The Current State of Knowledge about the Biological Activity of Different Parts of Capers
Abstract
1. Introduction
2. Phytochemical Characteristics of C. spinosa
3. Biological Properties of C. spinosa
3.1. Anti-Inflammatory Properties
3.2. Antihyperglycemic, Antioxidant and Hypolipidemic Activities in Diabetic and Non-Diabetic Models
3.3. Anti-Hypertensive Action
3.4. Anti-Hepatotoxic Action
3.5. Anti-Cancer Activity
3.6. Other Biological Actions
4. Toxicity of C. spinosa
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Nabavi, S.F.; Maggi, F.; Daglia, M.; Habtermariam, S.; Rstrelli, L.; Nabavi, S.M. Pharmacological effects of Capparis spinosa L. Phytother. Res. 2016, 30, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Z.F. Phytochemical and pharmacological properties of Capparis spinosa as a medical plant. Nutrients 2018, 10, 116. [Google Scholar] [CrossRef]
- Lo Bosco, F.; Guasrrasi, V.; Moschetti, M.; Germana, M.A.; Butera, D.; Corana, F.; Papetti, A. Nutraceutical value of pantelleria capers (Capparis spinosa L.). J. Food Sci. 2019, 84, 2337–2346. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Gao, Y.; Yu, L. Advances in studies on constituents and their pharmacological activities of Capparis spinosa. Chin. Tradit. Herb. Drug 2007, 38, 463–467. [Google Scholar]
- Bianco, G.; Lelario, F.; Battista, F.G.; Bufo, S.A.; Cataldi, T.R.I. Identification of glucosinolates in capers by LC-ESI-hybrid liner ion trap with Fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation. J. Mass Spectrom. 2012, 47, 1160–1169. [Google Scholar] [CrossRef]
- Vahid, H.; Rakhshandeh, H.; Ghorbani, A. Antidiabetic properties of Capparis spinosa L. and its components. Biomed. Pharm. 2017, 92, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of aroma-active compounds, phenolics, and antioxidant properties in fresh and fermented capers (Capparis spinosa) by GC-MS-olfactometry and LC-DAD-ESI-MS/MS. J. Food Sci. 2019, 84, 2449–2457. [Google Scholar] [CrossRef] [PubMed]
- Redford, K.E.; Abbott, G.W. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. Com. Biol. 2020, 356, 356. [Google Scholar] [CrossRef]
- Redford, K.E.; Abbott, G.W. KCNQ potassium channels as targets of botanical folk medicines. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 447–464. [Google Scholar] [CrossRef]
- Mohebali, N.; Fazeli, S.S.A.; Ghfoori, H.; Frahmand, Z.; MohammadKhni, E.; Vkhshiteh, F.; Ghamarian, A.; Farhangniya, M.; Sanati, M.H. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer’s disease. Nutr. Neurosc. 2016, 1, 143–150. [Google Scholar]
- Wojdyło, A.; Nowicka, P.; Grimalt, M.; Legua, P.; Almansa, M.S.; Amoros, A.; Carbonell-Barachina, A.A.; Hernandez, F. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants 2019, 8, 539. [Google Scholar] [CrossRef]
- Alipour, F.; Nabigal, A.; Nabizadeh, C. Variation in volatile organic compounds in fruits of Iranian Capparis spinosa L. accessions. Saudi J. Biol. Sci. 2021, 28, 4664–4667. [Google Scholar] [CrossRef] [PubMed]
- Kolimy, A.; Yadini, M.E.; Guaadaoui, A.; Bourais, I.; Hajjaji, S.E.; Le, H.V. Phytochemistry, biological activities, therapeutic potential, and socio-economic value of the caper bush (Capparis spinose L.). Chem. Biodivers. 2022, 19, e202200300. [Google Scholar]
