Association of Urinary Lead and Cadmium Levels, and Serum Lipids with Subclinical Arteriosclerosis: Evidence from Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Measurement of Urinary Lead and Cadmium Levels
2.3. Measurement of CIMT
2.4. Measurement of Lipid Profiles
2.5. Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amini, M.; Zayeri, F.; Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health 2021, 21, 401. [Google Scholar] [CrossRef] [PubMed]
- Lamas, G.A.; Ujueta, F.; Navas-Acien, A. Lead and Cadmium as Cardiovascular Risk Factors: The Burden of Proof Has Been Met. J. Am. Heart Assoc. 2021, 10, e018692. [Google Scholar] [CrossRef] [PubMed]
- Sevim, Ç.; Doğan, E.; Comakli, S. Cardiovascular disease and toxic metals. Curr. Opin. Toxicol. 2020, 19, 88–92. [Google Scholar] [CrossRef]
- WHO. 10 Chemicals of Public Health Concern. Available online: https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern (accessed on 31 December 2022).
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lee, H.L.; Hwang, Y.T.; Huang, P.C.; Wang, C.; Sung, F.C.; Wu, C.; Su, T.C. Urinary heavy metals, DNA methylation, and subclinical atherosclerosis. Ecotoxicol. Environ. Saf. 2020, 204, 111039. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Wu, C.; Lin, C.Y.; Huang, P.C.; Sung, F.C.; Su, T.C. Positive Association between Endothelium-Platelet Microparticles and Urinary Concentration of Lead and Cadmium in Adolescents and Young Adults. Nutrients 2021, 13, 2913. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lo, K.; Yang, A. Trends in Urinary and Blood Cadmium Levels in U.S. Adults with or without Comorbidities, 1999-2018. Nutrients 2022, 14, 802. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, Y.P.; Sun, Y.; Zheng, Y.X. Trends in Blood Lead Levels in the U.S. from 1999 to 2016. Am. J. Prev. Med. 2021, 60, e179–e187. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, G.; Wang, Z.; Zhou, H.; He, P.; Liu, Y.; Jin, T. The association between lead and cadmium co-exposure and renal dysfunction. Ecotoxicol. Environ. Saf. 2019, 173, 429–435. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, J.; Niu, J.; Wang, H.; Li, X. Association between cadmium and lead co-exposure, blood pressure, and hypertension: A cross-sectional study from northwest China. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 471–489. [Google Scholar] [CrossRef]
- Duan, Y.; Gong, K.; Xu, S.; Zhang, F.; Meng, X.; Han, J. Regulation of cholesterol homeostasis in health and diseases: From mechanisms to targeted therapeutics. Signal Transduct. Target. Ther. 2022, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Kastelein, J.J.P.; Catapano, A.L. Lipids and Lipoproteins in 2020. JAMA 2020, 324, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Feofanova, E.V.; Yu, B.; Sun, W.; Virani, S.S.; Nambi, V.; Coresh, J.; Guild, C.S.; Boerwinkle, E.; Ballantyne, C.M.; et al. Remnant-Like Particle Cholesterol, Low-Density Lipoprotein Triglycerides, and Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2018, 72, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Ruscica, M.; Sirtori, C.R.; Corsini, A.; Watts, G.F.; Sahebkar, A. Lipoprotein(a): Knowns, unknowns and uncertainties. Pharmacol. Res. 2021, 173, 105812. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Ortega, V.E.; Treviño, S.; Flores-Hernández, J.; Aguilar-Alonso, P.; Moroni-González, D.; Aburto-Luna, V.; Diaz, A.; Brambila, E. Changes on serum and hepatic lipidome after a chronic cadmium exposure in Wistar rats. Arch. Biochem. Biophys. 2017, 635, 52–59. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.M.; El-Toweissy, M.Y.; Ali, A.M.; Awad Allah, A.A.; Darwish, H.S.; Sadek, I.A. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model. Biol. Trace Elem. Res. 2015, 168, 206–220. [Google Scholar] [CrossRef]
