Plasma LEAP-2 Following a Low-Calorie Diet with or without Interval Exercise in Women with Obesity
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cawley, J.; Biener, A.; Meyerhoefer, C.; Ding, Y.; Zvenyach, T.; Smolarz, B.G.; Ramasamy, A. Direct medical costs of obesity in the United States and the most populous states. J. Manag. Care Spec. Pharm. 2021, 27, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschaine, S.L.; Leggio, L. From “Hunger Hormone” to “It’s Complicated”: Ghrelin Beyond Feeding Control. Physiology 2022, 37, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liszt, K.I.; Deloose, E.; Canovai, E.; Thijs, T.; Farré, R.; Ceulemans, L.J.; Lannoo, M.; Tack, J.; Depoortere, I. Obesity alters adrenergic and chemosensory signaling pathways that regulate ghrelin secretion in the human gut. FASEB J. 2019, 33, 4907–4920. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, C.A.; Jensen, M.S.; Holm, S.; Gasbjerg, L.S.; Byberg, S.; Skov-Jeppesen, K.; Hartmann, B.; Holst, J.J.; Dela, F.; Vilsbøll, T.; et al. LEAP2 reduces postprandial glucose excursions and ad libitum food intake in healthy men. Cell. Rep. Med. 2022, 3, 100582. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.; Metzger, N.P.; Singh, O.; Mani, B.K.; Osborne-Lawrence, S.; Varshney, S.; Gupta, D.; Ogden, S.B.; Takemi, S.; Richard, C.P.; et al. LEAP2 deletion in mice enhances ghrelin’s actions as an orexigen and growth hormone secretagogue. Mol. Metab. 2021, 53, 101327. [Google Scholar] [CrossRef]
- Lu, X.; Huang, L.; Huang, Z.; Feng, D.; Clark, R.J.; Chen, C. LEAP-2: An Emerging Endogenous Ghrelin Receptor Antagonist in the Pathophysiology of Obesity. Front. Endocrinol. 2021, 12, 717544. [Google Scholar] [CrossRef]
- Fernandez, G.; Cabral, A.; De Francesco, P.N.; Uriarte, M.; Reynaldo, M.; Castrogiovanni, D.; Zubiría, G.; Giovambattista, A.; Cantel, S.; Denoyelle, S.; et al. GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner. Cell. Mol. Life Sci. 2022, 79, 1–18. [Google Scholar] [CrossRef]
- Ge, X.; Yang, H.; Bednarek, M.A.; Galon-Tilleman, H.; Chen, P.; Chen, M.; Lichtman, J.S.; Wang, Y.; Dalmas, O.; Yin, Y.; et al. LEAP2 Is an Endogenous Antagonist of the Ghrelin Receptor. Cell Metab. 2018, 27, 461–469.e6. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Mita, Y.; Maruyama, K.; Tanida, R.; Zhang, W.; Sakoda, H.; Nakazato, M. Liver-expressed antimicrobial peptide 2 antagonizes the effect of ghrelin in rodents. J. Endocrinol. 2020, 244, 13–23. [Google Scholar] [CrossRef]
- Hagemann, C.A.; Zhang, C.; Hansen, H.H.; Jorsal, T.; Rigbolt, K.T.G.; Madsen, M.R.; Bergmann, N.C.; Heimbürger, S.M.N.; Falkenhahn, M.; Theis, S.; et al. Identification and Metabolic Profiling of a Novel Human Gut-derived LEAP2 Fragment. J. Clin. Endocrinol. Metab. 2021, 106, E966–E981. [Google Scholar] [CrossRef]
- Mani, B.K.; Puzziferri, N.; He, Z.; Rodriguez, J.A.; Osborne-Lawrence, S.; Metzger, N.P.; Chhina, N.; Gaylinn, B.; Thorner, M.O.; Thomas, E.L.; et al. LEAP2 changes with body mass and food intake in humans and mice. J. Clin. Invest. 2019, 129, 3909–3923. [Google Scholar] [CrossRef]
