The Current State of Knowledge about the Biological Activity of Different Parts of Capers
Abstract
:1. Introduction
2. Phytochemical Characteristics of C. spinosa
3. Biological Properties of C. spinosa
3.1. Anti-Inflammatory Properties
3.2. Antihyperglycemic, Antioxidant and Hypolipidemic Activities in Diabetic and Non-Diabetic Models
3.3. Anti-Hypertensive Action
3.4. Anti-Hepatotoxic Action
3.5. Anti-Cancer Activity
3.6. Other Biological Actions
4. Toxicity of C. spinosa
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Nabavi, S.F.; Maggi, F.; Daglia, M.; Habtermariam, S.; Rstrelli, L.; Nabavi, S.M. Pharmacological effects of Capparis spinosa L. Phytother. Res. 2016, 30, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Z.F. Phytochemical and pharmacological properties of Capparis spinosa as a medical plant. Nutrients 2018, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Lo Bosco, F.; Guasrrasi, V.; Moschetti, M.; Germana, M.A.; Butera, D.; Corana, F.; Papetti, A. Nutraceutical value of pantelleria capers (Capparis spinosa L.). J. Food Sci. 2019, 84, 2337–2346. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Gao, Y.; Yu, L. Advances in studies on constituents and their pharmacological activities of Capparis spinosa. Chin. Tradit. Herb. Drug 2007, 38, 463–467. [Google Scholar]
- Bianco, G.; Lelario, F.; Battista, F.G.; Bufo, S.A.; Cataldi, T.R.I. Identification of glucosinolates in capers by LC-ESI-hybrid liner ion trap with Fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation. J. Mass Spectrom. 2012, 47, 1160–1169. [Google Scholar] [CrossRef]
- Vahid, H.; Rakhshandeh, H.; Ghorbani, A. Antidiabetic properties of Capparis spinosa L. and its components. Biomed. Pharm. 2017, 92, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of aroma-active compounds, phenolics, and antioxidant properties in fresh and fermented capers (Capparis spinosa) by GC-MS-olfactometry and LC-DAD-ESI-MS/MS. J. Food Sci. 2019, 84, 2449–2457. [Google Scholar] [CrossRef] [PubMed]
- Redford, K.E.; Abbott, G.W. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. Com. Biol. 2020, 356, 356. [Google Scholar] [CrossRef]
- Redford, K.E.; Abbott, G.W. KCNQ potassium channels as targets of botanical folk medicines. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 447–464. [Google Scholar] [CrossRef]
- Mohebali, N.; Fazeli, S.S.A.; Ghfoori, H.; Frahmand, Z.; MohammadKhni, E.; Vkhshiteh, F.; Ghamarian, A.; Farhangniya, M.; Sanati, M.H. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer’s disease. Nutr. Neurosc. 2016, 1, 143–150. [Google Scholar]
- Wojdyło, A.; Nowicka, P.; Grimalt, M.; Legua, P.; Almansa, M.S.; Amoros, A.; Carbonell-Barachina, A.A.; Hernandez, F. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants 2019, 8, 539. [Google Scholar] [CrossRef] [Green Version]
- Alipour, F.; Nabigal, A.; Nabizadeh, C. Variation in volatile organic compounds in fruits of Iranian Capparis spinosa L. accessions. Saudi J. Biol. Sci. 2021, 28, 4664–4667. [Google Scholar] [CrossRef] [PubMed]
- Kolimy, A.; Yadini, M.E.; Guaadaoui, A.; Bourais, I.; Hajjaji, S.E.; Le, H.V. Phytochemistry, biological activities, therapeutic potential, and socio-economic value of the caper bush (Capparis spinose L.). Chem. Biodivers. 2022, 19, e202200300. [Google Scholar]