- Kamai, E.M.; Daniels, J.L.; Delamater, P.L.; Lanphear, B.P.; MacDonald Gibson, J.; Richardson, D.B. Patterns of Children’s Blood Lead Screening and Blood Lead Levels in North Carolina, 2011–2018—Who Is Tested, Who Is Missed? Environ. Health Perspect. 2022, 130, 67002. [Google Scholar] [CrossRef]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Xu, H.; Mao, Y.; Xu, B.; Hu, Y. Low-level environmental lead and cadmium exposures and dyslipidemia in adults: Findings from the NHANES 2005–2016. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2021, 63, 126651. [Google Scholar] [CrossRef]
- Buhari, O.; Dayyab, F.M.; Igbinoba, O.; Atanda, A.; Medhane, F.; Faillace, R.T. The association between heavy metal and serum cholesterol levels in the US population: National Health and Nutrition Examination Survey 2009–2012. Hum. Exp. Toxicol. 2020, 39, 355–364. [Google Scholar] [CrossRef]
- Kim, D.W.; Ock, J.; Moon, K.W.; Park, C.H. Association between Heavy Metal Exposure and Dyslipidemia among Korean Adults: From the Korean National Environmental Health Survey, 2015–2017. Int. J. Environ. Res. Public Health 2022, 19, 3181. [Google Scholar] [CrossRef]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wen, L.L.; Lin, L.Y.; Wen, T.W.; Lien, G.W.; Chen, C.Y.; Hsu, S.H.; Chien, K.L.; Sung, F.C.; Chen, P.C.; et al. Associations between levels of serum perfluorinated chemicals and adiponectin in a young hypertension cohort in Taiwan. Environ. Sci. Technol. 2011, 45, 10691–10698. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Chen, H.Y.; Li, W.F.; Liou, S.H.; Chen, C.J.; Wu, J.H.; Wang, S.L. The association between total urinary arsenic concentration and renal dysfunction in a community-based population from central Taiwan. Chemosphere 2011, 84, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.L.; Kuo, C.C.; Pan, W.H.; Chung, Y.T.; Chen, C.Y.; Wu, T.N.; Wang, S.L. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int. 2017, 92, 710–720. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, L.Y.; Wen, T.W.; Lien, G.W.; Chien, K.L.; Hsu, S.H.; Liao, C.C.; Sung, F.C.; Chen, P.C.; Su, T.C. Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int. J. Cardiol. 2013, 168, 3309–3316. [Google Scholar] [CrossRef]
- Sommar, J.N.; Hedmer, M.; Lundh, T.; Nilsson, L.; Skerfving, S.; Bergdahl, I.A. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 51–57. [Google Scholar] [CrossRef]
- Ruckart, P.Z.; Jones, R.L.; Courtney, J.G.; LeBlanc, T.T.; Jackson, W.; Karwowski, M.P.; Cheng, P.Y.; Allwood, P.; Svendsen, E.R.; Breysse, P.N. Update of the Blood Lead Reference Value—United States, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1509–1512. [Google Scholar] [CrossRef]