- Nunez-Salces, M.; Li, H.; Feinle-Bisset, C.; Young, R.L.; Page, A.J. Nutrient-sensing components of the mouse stomach and the gastric ghrelin cell. Neurogastroenterol. Motil. 2020, 32, e13944. [Google Scholar] [CrossRef] [PubMed]
- Holm, S.; Husted, A.S.; Skov, L.J.; Morville, T.H.; Hagemann, C.A.; Jorsal, T.; Dall, M.; Jakobsen, A.; Klein, A.B.; Treebak, J.T.; et al. Beta-Hydroxybutyrate Suppresses Hepatic Production of the Ghrelin Receptor Antagonist LEAP2. Endocrinology 2022, 163, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Heiston, E.M.; Gilbertson, N.M.; Eichner, N.Z.M. Short-term interval exercise suppresses acylated ghrelin and hunger during caloric restriction in women with obesity. Physiol. Behav. 2020, 223, 112978. [Google Scholar] [CrossRef]
- Howe, S.M.; Hand, T.M.; Manore, M.M. Exercise-trained men and women: Role of exercise and diet on appetite and energy intake. Nutrients 2014, 6, 4935–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiston, E.M.; Eichner, N.Z.M.; Gilbertson, N.M.; Gaitan, J.; Kranz, S.; Weltman, A.; Malin, S.K. Two weeks of exercise training intensity on appetite regulation in obese adults with prediabetes. J. Appl. Physiol. 2019, 126, 746–754. [Google Scholar] [CrossRef]
- Gilbertson, N.M.; Eichner, N.Z.; Heiston, E.M.; Gaitan, J.; Francois, M.E.; Mehaffey, J.H.; Hassinger, T.E.; Hallowell, P.T.; Weltman, A.L.; Malin, S.K. A low-calorie diet with or without interval exercise training improves adiposopathy in obese women. Appl. Physiol. Nutr. Metab. 2019, 44, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Francois, M.E.; Gilbertson, N.M.; Eichner, N.Z.M.; Heiston, E.M.; Fabris, C.; Breton, M.; Mehaffey, J.H.; Hassinger, T.; Hallowell, P.T.; Malin, S.K. Combining Short-Term Interval Training with Caloric Restriction Improves ß-Cell Function in Obese Adults. Nutrients 2018, 10, 717. [Google Scholar] [CrossRef] [Green Version]
- Lugilde, J.; Casado, S.; Beiroa, D.; Cuñarro, J.; Garcia-Lavandeira, M.; Álvarez, C.V.; Nogueiras, R.; Diéguez, C.; Tovar, S. LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner. Cells 2022, 11, 324. [Google Scholar] [CrossRef]
- Li, J.; Huang, P.; Xiong, J.; Liang, X.; Li, M.; Ke, H.; Chen, C.; Han, Y.; Huang, Y.; Zhou, Y.; et al. Serum levels of ghrelin and LEAP2 in patients with type 2 diabetes mellitus: Correlation with circulating glucose and lipids. Endocr. Connect. 2022, 11, e220012. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Wasse, L.K.; Ewens, J.; Crystallis, K.; Emmanuel, J.; Batterham, R.; Stensel, D. Differential acylated ghrelin, peptide YY3-36, appetite, and food intake responses to equivalent energy deficits created by exercise and food restriction. J. Clin. Endocrinol. Metab. 2011, 96, 1114–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazell, T.J.; Islam, H.; Townsend, L.K.; Schmale, M.S.; Copeland, J.L. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite 2016, 98, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Holliday, A.; Blannin, A. Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration. J. Endocrinol. 2017, 235, 193–205. [Google Scholar] [CrossRef]