- Annaz, H.; Sane, Y.; Bitchagno, G.T.; Bakrim, W.B.; Rrissi, B.; Mahdi, Y.; Bouhssini, M.E.; Sobeh, M. Caper (Capparis spinose L.): An updated review on its photochemistry, nutritional value, traditional uses, and therapeutic potential. Front. Pharmacol. 2022, 13, 878749. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, T.; Wang, C. Capparis spinose L. as a potential source of nutrition and its health benefit in foods: A comprehensive review of its phytochemistry, bioactivities, safety and application. Food Chem. 2023, 409, 135258. [Google Scholar] [CrossRef]
- Moutia, M.; El Azhary, K.; Elouaddari, A.; Al Jahid, A.; Eddine, J.J.; Seghrouchni, F.; Habti, N.; Badou, A. Capparis spinosa L. promotes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells. BMC Immunol. 2016, 17, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamuti, A.; Li, J.; Zhou, F.; Aipire, A.; Ma, J.; Yang, J.; Li, J. Capparis spinosa fruit ethanol extracts exert different effects on the maturation of dendritic cells. Molecules 2017, 22, 97. [Google Scholar] [CrossRef] [Green Version]
- Maresca, M.; Micheli, L.; Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol. 2016, 4, 456–465. [Google Scholar] [CrossRef]
- El-Azhary, K.E.; Jonti, N.T.; Khachibi, M.E.; Moutia, M.; Tabyaoui, J.; El Hou, A.; Achtak, H.; Nadifi, S.; Habti, N.; Badou, A. Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression. BMC Complement. Alter. Med. 2017, 17, 81. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, V.B.; Rajabian, A.; Rajabi, H.; Vasough, E.M.; Mirkarimi, H.R.; Hsanpour, M.; Iranshhi, M.; Rakhshandeh, H.; Askari, V.R. The effect of Capparis spinose (C. spinose) on lipopolysaccharide (LPS)-induced inflammation and cognitive impairement: Evidence from in vivo and in vitro studies. J. Ethnopharmacol. 2020, 28, 1–10. [Google Scholar]
- Zhu, X.; Yang, Y.; Gao, W.; Jiang, B.; Shi, L. Capparis spinosa alleviates DSS-induced ulcerative colitis via regulation of the gut microbiota and oxidative stress. Evid. Complement. Alter. Med. 2021, 2021, 1227876. [Google Scholar] [CrossRef] [PubMed]
- Yosri, M.; Elaasser, M.M.; Abdel-Aziz, M.M.; Ahmad, H.Y.; Amin, B.H. Evaluation of pleotropic protective activity of Capparis spinasa extract on arthritis rat model. Antiallergy Agents Med. Chem. 2022, 21, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, M.; Haeri, M.; Ebrahimi, M.; Heidari, R. Ant-diabetic effect of Capparis spinosa L. root extract in diabetic rats. Avic. J. Phytomed. 2015, 4, 325–332. [Google Scholar]
- Huseini, H.F.; Hasani-Rnjbar, S.; Nayebi, N.; Heshmat, R.; Sigaroodi, F.K.; Ahvazi, M.; Alei, B.A.; Kianbakht, S. Capparis spinosa L. (caper) fruit extract in treatment of type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Complement. Ther. Med. 2013, 21, 447–452. [Google Scholar]
- Assadi, S.; Shafiee, S.M.; Erfani, M.; Akmali, M. Antioxidative and antidiabetic effects of Capparis spinosa fruit extract on high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats. Biomed. Pharm. 2021, 138, 111391. [Google Scholar] [CrossRef]
- Rakhshandeh, H.; Asgharzade, S.; Khorrami, M.B.; Forouzanfar, F. Protective effect of Capparis spinosa extract against focal cerebral ischemia-reperfusion injury in rats. Cent. Nerv. Syst. Agents Med. Chem. 2021, 21, 148–153. [Google Scholar] [CrossRef]
- Cao, Y.L.; Li, X.; Zheng, M. Capparis spinosa protects against oxidative stress in systemic sclerosis dermal fibroblasts. Arch. Dermatol. Res. 2010, 302, 349–355. [Google Scholar] [CrossRef]