- Annaz, H.; Sane, Y.; Bitchagno, G.T.; Bakrim, W.B.; Rrissi, B.; Mahdi, Y.; Bouhssini, M.E.; Sobeh, M. Caper (Capparis spinose L.): An updated review on its photochemistry, nutritional value, traditional uses, and therapeutic potential. Front. Pharmacol. 2022, 13, 878749. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, T.; Wang, C. Capparis spinose L. as a potential source of nutrition and its health benefit in foods: A comprehensive review of its phytochemistry, bioactivities, safety and application. Food Chem. 2023, 409, 135258. [Google Scholar] [CrossRef]
- Moutia, M.; El Azhary, K.; Elouaddari, A.; Al Jahid, A.; Eddine, J.J.; Seghrouchni, F.; Habti, N.; Badou, A. Capparis spinosa L. promotes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells. BMC Immunol. 2016, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Hamuti, A.; Li, J.; Zhou, F.; Aipire, A.; Ma, J.; Yang, J.; Li, J. Capparis spinosa fruit ethanol extracts exert different effects on the maturation of dendritic cells. Molecules 2017, 22, 97. [Google Scholar] [CrossRef]
- Maresca, M.; Micheli, L.; Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol. 2016, 4, 456–465. [Google Scholar] [CrossRef]
- El-Azhary, K.E.; Jonti, N.T.; Khachibi, M.E.; Moutia, M.; Tabyaoui, J.; El Hou, A.; Achtak, H.; Nadifi, S.; Habti, N.; Badou, A. Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression. BMC Complement. Alter. Med. 2017, 17, 81. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Rajabian, A.; Rajabi, H.; Vasough, E.M.; Mirkarimi, H.R.; Hsanpour, M.; Iranshhi, M.; Rakhshandeh, H.; Askari, V.R. The effect of Capparis spinose (C. spinose) on lipopolysaccharide (LPS)-induced inflammation and cognitive impairement: Evidence from in vivo and in vitro studies. J. Ethnopharmacol. 2020, 28, 1–10. [Google Scholar]
- Zhu, X.; Yang, Y.; Gao, W.; Jiang, B.; Shi, L. Capparis spinosa alleviates DSS-induced ulcerative colitis via regulation of the gut microbiota and oxidative stress. Evid. Complement. Alter. Med. 2021, 2021, 1227876. [Google Scholar] [CrossRef] [PubMed]
- Yosri, M.; Elaasser, M.M.; Abdel-Aziz, M.M.; Ahmad, H.Y.; Amin, B.H. Evaluation of pleotropic protective activity of Capparis spinasa extract on arthritis rat model. Antiallergy Agents Med. Chem. 2022, 21, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, M.; Haeri, M.; Ebrahimi, M.; Heidari, R. Ant-diabetic effect of Capparis spinosa L. root extract in diabetic rats. Avic. J. Phytomed. 2015, 4, 325–332. [Google Scholar]
- Huseini, H.F.; Hasani-Rnjbar, S.; Nayebi, N.; Heshmat, R.; Sigaroodi, F.K.; Ahvazi, M.; Alei, B.A.; Kianbakht, S. Capparis spinosa L. (caper) fruit extract in treatment of type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Complement. Ther. Med. 2013, 21, 447–452. [Google Scholar]
- Assadi, S.; Shafiee, S.M.; Erfani, M.; Akmali, M. Antioxidative and antidiabetic effects of Capparis spinosa fruit extract on high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats. Biomed. Pharm. 2021, 138, 111391. [Google Scholar] [CrossRef]
- Rakhshandeh, H.; Asgharzade, S.; Khorrami, M.B.; Forouzanfar, F. Protective effect of Capparis spinosa extract against focal cerebral ischemia-reperfusion injury in rats. Cent. Nerv. Syst. Agents Med. Chem. 2021, 21, 148–153. [Google Scholar] [CrossRef]
- Cao, Y.L.; Li, X.; Zheng, M. Capparis spinosa protects against oxidative stress in systemic sclerosis dermal fibroblasts. Arch. Dermatol. Res. 2010, 302, 349–355. [Google Scholar] [CrossRef]