- Slam, H.; Townsend, L.K.; McKie, G.L.; Medeiros, P.J.; Gurd, B.J.; Hazell, T.J. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. J. Appl. Physiol. 2017, 123, 614–623. [Google Scholar]
- Pepino, M.Y.; Finkbeiner, S.; Beauchamp, G.K.; Mennella, J.A. Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity 2010, 18, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Noel, C.A.; Sugrue, M.; Dando, R. Participants with pharmacologically impaired taste function seek out more intense, higher calorie stimuli. Appetite 2017, 117, 74–81. [Google Scholar] [CrossRef]
- Noel, C.A.; Cassano, P.A.; Dando, R. College-Aged Males Experience Attenuated Sweet and Salty Taste with Modest Weight Gain. J. Nutr. 2017, 147, 1885–1891. [Google Scholar] [CrossRef] [Green Version]
- Chu, G.; Peng, H.; Yu, N.; Zhang, Y.; In, X.; Lu, Y. Involvement of POMC neurons in LEAP2 regulation of food intake and body weight. Front. Endocrinol. 2022, 13, 932761. [Google Scholar] [CrossRef]
- Barrile, F.; M’Kadmi, C.; De Francesco, P.N.; Cabral, A.; Romero, G.G.; Mustafa, E.R.; Cantel, S.; Damian, M.; Mary, S.; Denoyelle, S.; et al. Development of a novel fluorescent ligand growth hormone secretagogue receptor based on the N-Terminal Leap2 region. Mol. Cell. Endocrinol. 2019, 498, 110573. [Google Scholar] [CrossRef]
LCD | LCD+INT | T | G × T | |||
---|---|---|---|---|---|---|
N | 13 | 12 | - | - | ||
Age (y) | 46.2 ± 3.5 | 51.3 ± 3.8 | - | - | ||
Body Composition and Fitness | Pre | Δ | Pre | Δ | ||
Weight (kg) | 102.2 ± 4.6 | −2.5 ± 0.4 | 105.7 ± 6.0 | −1.5 ± 0.4 | <0.001 | 0.07 |
Body Mass Index (kg/m2) | 37.5 ± 1.5 | −0.8 ± 0.1 | 37.7 ± 2.1 | −0.5 ± 0.1 | <0.001 | 0.04 |
Waist Circumference (cm) | 114.1 ± 3.5 | 0.5 ± 3.8 | 114.1 ± 4.3 | −1.7 ± 1.3 | 0.46 | 0.19 |
Fat Free Mass (kg) | 52.7 ± 2.0 | −0.9 ± 0.3 | 53.7 ± 2.5 | −0.7 ± 0.4 | 0.005 | 0.75 |
Fat Mass (kg) | 49.0 ± 3.3 | −1.2 ± 0.2 | 51.6 ± 4.1 | −0.4 ± 0.3 | <0.001 | 0.03 |
VO2peak (mL/kg/min) | 18.9 ± 1.2 | −0.6 ± 0.5 | 17.6 ± 1.1 | 0.7 ± 0.5 | 0.55 | 0.04 |
Dietary Intake | ||||||
Calories (kcal/day) | 1939 ± 193.0 | −529.6 ± 194.7 | 2287.8 ± 195.0 | −707.6 ± 209.9 | <0.001 | 0.56 |
Relative Calories (kcals/kg/day) | 19.6 ± 2.2 | −5.2 ± 1.9 | 22.4 ± 2.4 | −6.7 ± 2.2 | <0.001 | 0.61 |
Carbohydrate (g/day) | 228.3 ± 22.8 | −36.3 ± 24.7 | 266.1 ± 32.8 | −62.2 ± 30.3 | 0.03 | 0.62 |
Relative Carbohydrates (g/kg/day) | 2.3 ± 0.0 | −0.3 ± 0.2 | 2.6 ± 0.3 | −0.5 ± 0.3 | 0.04 | 0.56 |
Fat (g/day) | 80.9 ± 8.9 | −38.3 ± 8.2 | 96.7 ± 7.7 | −42.9 ± 8.3 | <0.001 | 0.70 |
Relative Fat (g/kg/day) | 0.8 ± 0.1 | −0.3 ± 0.1 | 0.9 ± 0.1 | −0.4 ± 0.1 | <0.001 | 0.91 |
Protein (g/day) | 76.5 ± 9.5 | −12.6 ± 8.3 | 91.4 ± 7.1 | −22.2 ± 9.0 | 0.009 | 0.44 |
Relative Protein (g/kg/day) | 0.7 ± 0.1 | −0.1 ± 0.0 | 0.9 ± 0.1 | −0.2 ± 0.1 | 0.01 | 0.48 |
LCD | LCD+INT | T | G × T | |||
---|---|---|---|---|---|---|
N | 13 | 12 | - | - | ||