- Al-Soqeer, A. Antioxidant activity and biological evaluation of hot-water extract of Artemisi monosperma and Capparis spinosa against lead contamination. Res. J. Bot. 2011, 6, 11–20. [Google Scholar] [CrossRef]
- Goel, A.; Digvijaaya, G.A.; Kumar, A. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats. Indian J. Exp. Biol. 2016, 54, 126–132. [Google Scholar]
- Al-anazi, K.M.; Al-Mareed, A.A.; Farah, M.A.; Ali, M.A.; Hailan, W.A.Q.; Al-Hamaid, F.M. Protective effect of Capparis spinosa extract against potassium bromate induced oxidative stress and genotoxicity in mice. Evid. Complement. Alter. Med. 2021, 2021, 8875238. [Google Scholar] [CrossRef]
- Mirzakhani, N.; Farhid, A.A.; Tamaddanfard, E.; Tehrani, A.; Imani, M. Comparison of the effects of hydroalcoholic extract of Capparis spinosa fruit, quercetin and vitamin E on monosodium glutamate-induced toxicity in rats. Vet. Res. Forum. 2020, 11, 127–134. [Google Scholar] [PubMed]
- Eddouks, M.; Bidi, A.; El Bouhali, B.; Hajji, L.; Zeggwagh, N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol. 2014, 66, 1197–1214. [Google Scholar] [CrossRef]
- Sardari, S.; Fallahi, F.; Emadi, F.; Davati, A.; Khavasi, N.; Gholamifesharaki, M.; Esmaeili, S.S. Daily consumption of caper fruit along with atoravastatin has synergistic effects in hyperlipidemic patients: Randomized clinical trial. Galen Med. J. 2019, 8, e1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemnia, M.; Oryan, A.; Hamidi, A.-R.; Mohammadalipour, A. Blood glucose levels and pathology of organs in alloxan-induced diabetic rats treated with hydro-ethanol extracts of Allium sativum and Capparis spinose. Afr. J. Pharm. Pharmacol. 2012, 21, 1559–1564. [Google Scholar]
- Rahmani, R.; Mahmoodi, M.; Karimi, M.; Hoseini, F.; Heydari, R.; Salehi, M.; Yousefi, A. Effect of hydroalcoholic extract of Capparis spinose fruit on blood sugar and lipid profile of diabetic and normal rats. Zah. J. Res. Med. Sci. 2013, 15, 34–38. [Google Scholar]
- Taghavi, M.; Nazari, M.; Rahmani, R.; Sayadi, A.; Hajizadeh, M.; Mirzaei, M.; Ziaaddini, H.; Hossseini-Zijoud, S.; Mahmoodi, M. Outcome of capparis spinose fruit extracts treatment on liver, kidney pancreas and stomach tissues in normal and diabetic rats. Med. Chem. 2014, 4, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Negahdarizadeh, M.; Mokhtari, M.; Malekzadeh, J.; Mohammadi, J. The effects of Capparis spinose hydroalcoholic extract on blood glucose and lipids serum in diabetic and normal male rats. Arm. Danesh 2011, 6, 181–190. [Google Scholar]
- Mohammadi, J.; Mirzaei, A.; Delaviz, H.; Mohammadi, B. Effects of hydroalcoholic extract of Capparis spinose on histomorphological changes of pancreas in diabetic rats model. J. Birj. Univ. Med. Sci. 2012, 19, 235–244. [Google Scholar]
- Jalali, M.T.; Mohammadtaghvaei, N.; Larky, D.A. Investigating the effects of Capparis spinose on hepatic gluconeogenesis and lipid content in streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2016, 84, 1243–1248. [Google Scholar] [CrossRef]
- Ali, Z.N.; Eddouks, M.; Michel, J.B.; Sulpice, T.; Hajji, L. Cardiovascular effect of Capparis spinose aqueous extract. Part III: Antihypertensive effect in spontaneously hypertensive rats. Am. J. Pharmacol. Toxicol. 2007, 2, 111–115. [Google Scholar]