- Fukui, Y.; Ezaki, T.; Tsukahara, T.; Moriguchi, J.; Furuki, K.; Okamoto, S.; Ukai, H.; Ikeda, M. Lead levels in urine of never-smoking adult women in non-polluted areas in Japan, with references to cadmium levels in urine. Ind. Health 2004, 42, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Castano, A.; Sanchez-Rodriguez, J.E.; Canas, A.; Esteban, M.; Navarro, C.; Rodriguez-Garcia, A.C.; Arribas, M.; Diaz, G.; Jimenez-Guerrero, J.A. Mercury, lead and cadmium levels in the urine of 170 Spanish adults: A pilot human biomonitoring study. Int. J. Hyg. Environ. Health 2012, 215, 191–195. [Google Scholar] [CrossRef]
- Wallia, A.; Allen, N.B.; Badon, S.; El Muayed, M. Association between urinary cadmium levels and prediabetes in the NHANES 2005-2010 population. Int. J. Hyg. Environ. Health 2014, 217, 854–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burm, E.; Song, I.; Ha, M.; Kim, Y.M.; Lee, K.J.; Kim, H.C.; Lim, S.; Kim, S.Y.; Lee, C.G.; Kim, S.Y.; et al. Representative levels of blood lead, mercury, and urinary cadmium in youth: Korean Environmental Health Survey in Children and Adolescents (KorEHS-C), 2012–2014. Int. J. Hyg. Environ. Health 2016, 219, 412–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crinnion, W.J. The benefits of pre- and post-challenge urine heavy metal testing: Part 1. Altern. Med. Rev. 2009, 14, 3–8. [Google Scholar]
- Liu, T.Y.; Hung, Y.M.; Huang, W.C.; Wu, M.L.; Lin, S.L. Do people from Taiwan have higher heavy metal levels than those from Western countries? Singap. Med. J. 2017, 58, 267–271. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Chen, Z.; Dai, B.; Li, G.; Zhu, G. Low-level lead exposure and cardiovascular disease: The roles of telomere shortening and lipid disturbance. J. Toxicol. Sci. 2018, 43, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.M.; Defina, L.F.; Leonard, D.; Barlow, C.E.; Radford, N.B.; Willis, B.L.; Rohatgi, A.; McGuire, D.K.; de Lemos, J.A.; Grundy, S.M.; et al. Long-Term Association of Low-Density Lipoprotein Cholesterol With Cardiovascular Mortality in Individuals at Low 10-Year Risk of Atherosclerotic Cardiovascular Disease. Circulation 2018, 138, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Superko, H.; Garrett, B. Small Dense LDL: Scientific Background, Clinical Relevance, and Recent Evidence Still a Risk Even with ‘Normal’ LDL-C Levels. Biomedicines 2022, 10, 829. [Google Scholar] [CrossRef]
- Bodde, M.C.; Hermans, M.P.J.; Jukema, J.W.; Schalij, M.J.; Lijfering, W.M.; Rosendaal, F.R.; Romijn, F.; Ruhaak, L.R.; van der Laarse, A.; Cobbaert, C.M. Apolipoproteins A1, B, and apoB/apoA1 ratio are associated with first ST-segment elevation myocardial infarction but not with recurrent events during long-term follow-up. Clin. Res. Cardiol. 2019, 108, 520–538. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, D.H.; Polak, J.F.; Kronmal, R.A.; Manolio, T.A.; Burke, G.L.; Wolfson, S.K., Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med. 1999, 340, 14–22. [Google Scholar] [CrossRef]
- Kojima, M.; Nemoto, K.; Murai, U.; Yoshimura, N.; Ayabe, Y.; Degawa, M. Altered gene expression of hepatic lanosterol 14alpha-demethylase (CYP51) in lead nitrate-treated rats. Arch. Toxicol. 2002, 76, 398–403. [Google Scholar] [CrossRef]