Blood Lipids | Pre | Δ | Pre | Δ | ||
Cholesterol (mg/dL) | 204.2 ± 17.1 | −29.4 ± 5.8 | 192.2 ± 11.1 | −23.2 ± 6.5 | <0.001 | 0.48 |
Triglycerides (mg/dL) | 118.8 ± 15.7 | −17.6 ± 9.8 | 109.5 ± 13.7 | −33.9 ± 10.6 | 0.002 | 0.27 |
LDL (mg/dL) | 137.0 ± 14.9 | −23.3 ± 6.0 | 123.4 ± 9.9 | −15.7 ± 5.1 | <0.001 | 0.35 |
HDL (mg/dL) | 47.4 ± 2.7 | −3.3 ± 1.2 | 50.6 ± 4.6 | −1.8 ± 3.4 | 0.16 | 0.68 |
Cholesterol/HDL (mg/dL) | 4.4 ± 0.3 | −0.3 ± 0.2 | 3.9 ± 0.2 | −0.3 ± 0.2 | 0.01 | 0.93 |
LDL/HDL (mg/dL) | 2.9 ± 0.3 | −0.3 ± 0.2 | 2.5 ± 0.2 | −0.2 ± 0.1 | 0.03 | 0.63 |
Fasted Free Fatty Acids (mM) | 0.5 ± 0.1 | 0.0 ± 0.1 | 0.5 ± 0.0 | 0.1 ± 0.0 | 0.04 | 0.17 |
Free Fatty Acids iAUC180 (mM) | −60.5 ± 5.4 | 2.7 ± 6.7 | −60.6 ± 4.6 | −13.3 ± 7.0 | 0.30 | 0.11 |
Glucose Metabolism | ||||||
Fasted Glucose (mg/dL) | 96.6 ± 1.9 | −3.3 ± 2.2 | 99.3 ± 1.7 | −2.3 ± 1.8 | 0.06 | 0.83 |
Glucose iAUC180 (mg/dL) | 3537.1 ± 981.7 | −544.1 ± 858.1 | 4214.6 ± 969.3 | 469.7 ± 527.3 | 0.94 | 0.33 |
Fasted Insulin (µU/mL) | 19.2 ± 3.9 | −3.2 ± 2.9 | 17.8 ± 4.1 | 1.5 ± 4.3 | 0.73 | 0.37 |
Insulin iAUC180 (µU/mL) | 14,067.6 ± 1714.2 | −3783.0 ± 111.1 | 14,687.3 ± 3527.5 | −1998.3 ± 1154.7 | 0.003 | 0.23 |
Fasted C-peptide (ng/mL) | 2.6 ± 0.3 | −0.2 ± 0.2 | 2.3 ± 0.3 | −0.3 ± 0.1 | 0.06 | 0.83 |
C-peptide iAUC180 (ng/mL) | 1119.4 ± 95.2 | −102.7 ± 82.7 | 1033.6 ± 90.3 | 10.02 ± 46.2 | 0.07 | 0.13 |
LCD | LCD+INT | T | G × T | |||
---|---|---|---|---|---|---|
N | 13 | 12 | - | - | ||
Appetite | Pre | Δ | Pre | Δ | ||
Fasted Sweet (mm) | 46.1 ± 7.2 | 17.0 ± 11.6 | 49.9 ± 7.3 | 7.4 ± 6.9 | 0.09 | 0.49 |
120 min Sweet (mm) | 62.4 ± 5.9 | 4.3 ± 8.4 | 63.7 ± 8.3 | −0.2 ± 4.6 | 0.68 | 0.64 |
Fasted Salty (mm) | 52.0 ± 6.8 | −6.1 ± 12.7 | 62.3 ± 7.6 | 2.7 ± 7.5 | 0.82 | 0.56 |
120 min Salty (mm) | 58.1 ± 5.4 | −3.1 ± 10.0 | 63.2 ± 7.3 | −12.3 ± 8.8 | 0.26 | 0.50 |
Fasted Savory (mm) | 45.6 ± 5.7 | −6.2 ± 11.9 | 48.6 ± 8.9 | 1.2 ± 11.6 | 0.76 | 0.65 |
120 min Savory (mm) | 44.0 ± 6.3 | −5.1 ± 6.6 | 49.1 ± 8.6 | −10.7 ± 11.8 | 0.24 | 0.67 |
Fasted Fatty (mm) | 48.6 ± 7.3 | 7.3 ± 10.8 | 58.7 ± 7.1 | 7.6 ± 4.7 | 0.23 | 0.98 |
120 min Fatty (mm) | 46.5 ± 5.7 | 2.4 ± 8.6 | 63.2 ± 6.7 | −4.9 ± 5.5 | 0.81 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragland, T.J.; Malin, S.K. Plasma LEAP-2 Following a Low-Calorie Diet with or without Interval Exercise in Women with Obesity. Nutrients 2023, 15, 655. https://doi.org/10.3390/nu15030655
Ragland TJ, Malin SK. Plasma LEAP-2 Following a Low-Calorie Diet with or without Interval Exercise in Women with Obesity. Nutrients. 2023; 15(3):655. https://doi.org/10.3390/nu15030655
Chicago/Turabian StyleRagland, Tristan J., and Steven K. Malin. 2023. "Plasma LEAP-2 Following a Low-Calorie Diet with or without Interval Exercise in Women with Obesity" Nutrients 15, no. 3: 655. https://doi.org/10.3390/nu15030655
APA StyleRagland, T. J., & Malin, S. K. (2023). Plasma LEAP-2 Following a Low-Calorie Diet with or without Interval Exercise in Women with Obesity. Nutrients, 15(3), 655. https://doi.org/10.3390/nu15030655