- Rakhshandeh, H.; Rshidi, R.; Vahedi, M.M.; Khorrami, B.; Abbassian, H.; Forouzanfar, F. Hypnotic activity of Capparis spinosa hydro-alcoholic extract in mice. Recent Pat. Food Nutr. Agric. 2021, 12, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Akbari, R.; Yoghoti, H.; Jalai, M.T.; Khorsandi, L.S.; Mohammadtaghvaei, N. Capparis spinosa improve the high fat diet-induced non-alcoholic steatohepatitis in rats: The possible role of FGF21. BMC Res. Notes 2020, 13, 356. [Google Scholar] [CrossRef]
- Ji, Y.B.; Yu, L. N-butanol extract of Capparis spinosa L. induces apoptosis primarily through a mitochondrial pathway involving mPTP open, cytochrome C release and caspase activation. Asian Pac. J. Cancer Prev. 2014, 15, 9155–9157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.B.; Yu, L. In vitro analysis of the role of the mitochondrial apoptosis pathway in CSBE therapy against human gastric cancer. Exp. Ther. Med. 2015, 10, 2403–2409. [Google Scholar] [CrossRef] [Green Version]
- Oudah, S.K.; Al-Salih, R.M.; Gusar, S.H. Study the role of polyphenolic extract of Capparis spinose L. leaves as a hypoglycemic agent. Inter. J. Sci. Engin. Res. 2014, 5, 1561–1575. [Google Scholar]
- El-Hawary, S.S.; Taha, K.F.; Kirillos, F.N.; Dahab, A.A.; El-Mahis, A.A.; El-Sayed, S.H. Complementary effect of Capparis spinosa L. and silymarin with/without praziquantel on mice experimentally infected with Schistosoma mansoni. Helminthologia 2018, 55, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, H.; Foruozandeh, H.; Khodayerm, M.J.; Siahpoosh, A.; Saki, N.; Kheradmand, P. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and quercetin on tert-butyl hydroperoxide-induced acute liver damage in mice. J. Tard. Complement. Med. 2018, 8, 120–127. [Google Scholar] [CrossRef]
- Nazari, P.; Ebrahimi, S.; Cheraqi, J.; Rangin, A. Comparison of Capparis spinosa L. seeds and Morus alba L. leaves extracts with glibeclamide on blood glucose and lipids in diabetic rats. J. Babol Univ. Med. Sci. 2014, 12, 39–47. [Google Scholar]
- Turgut, N.H.; Kara, H.; Arslanbas, E.; Mert, D.G.; Tepe, B.; Gungor, H. Effect of Capparis spinose L. on cognitive impairment induced by D-galactosein mice via inhibition of oxidative stress. Turk. J. Med. Sci. 2015, 45, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Moghadamnia, Y.; Kani, S.N.M.; Ghasemi-Kasman, M.; Kani, M.T.K.; Kazemi, S. The anti-cancer effects of Capparis spinosa hydroalcoholic extract. Avicenna J. Med. Biotech. 2019, 11, 43–47. [Google Scholar]
- Ali, M.Z.; Mehmood, M.H.; Saleem, M.; Akash, M.S.H.; Malik, A. Pharmacological evaluation of Euphorbia hirta, Fagonia indica and Capparis decidua in hypertension through in vivo and in vitro assays. Heliyon 2021, 7, e08094. [Google Scholar] [CrossRef]
- Tlili, N.; Ferini, A.; Saadoui, E.; Nasri, N.; Khaldi, A. Capparis spinosa leaves extract: Source of bioantioxidnts with nehroprotective and hepatoprotective effects. Biomed. Phrmacother. 2017, 87, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Gadgoli, C.; Mishra, S. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J. Ethnopharmacol. 1999, 66, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Khavasi, N.; Somi, M.H.; Khadem, E.; Faramarzi, E.; Ayati, M.H.; Fazljou, S.M.B.; Torbati, M. Effect of daily caper fruit pickle consumption on disease regression in patients with non-alcoholic fatty liver disease: A double-blinded randomized clinical trial. Adv. Pharm. Bull. 2017, 7, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.B.; Dong, F.; Lang, L.; Zhang, L.W.; Miao, J.; Liu, Z.F.; Jin, L.N.; Hao, Y. Optimization of synthesis, characterization and cytotoxic activity of seleno-Capparis spinosa L. polysaccharide. Int. J. Mol. Sci. 2012, 13, 17275–17289. [Google Scholar] [CrossRef] [Green Version]