- Adegbesan, B.O.; Adenuga, G.A. Effect of lead exposure on liver lipid peroxidative and antioxidant defense systems of protein-undernourished rats. Biol. Trace Elem. Res. 2007, 116, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Larregle, E.V.; Varas, S.M.; Oliveros, L.B.; Martinez, L.D.; Antón, R.; Marchevsky, E.; Giménez, M.S. Lipid metabolism in liver of rat exposed to cadmium. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2008, 46, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef]
- Teté, S.; Tripodi, D.; Rosati, M.; Conti, F.; Maccauro, G.; Saggini, A.; Salini, V.; Cianchetti, E.; Caraffa, A.; Antinolfi, P.; et al. Endothelial Cells, Cholesterol, Cytokines, and Aging. Int. J. Immunopathol. Pharmacol. 2012, 25, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, D.; Bai, Y.P.; Gao, H.C.; Wang, X.; Li, L.F.; Zhang, G.G.; Hu, C.P. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis 2014, 235, 310–317. [Google Scholar] [CrossRef]
- Patwa, J.; Flora, S.J.S. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies. Int. J. Mol. Sci. 2020, 21, 3862. [Google Scholar] [CrossRef] [PubMed]
- Skoczyńska, A.; Smolik, R. The effect of combined exposure to lead and cadmium on serum lipids and lipid peroxides level in rats. Int. J. Occup. Med. Environ. Health 1994, 7, 263–271. [Google Scholar]
- Ahn, J.; Kim, N.S.; Lee, B.K.; Park, J.; Kim, Y. Association of Blood Pressure with Blood Lead and Cadmium Levels in Korean Adolescents: Analysis of Data from the 2010-2016 Korean National Health and Nutrition Examination Survey. J. Korean Med. Sci. 2018, 33, e278. [Google Scholar] [CrossRef]
Numbers (%) | ||
---|---|---|
Age (year) | 12–19 | 234 (31.8) |
20–30 | 502 (68.2) | |
Gender | Male | 292 (39.7) |
Female | 444 (60.3) | |
BMI (kg/m2) | <24 | 571 (77.6) |
≥24 | 165 (22.4) | |
Smoking | Active | 122 (16.5) |
Not active | 614 (83.4) | |
Drinking | Current | 69 (9.4) |
Not-current | 667 (90.6) | |
Household income | <50,000 TWD | 285 (38.7) |
≥50,000 TWD | 451 (61.3) | |
Hypertension | Yes | 60 (8.2) |
No | 676 (91.8) | |
Diabetes mellitus | Yes | 14 (1.9) |
No | 722 (98.1) |
Lead | Cadmium | |||
---|---|---|---|---|
Adjusted β (SE) | p | Adjusted β (SE) | p | |
Lipid Profiles (mg/dL) | ||||
LDL-C | 4.371 (0.654) | <0.001 | 5.748 (0.862) | <0.001 |
sdLDL-C | 1.182 (0.228) | <0.001 | 1.225 (0.302) | <0.001 |
LDL-TG | 1.811 (0.230) | <0.001 | 2.330 (0.559) | <0.001 |
HDL-C | −0.343 (0.202) | 0.091 | −0.395 (0.267) | 0.140 |
Lipoprotein (a) | 0.382 (0.231) | 0.099 | 0.034 (0.306) | 0.913 |
Apolipoprotein A1 | 0.350 (0.390) | 0.370 | 0.438 (0.514) | 0.394 |
Apolipoprotein B | 0.338 (0.397) | 0.395 | −0.190 (0.523) | 0.717 |
Triglyceride | 1.123 (1.666) | 0.501 | −0.701 (2.197) | 0.750 |
CIMT (µm) | 14.939 (1.053) | <0.001 | 18.067 (1.418) | <0.001 |
Pb ≤ 50th and Cd ≤ 50th N = 315 | Pb > 50th and Cd ≤ 50th N = 55 | Pb ≤ 50th and Cd > 50 N = 55 | Pb > 50th and Cd > 50th N = 313 | ||
---|---|---|---|---|---|
CIMT (μm) | Mean (S.E.) | 435.08 (5.90) | 438.74 (8.24) | 441.36 (8.39) | 477.33 (5.79) |
p value | Reference | 0.601 | 0.372 | <0.001 | |
p for trend | <0.001 | ||||
LDL-C (mg/dL) | Mean (S.E.) | 76.66 (3.53) | 73.31 (4.93) | 79.69 (5.02) | 89.79 (3.47) |
p value | Reference | 0.425 | 0.470 | <0.001 | |
p for trend | <0.001 | ||||
sdLDL-C (mg/dL) | Mean (S.E.) | 14.27 (1.24) | 13.60 (1.73) | 14.70 (1.76) | 16.85 (1.21) |
p value | Reference | 0.644 | 0.772 | 0.002 | |
p for trend | 0.008 | ||||
LDL-TG (mg/dL) | Mean (S.E.) | 7.47 (2.29) | 9.85 (3.20) | 9.06 (3.26) | 11.74 (2.25) |