- Al-Soqeer, A. Antioxidant activity and biological evaluation of hot-water extract of Artemisi monosperma and Capparis spinosa against lead contamination. Res. J. Bot. 2011, 6, 11–20. [Google Scholar] [CrossRef]
- Goel, A.; Digvijaaya, G.A.; Kumar, A. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats. Indian J. Exp. Biol. 2016, 54, 126–132. [Google Scholar]
- Al-anazi, K.M.; Al-Mareed, A.A.; Farah, M.A.; Ali, M.A.; Hailan, W.A.Q.; Al-Hamaid, F.M. Protective effect of Capparis spinosa extract against potassium bromate induced oxidative stress and genotoxicity in mice. Evid. Complement. Alter. Med. 2021, 2021, 8875238. [Google Scholar] [CrossRef]
- Mirzakhani, N.; Farhid, A.A.; Tamaddanfard, E.; Tehrani, A.; Imani, M. Comparison of the effects of hydroalcoholic extract of Capparis spinosa fruit, quercetin and vitamin E on monosodium glutamate-induced toxicity in rats. Vet. Res. Forum. 2020, 11, 127–134. [Google Scholar] [PubMed]
- Eddouks, M.; Bidi, A.; El Bouhali, B.; Hajji, L.; Zeggwagh, N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol. 2014, 66, 1197–1214. [Google Scholar] [CrossRef]
- Sardari, S.; Fallahi, F.; Emadi, F.; Davati, A.; Khavasi, N.; Gholamifesharaki, M.; Esmaeili, S.S. Daily consumption of caper fruit along with atoravastatin has synergistic effects in hyperlipidemic patients: Randomized clinical trial. Galen Med. J. 2019, 8, e1345. [Google Scholar] [CrossRef] [PubMed]
- Hashemnia, M.; Oryan, A.; Hamidi, A.-R.; Mohammadalipour, A. Blood glucose levels and pathology of organs in alloxan-induced diabetic rats treated with hydro-ethanol extracts of Allium sativum and Capparis spinose. Afr. J. Pharm. Pharmacol. 2012, 21, 1559–1564. [Google Scholar]
- Rahmani, R.; Mahmoodi, M.; Karimi, M.; Hoseini, F.; Heydari, R.; Salehi, M.; Yousefi, A. Effect of hydroalcoholic extract of Capparis spinose fruit on blood sugar and lipid profile of diabetic and normal rats. Zah. J. Res. Med. Sci. 2013, 15, 34–38. [Google Scholar]
- Taghavi, M.; Nazari, M.; Rahmani, R.; Sayadi, A.; Hajizadeh, M.; Mirzaei, M.; Ziaaddini, H.; Hossseini-Zijoud, S.; Mahmoodi, M. Outcome of capparis spinose fruit extracts treatment on liver, kidney pancreas and stomach tissues in normal and diabetic rats. Med. Chem. 2014, 4, 717–721. [Google Scholar] [CrossRef]
- Negahdarizadeh, M.; Mokhtari, M.; Malekzadeh, J.; Mohammadi, J. The effects of Capparis spinose hydroalcoholic extract on blood glucose and lipids serum in diabetic and normal male rats. Arm. Danesh 2011, 6, 181–190. [Google Scholar]
- Mohammadi, J.; Mirzaei, A.; Delaviz, H.; Mohammadi, B. Effects of hydroalcoholic extract of Capparis spinose on histomorphological changes of pancreas in diabetic rats model. J. Birj. Univ. Med. Sci. 2012, 19, 235–244. [Google Scholar]
- Jalali, M.T.; Mohammadtaghvaei, N.; Larky, D.A. Investigating the effects of Capparis spinose on hepatic gluconeogenesis and lipid content in streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2016, 84, 1243–1248. [Google Scholar] [CrossRef]
- Ali, Z.N.; Eddouks, M.; Michel, J.B.; Sulpice, T.; Hajji, L. Cardiovascular effect of Capparis spinose aqueous extract. Part III: Antihypertensive effect in spontaneously hypertensive rats. Am. J. Pharmacol. Toxicol. 2007, 2, 111–115. [Google Scholar]