- Boga, C.; Forlani, L.; Calienni, R.; Hindley, T.; Hochkoeppler, A.; Tozzi, S.; Zanna, N. On the antibacterial activity of roots of Capparis spinosa L. Nat. Prod. Res. 2011, 25, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M.; Mahboudi, A. Antimicrobial activity of Capparis spinosa as its usages in traditional medicine. Herba Pol. 2014, 60, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Masadeh, M.M.; Alkofahi, A.S.; Alzoubi, K.H.; Tumah, H.N.; Bani-Hani, K. Anti-Helicobactor pylori activity of some Jordanian medicinal plants. Pharm. Biol. 2014, 52, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Gull, T.; Sultana, B.; Bhatti, I.A.; Jamil, A. Antibacterial potential of Capparis spinosa and Capparis decidua extracts. Int. J. Agric. Biol. 2015, 17, 727–733. [Google Scholar] [CrossRef]
- Lam, S.K.; Ng, T.B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 2009, 16, 444–450. [Google Scholar] [CrossRef]
- Heidari, M.; Mirshamsi, M.; Naghibi, B.; Vafazade, J. Evaluation of hepatotoxicity and renal toxicity of methanolic extract of capparis spinosa in rats. J. Shahid Sadoughi Univ. Med. Sci. 2010, 18, 47–55. [Google Scholar]
Part of C. spinosa | Type of Extract/Fraction or Other/Dose | Experimental Model | Biological Properties | References |
---|---|---|---|---|
Fruits | Hydroalcoholic extract; 300 mg/kg; 12 days | Diabetic rats (in vivo model) | Antidiabetic properties | [34] |
Fruits | Hydroalcoholic extract; 200 and 800 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [35] |
Fruits | Hydroalcoholic extract; 200 and 800 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic properties | [36] |
Fruits | Hydroalcoholic extract; 20 and 30 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [37,38] |
Fruits | Alcoholic extract; 20 mg/kg; 14 days | Diabetic rats (in vivo model) | Antidiabetic activity and anti-obesity properties | [32] |
Fruits | Alcoholic extract; 20 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [39] |
Fruits | Hydroalcoholic extract; 400 mg/kg three times a day; 60 days | Type 2 diabetic patients (in vivo model) | Antidiabetic activity and hypolipidemic properties | [24] |
Fruits | Ethanolic extract; 10, 50, and 100 g/mL | Systemic sclerosis dermal fibroblasts (in vitro model) | Antioxidant properties | [27] |
Fruits | Hydro-ethanolic extract; 400 mg/kg | Diabetic rats (in vivo model) | Antidiabetic activity and antioxidant properties | [25] |
Fruits | Aqueous extract; 150 mg/kg; 20 days | Hypertensive rats (in vivo model) | Anti-hypertensive properties | [40] |
Fruits | Hydro-alcoholic extract; 30, 60, and 120 mg/kg | Mice (in vivo model) | Hypnotic activity | [41] |
Fruits | Daily caper fruit pickle consumption (40–50 g for eight) | Hyperlipidemic human patients (in vivo model) | Hypolipidemic properties | [33] |
Fruits | Extract; 20 mg/kg/day; for 12 weeks | Wistar rats with non-alcoholic steatohepatitis (in vivo model) | Anti-hepatotoxic properties | [42] |
Fruits | Ethanol extract; 0.17–1.7 mg/mL | Dendritic cells (in vitro model) | Anti-inflammatory properties | [17] |