p value | Reference | 0.381 | 0.559 | 0.005 | |
p for trend | 0.050 |
Separate analysis | Lead→CIMT | Lead→lipoprotein profiles | Lipoprotein profiles→CIMT- | |||
---|---|---|---|---|---|---|
Adjusted β (SE) | p value | Adjusted β (SE) | p value | Adjusted β (SE) | p value | |
LDL-C | 14.348 (1.012) | <0.001 | 4.370 (0.608) | <0.001 | 0.248 (0.059) | <0.001 |
sdLDL-C | 14.607 (1.000) | <0.001 | 1.181 (0.213) | <0.001 | 0.657 (0.168) | <0.001 |
Separate analysis | Cadmium→CIMT | Cadmium→lipoprotein profiles | Lipoprotein profiles→CIMT- | |||
Adjusted β (SE) | pvalue | Adjusted β (SE) | pvalue | Adjusted β (SE) | pvalue | |
LDL-C | 17.075 (1.372) | <0.001 | 5.719 (0.807) | <0.001 | 0.273 (0.061) | <0.001 |
sdLDL-C | 17.597 (1.342) | <0.001 | 1.217 (0.284) | <0.001 | 0.806 (0.170) | <0.001 |
Composite analysis | Lead→CIMT | Lead→lipoprotein profiles | Lipoprotein profiles→CIMT- | |||
Adjusted β (SE) | pvalue | Adjusted β (SE) | pvalue | Adjusted β (SE) | pvalue | |
LDL-C | 11.586 (0.987) | <0.001 | 2.467 (0.607) | <0.001 | 0.241 (0.059) | <0.001 |
sdLDL-C | 11.223 (1.002) | <0.001 | 1.331 (0.213) | <0.001 | 0.666 (0.168) | <0.001 |
Composite analysis | Cadmium→CIMT | Cadmium→lipoprotein profiles | Lipoprotein profiles→CIMT- | |||
Adjusted β (SE) | pvalue | Adjusted β (SE) | pvalue | Adjusted β (SE) | pvalue | |
LDL-C | 4.464 (1.306) | <0.001 | 3.022 (0.804) | <0.001 | 0.241 (0.059) | <0.001 |
sdLDL-C | 5.386 (1.295) | <0.001 | −0.238 (0.282) | 0.399 | 0.666 (0.168) | <0.001 |
Lead→CIMT | Cadmium→CIMT | |||||
---|---|---|---|---|---|---|
Total Effect | Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | |
Separate analysis | ||||||
LDL-C | 15.43 (13.62–18.28) | 14.35 (12.24–16.78) | 1.09 (0.41–1.78) | 18.64 (15.70–21.97) | 17.08 (14.12–20.13) | 1.56 (0.69–2.57) |
sdLDL-C | 15.38 (13.50–18.22) | 14.61 (12.45–16.81) | 0.78 (0.03–1.71) | 18.58 (15.60–21.88) | 17.60 (14.44–20.81) | 0.98 (0.13–2.39) |
Composite analysis | ||||||
LDL-C | 12.11 (7.97–15.47) | 11.22 (7.08–14.94) | 0.89 (0.13–2.44) | 5.19 (0.52–10.28) | 4.46 (0.17–9.65) | 0.73 (0.05–1.83) |
sdLDL-C | 12.18 (7.95–15.40) | 11.59 (7.32–14.91) | 0.59 (0.13–1.49) | 5.23 (0.68–10.31) | 5.39 (0.99–10.37) | −0.16 (−0.22–0.56) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Hsu, S.H.-J.; Chen, C.-W.; Wang, C.; Sung, F.-C.; Su, T.-C. Association of Urinary Lead and Cadmium Levels, and Serum Lipids with Subclinical Arteriosclerosis: Evidence from Taiwan. Nutrients 2023, 15, 571. https://doi.org/10.3390/nu15030571
Lin C-Y, Hsu SH-J, Chen C-W, Wang C, Sung F-C, Su T-C. Association of Urinary Lead and Cadmium Levels, and Serum Lipids with Subclinical Arteriosclerosis: Evidence from Taiwan. Nutrients. 2023; 15(3):571. https://doi.org/10.3390/nu15030571
Chicago/Turabian StyleLin, Chien-Yu, Sandy Huey-Jen Hsu, Ching-Way Chen, Chikang Wang, Fung-Chang Sung, and Ta-Chen Su. 2023. "Association of Urinary Lead and Cadmium Levels, and Serum Lipids with Subclinical Arteriosclerosis: Evidence from Taiwan" Nutrients 15, no. 3: 571. https://doi.org/10.3390/nu15030571
APA StyleLin, C. -Y., Hsu, S. H. -J., Chen, C. -W., Wang, C., Sung, F. -C., & Su, T. -C. (2023). Association of Urinary Lead and Cadmium Levels, and Serum Lipids with Subclinical Arteriosclerosis: Evidence from Taiwan. Nutrients, 15(3), 571. https://doi.org/10.3390/nu15030571