Charting the Chronology of Research on Added Sugars: A Scoping Review and Evidence Map
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection and Inclusion
2.2. Data Extraction
2.3. Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Publication Trends
3.4. Intake of Added Sugars
3.5. Health Outcomes
3.6. Total Energy Intake and Dietary Energy Balance
4. Discussion
4.1. Heterogeneity in Terminology Disrupts the Ability to Derive Scientific Conclusions
4.2. Research on Added Sugars Disproportionately Emphasizes Liquid Sources
4.3. There Is a Greater Need for Consideration of Energy Intake and Balance
4.4. Research Gaps and Opportunities
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Food & Drug Administration Added Sugars on the New Nutrition Facts Label. Available online: https://www.fda.gov/food/new-nutrition-facts-label/added-sugars-new-nutrition-facts-label (accessed on 1 August 2023).
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Knutsen, H.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.; et al. Scientific Opinion on the Tolerable Upper Intake Level for Dietary Sugars. EFSA J. 2022, 20, e07074. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; WHO Press: Geneva, Switzerland, 2015. [Google Scholar]
- Azaïs-Braesco, V.; Sluik, D.; Maillot, M.; Kok, F.; Moreno, L.A. A Review of Total & Added Sugar Intakes and Dietary Sources in Europe. Nutr. J. 2017, 16, 6. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Agriculture and U.S. Department of Health and Human Services: Washington, DC, USA, 2020. [Google Scholar]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Department of Agriculture and U.S. Department of Health and Human Services: Washington, DC, USA, 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 12 October 2021).
- Erickson, J.; Slavin, J. Are Restrictive Guidelines for Added Sugars Science Based? Nutr. J. 2015, 14, 124. [Google Scholar] [CrossRef]
- Hess, J.; Latulippe, M.E.; Ayoob, K.; Slavin, J. The Confusing World of Dietary Sugars: Definitions, Intakes, Food Sources and International Dietary Recommendations. Food Funct. 2012, 3, 477–486. [Google Scholar] [CrossRef]
- Choo, V.L.; Viguiliouk, E.; Mejia, S.B.; Cozma, A.I.; Khan, T.A.; Ha, V.; Wolever, T.M.S.; Leiter, L.A.; Vuksan, V.; Kendall, C.W.C.; et al. Food Sources of Fructose-Containing Sugars and Glycaemic Control: Systematic Review and Meta-Analysis of Controlled Intervention Studies. BMJ 2018, 363, k4644. [Google Scholar] [CrossRef]
- Yan, R.R.; Chan, C.B.; Louie, J.C.Y. Current WHO Recommendation to Reduce Free Sugar Intake from All Sources to below 10% of Daily Energy Intake for Supporting Overall Health Is Not Well Supported by Available Evidence. Am. J. Clin. Nutr. 2022, 116, 15–39. [Google Scholar] [CrossRef]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Ebbeling, C.B.; Feldman, H.A.; Osganian, S.K.; Chomitz, V.R.; Ellenbogen, S.J.; Ludwig, D.S. Effects of Decreasing Sugar-Sweetened Beverage Consumption on Body Weight in Adolescents: A Randomized, Controlled Pilot Study. Pediatrics 2006, 117, 673–680. [Google Scholar] [CrossRef]
- Duffey, K.J.; Gordon-Larsen, P.; Steffen, L.M.; Jacobs, D.R.; Popkin, B.M. Drinking Caloric Beverages Increases the Risk of Adverse Cardiometabolic Outcomes in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Clin. Nutr. 2010, 92, 954–959. [Google Scholar] [CrossRef]
- Collin, L.J.; Judd, S.; Safford, M.; Vaccarino, V.; Welsh, J.A. Association of Sugary Beverage Consumption with Mortality Risk in US Adults. JAMA Netw. Open 2019, 2, e193121. [Google Scholar] [CrossRef]