Fruits | Water extract; 200 and 400 mg/kg/day; 7 days | Ulcerative colitis mice (in vivo model) | Anti-inflammatory activity and antioxidant properties | [21] |
Fruits | Hydroalcoholic extract; 6 weeks | Rat model of Alzheimer disease (in vivo model) | Anti-inflammatory properties | [10] |
Fruits | N-butanol extract; 1–100 µg/mL | SGC-7901 cells (in vitro model) | Anti-cancer properties | [43,44] |
Leaves | Phenolic extract; 15 and 25 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic properties | [45] |
Leaves | Methanol extract; 1.07 and 0.428 g/kg, for 2,3,4 and 7 days | Swiss albino mice (in vivo model) | Anti-inflammatory properties | [19] |
Leaves | Aqueous fraction and crude extract; 10, 100, and 500 µg/mL | Human peripheral blood mononuclear cells (in vitro model) | Anti-inflammatory properties | [16] |
Leaves | Methanol extract; 100–4000 mg/kg/day | Mice infected with S. monsoni (in vivo model) | Anti-hepatotoxic properties | [46] |
Leaves | Hydroalcoholic extract; 400 mg/kg/day; 5 days | Swiss albino mice (in vivo model) | Anti-hepatotoxic activity and antioxidant properties | [47] |
Leaves | Ethanolic extract; 50–500 mg/kg bw | Mice treated with KBrO3 (in vivo model) | Antioxidant properties | [30] |
Roots | Hydroalcoholic extract; 200 and 400 mg/kg; 28 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [23] |
Roots | Extract; 300 mg/kg | Male Spraque-Dawley rats (in vivo model) | Anti-inflammatory properties | [18] |
Roots | Hydroalcoholic extract; 0.2 and 04 g/kg/day; 4 weeks | Diabetic rats (in vivo model) | Antidiabetic properties | [23] |
Seeds | Hydroalcoholic extract; 200, 400 and 800 mg/kg; 21 days | Diabetic rats (in vivo model) | Antidiabetic activity and hypolipidemic properties | [48] |
Seeds | Phenolic extract; 50, 100, and 200 mg/kg; 8 weeks | Mice with Alzheimer’s disease (in vivo model) | Antioxidant properties | [49] |
Buds | Aqueous extract; 10 and 30 mg/kg; 7 days | Rats with Alzheimer disease (in vivo model) | Antioxidant properties | [29] |
Buds | Phenolic extract | α-glucosidase and α-amylase (in vitro model) | Antidiabetic properties | [11] |
Flowers | Ethanolic extract; 7, 14, and 28 mg/kg/day; 15 days | Arthritis rat model (in vivo model) | Anti-inflammatory properties | [22] |
Aerial parts of plant | Hydroalcoholic extract; 62.5–1000 µg/mL; 24, 48 and 72 h | MCF7, HeLa and Saos cancer lines (in vitro model) | Anti-cancer activity and antioxidant properties | [50] |
Aerial parts of plant | Hydroalcoholic extract; 100 and 300 mg/kg/day; 4 weeks | Rats (in vivo model) | Anti-inflammatory properties | [20] |
Aerial parts of plant | Hydroalcoholic extract; 10–300 µg/mL | Rat cells (in vitro model) | Anti-inflammatory properties | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olas, B. The Current State of Knowledge about the Biological Activity of Different Parts of Capers. Nutrients 2023, 15, 623. https://doi.org/10.3390/nu15030623
Olas B. The Current State of Knowledge about the Biological Activity of Different Parts of Capers. Nutrients. 2023; 15(3):623. https://doi.org/10.3390/nu15030623
Chicago/Turabian StyleOlas, Beata. 2023. "The Current State of Knowledge about the Biological Activity of Different Parts of Capers" Nutrients 15, no. 3: 623. https://doi.org/10.3390/nu15030623
APA StyleOlas, B. (2023). The Current State of Knowledge about the Biological Activity of Different Parts of Capers. Nutrients, 15(3), 623. https://doi.org/10.3390/nu15030623