- Rakhshandeh, H.; Rshidi, R.; Vahedi, M.M.; Khorrami, B.; Abbassian, H.; Forouzanfar, F. Hypnotic activity of Capparis spinosa hydro-alcoholic extract in mice. Recent Pat. Food Nutr. Agric. 2021, 12, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Akbari, R.; Yoghoti, H.; Jalai, M.T.; Khorsandi, L.S.; Mohammadtaghvaei, N. Capparis spinosa improve the high fat diet-induced non-alcoholic steatohepatitis in rats: The possible role of FGF21. BMC Res. Notes 2020, 13, 356. [Google Scholar] [CrossRef]
- Ji, Y.B.; Yu, L. N-butanol extract of Capparis spinosa L. induces apoptosis primarily through a mitochondrial pathway involving mPTP open, cytochrome C release and caspase activation. Asian Pac. J. Cancer Prev. 2014, 15, 9155–9157. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.B.; Yu, L. In vitro analysis of the role of the mitochondrial apoptosis pathway in CSBE therapy against human gastric cancer. Exp. Ther. Med. 2015, 10, 2403–2409. [Google Scholar] [CrossRef]
- Oudah, S.K.; Al-Salih, R.M.; Gusar, S.H. Study the role of polyphenolic extract of Capparis spinose L. leaves as a hypoglycemic agent. Inter. J. Sci. Engin. Res. 2014, 5, 1561–1575. [Google Scholar]
- El-Hawary, S.S.; Taha, K.F.; Kirillos, F.N.; Dahab, A.A.; El-Mahis, A.A.; El-Sayed, S.H. Complementary effect of Capparis spinosa L. and silymarin with/without praziquantel on mice experimentally infected with Schistosoma mansoni. Helminthologia 2018, 55, 21–32. [Google Scholar] [CrossRef]
- Kalantari, H.; Foruozandeh, H.; Khodayerm, M.J.; Siahpoosh, A.; Saki, N.; Kheradmand, P. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and quercetin on tert-butyl hydroperoxide-induced acute liver damage in mice. J. Tard. Complement. Med. 2018, 8, 120–127. [Google Scholar] [CrossRef]
- Nazari, P.; Ebrahimi, S.; Cheraqi, J.; Rangin, A. Comparison of Capparis spinosa L. seeds and Morus alba L. leaves extracts with glibeclamide on blood glucose and lipids in diabetic rats. J. Babol Univ. Med. Sci. 2014, 12, 39–47. [Google Scholar]
- Turgut, N.H.; Kara, H.; Arslanbas, E.; Mert, D.G.; Tepe, B.; Gungor, H. Effect of Capparis spinose L. on cognitive impairment induced by D-galactosein mice via inhibition of oxidative stress. Turk. J. Med. Sci. 2015, 45, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Moghadamnia, Y.; Kani, S.N.M.; Ghasemi-Kasman, M.; Kani, M.T.K.; Kazemi, S. The anti-cancer effects of Capparis spinosa hydroalcoholic extract. Avicenna J. Med. Biotech. 2019, 11, 43–47. [Google Scholar]
- Ali, M.Z.; Mehmood, M.H.; Saleem, M.; Akash, M.S.H.; Malik, A. Pharmacological evaluation of Euphorbia hirta, Fagonia indica and Capparis decidua in hypertension through in vivo and in vitro assays. Heliyon 2021, 7, e08094. [Google Scholar] [CrossRef]
- Tlili, N.; Ferini, A.; Saadoui, E.; Nasri, N.; Khaldi, A. Capparis spinosa leaves extract: Source of bioantioxidnts with nehroprotective and hepatoprotective effects. Biomed. Phrmacother. 2017, 87, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Gadgoli, C.; Mishra, S. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J. Ethnopharmacol. 1999, 66, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Khavasi, N.; Somi, M.H.; Khadem, E.; Faramarzi, E.; Ayati, M.H.; Fazljou, S.M.B.; Torbati, M. Effect of daily caper fruit pickle consumption on disease regression in patients with non-alcoholic fatty liver disease: A double-blinded randomized clinical trial. Adv. Pharm. Bull. 2017, 7, 645–650. [Google Scholar] [CrossRef]
