Germline BRCA1/2 Mutation Carriers?" Nutrients 15, no. 6: 1396. https://doi.org/10.3390/nu15061396
APA StyleEsser, A., Neirich, L., Grill, S., Bischoff, S. C., Halle, M., Siniatchkin, M., Yahiaoui-Doktor, M., Kiechle, M., & Lammert, J. (2023). How Does Dietary Intake Relate to Dispositional Optimism and Health-Related Quality of Life in Germline BRCA1/2 Mutation Carriers? Nutrients, 15(6), 1396. https://doi.org/10.3390/nu15061396