- Ji, Y.B.; Dong, F.; Lang, L.; Zhang, L.W.; Miao, J.; Liu, Z.F.; Jin, L.N.; Hao, Y. Optimization of synthesis, characterization and cytotoxic activity of seleno-Capparis spinosa L. polysaccharide. Int. J. Mol. Sci. 2012, 13, 17275–17289. [Google Scholar] [CrossRef]
- Boga, C.; Forlani, L.; Calienni, R.; Hindley, T.; Hochkoeppler, A.; Tozzi, S.; Zanna, N. On the antibacterial activity of roots of Capparis spinosa L. Nat. Prod. Res. 2011, 25, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M.; Mahboudi, A. Antimicrobial activity of Capparis spinosa as its usages in traditional medicine. Herba Pol. 2014, 60, 39–48. [Google Scholar] [CrossRef]
- Masadeh, M.M.; Alkofahi, A.S.; Alzoubi, K.H.; Tumah, H.N.; Bani-Hani, K. Anti-Helicobactor pylori activity of some Jordanian medicinal plants. Pharm. Biol. 2014, 52, 566–569. [Google Scholar] [CrossRef]
- Gull, T.; Sultana, B.; Bhatti, I.A.; Jamil, A. Antibacterial potential of Capparis spinosa and Capparis decidua extracts. Int. J. Agric. Biol. 2015, 17, 727–733. [Google Scholar] [CrossRef]
- Lam, S.K.; Ng, T.B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 2009, 16, 444–450. [Google Scholar] [CrossRef]
- Heidari, M.; Mirshamsi, M.; Naghibi, B.; Vafazade, J. Evaluation of hepatotoxicity and renal toxicity of methanolic extract of capparis spinosa in rats. J. Shahid Sadoughi Univ. Med. Sci. 2010, 18, 47–55. [Google Scholar]
Part of C. spinosa | Type of Extract/Fraction or Other/Dose | Experimental Model | Biological Properties | References |
---|---|---|---|---|
Fruits | Hydroalcoholic extract; 300 mg/kg; 12 days | Diabetic rats (in vivo model) | Antidiabetic properties | [34] |
Fruits | Hydroalcoholic extract; 200 and 800 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [35] |
Fruits | Hydroalcoholic extract; 200 and 800 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic properties | [36] |
Fruits | Hydroalcoholic extract; 20 and 30 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [37,38] |
Fruits | Alcoholic extract; 20 mg/kg; 14 days | Diabetic rats (in vivo model) | Antidiabetic activity and anti-obesity properties | [32] |
Fruits | Alcoholic extract; 20 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [39] |
Fruits | Hydroalcoholic extract; 400 mg/kg three times a day; 60 days | Type 2 diabetic patients (in vivo model) | Antidiabetic activity and hypolipidemic properties | [24] |
Fruits | Ethanolic extract; 10, 50, and 100 g/mL | Systemic sclerosis dermal fibroblasts (in vitro model) | Antioxidant properties | [27] |
Fruits | Hydro-ethanolic extract; 400 mg/kg | Diabetic rats (in vivo model) | Antidiabetic activity and antioxidant properties | [25] |
Fruits | Aqueous extract; 150 mg/kg; 20 days | Hypertensive rats (in vivo model) | Anti-hypertensive properties | [40] |
Fruits | Hydro-alcoholic extract; 30, 60, and 120 mg/kg | Mice (in vivo model) | Hypnotic activity | [41] |
Fruits | Daily caper fruit pickle consumption (40–50 g for eight) | Hyperlipidemic human patients (in vivo model) | Hypolipidemic properties | [33] |
Fruits | Extract; 20 mg/kg/day; for 12 weeks | Wistar rats with non-alcoholic steatohepatitis (in vivo model) | Anti-hepatotoxic properties | [42] |
Fruits | Ethanol extract; 0.17–1.7 mg/mL | Dendritic cells (in vitro model) | Anti-inflammatory properties | [17] |
Fruits | Water extract; 200 and 400 mg/kg/day; 7 days | Ulcerative colitis mice (in vivo model) | Anti-inflammatory activity and antioxidant properties | [21] |
Fruits | Hydroalcoholic extract; 6 weeks | Rat model of Alzheimer disease (in vivo model) | Anti-inflammatory properties | [10] |
Fruits | N-butanol extract; 1–100 µg/mL | SGC-7901 cells (in vitro model) | Anti-cancer properties | [43,44] |
Leaves | Phenolic extract; 15 and 25 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic properties | [45] |
Leaves | Methanol extract; 1.07 and 0.428 g/kg, for 2,3,4 and 7 days | Swiss albino mice (in vivo model) | Anti-inflammatory properties | [19] |
Leaves | Aqueous fraction and crude extract; 10, 100, and 500 µg/mL | Human peripheral blood mononuclear cells (in vitro model) | Anti-inflammatory properties | [16] |
Leaves | Methanol extract; 100–4000 mg/kg/day | Mice infected with S. monsoni (in vivo model) | Anti-hepatotoxic properties | [46] |
Leaves | Hydroalcoholic extract; 400 mg/kg/day; 5 days | Swiss albino mice (in vivo model) | Anti-hepatotoxic activity and antioxidant properties | [47] |
Leaves | Ethanolic extract; 50–500 mg/kg bw | Mice treated with KBrO3 (in vivo model) | Antioxidant properties | [30] |
Roots | Hydroalcoholic extract; 200 and 400 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [23] |
Roots | Extract; 300 mg/kg | Male Spraque-Dawley rats (in vivo model) | Anti-inflammatory properties | [18] |
Roots | Hydroalcoholic extract; 0.2 and 04 g/kg/day; 4 weeks | Diabetic rats (in vivo model) | Antidiabetic properties | [23] |
Seeds | Hydroalcoholic extract; 200, 400 and 800 mg/kg; 21 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [48] |
Seeds | Phenolic extract; 50, 100, and 200 mg/kg; 8 weeks | Mice with Alzheimer’s disease (in vivo model) | Antioxidant properties | [49] |
Buds | Aqueous extract; 10 and 30 mg/kg; 7 days | Rats with Alzheimer disease (in vivo model) | Antioxidant properties | [29] |
Buds | Phenolic extract | α-glucosidase and α-amylase (in vitro model) | Antidiabetic properties | [11] |
Flowers | Ethanolic extract; 7, 14, and 28 mg/kg/day; 15 days | Arthritis rat model (in vivo model) | Anti-inflammatory properties | [22] |
Aerial parts of plant | Hydroalcoholic extract; 62.5–1000 µg/mL; 24, 48 and 72 h | MCF7, HeLa and Saos cancer lines (in vitro model) | Anti-cancer activity and antioxidant properties | [50] |
Aerial parts of plant | Hydroalcoholic extract; 100 and 300 mg/kg/day; 4 weeks | Rats (in vivo model) | Anti-inflammatory properties | [20] |
Aerial parts of plant | Hydroalcoholic extract; 10–300 µg/mL | Rat cells (in vitro model) | Anti-inflammatory properties | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olas, B. The Current State of Knowledge about the Biological Activity of Different Parts of Capers. Nutrients 2023, 15, 623. https://doi.org/10.3390/nu15030623
Olas B. The Current State of Knowledge about the Biological Activity of Different Parts of Capers. Nutrients. 2023; 15(3):623. https://doi.org/10.3390/nu15030623
Chicago/Turabian StyleOlas, Beata. 2023. "The Current State of Knowledge about the Biological Activity of Different Parts of Capers" Nutrients 15, no. 3: 623. https://doi.org/10.3390/nu15030623
APA StyleOlas, B. (2023). The Current State of Knowledge about the Biological Activity of Different Parts of Capers. Nutrients, 15(3), 623. https://doi.org/10.3390/nu15030623