- Phillips, S.M.; Bandini, L.G.; Naumova, E.N.; Cyr, H.; Colclough, S.; Dietz, W.H.; Must, A. Energy-Dense Snack Food Intake in Adolescence: Longitudinal Relationship to Weight and Fatness. Obes. Res. 2004, 12, 461–472. [Google Scholar] [CrossRef]
- Libuda, L.; Alexy, U.; Sichert-Hellert, W.; Stehle, P.; Karaolis-Danckert, N.; Buyken, A.E.; Kersting, M. Pattern of Beverage Consumption and Long-Term Association with Body-Weight Status in German Adolescents–Results from the DONALD Study. Br. J. Nutr. 2008, 99, 1370–1379. [Google Scholar] [CrossRef]
- Bawadi, H.; Khataybeh, T.; Obeidat, B.; Kerkadi, A.; Tayyem, R.; Banks, A.D.; Subih, H. Sugar-Sweetened Beverages Contribute Significantly to College Students’ Daily Caloric Intake in Jordan: Soft Drinks Are Not the Major Contributor. Nutrients 2019, 11, 1058. [Google Scholar] [CrossRef]
- Teff, K.L.; Elliott, S.S.; Tschöp, M.; Kieffer, T.J.; Rader, D.; Heiman, M.; Townsend, R.R.; Keim, N.L.; D’Alessio, D.; Havel, P.J. Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of Ghrelin, and Increases Triglycerides in Women. J. Clin. Endocrinol. Metab. 2004, 89, 2963–2972. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Griffen, S.C.; Bremer, A.A.; Vink, R.G.; Schaefer, E.J.; Nakajima, K.; Schwarz, J.-M.; Beysen, C.; Berglund, L.; Keim, N.L.; et al. Metabolic Responses to Prolonged Consumption of Glucose- and Fructose-Sweetened Beverages Are Not Associated with Postprandial or 24-h Glucose and Insulin Excursions. Am. J. Clin. Nutr. 2011, 94, 112–119. [Google Scholar] [CrossRef]
- Aeberli, I.; Hochuli, M.; Gerber, P.A.; Sze, L.; Murer, S.B.; Tappy, L.; Spinas, G.A.; Berneis, K. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men. Diabetes Care 2013, 36, 150–156. [Google Scholar] [CrossRef]
- Mark, A.B.; Poulsen, M.W.; Andersen, S.; Andersen, J.M.; Bak, M.J.; Ritz, C.; Holst, J.J.; Nielsen, J.; de Courten, B.; Dragsted, L.O.; et al. Consumption of a Diet Low in Advanced Glycation End Products for 4 Weeks Improves Insulin Sensitivity in Overweight Women. Diabetes Care 2014, 37, 88–95. [Google Scholar] [CrossRef]
- Ley, S.H.; Hanley, A.J.; Retnakaran, R.; Sermer, M.; Zinman, B.; O’Connor, D.L. Effect of Macronutrient Intake during the Second Trimester on Glucose Metabolism Later in Pregnancy. Am. J. Clin. Nutr. 2011, 94, 1232–1240. [Google Scholar] [CrossRef]
- Halliday, T.M.; Liu, S.V.; Moore, L.B.; Hedrick, V.E.; Davy, B.M. Adolescents Perceive a Low Added Sugar Adequate Fiber Diet to Be More Satiating and Equally Palatable Compared to a High Added Sugar Low Fiber Diet in a Randomized-Crossover Design Controlled Feeding Pilot Trial. Eat. Behav. 2018, 30, 9–15. [Google Scholar] [CrossRef]
- Alderete, T.L.; Goran, M.I. Added Sugar and Sugar-Sweetened Beverages Are Associated with Increased Postpartum Weight Gain and Soluble Fiber Intake Is Associated with Postpartum Weight Loss in Hispanic Women from Southern California. Am. J. Clin. Nutr. 2020, 112, 519–526. [Google Scholar] [CrossRef]
- Herbst, A.; Diethelm, K.; Cheng, G.; Alexy, U.; Icks, A.; Buyken, A.E. Direction of Associations between Added Sugar Intake in Early Childhood and Body Mass Index at Age 7 Years May Depend on Intake Levels. J. Nutr. 2011, 141, 1348–1354. [Google Scholar] [CrossRef]
- Umpleby, A.M.; Shojaee-Moradie, F.; Fielding, B.; Li, X.; Marino, A.; Alsini, N.; Isherwood, C.; Jackson, N.; Ahmad, A.; Stolinski, M.; et al. Impact of Liver Fat on the Differential Partitioning of Hepatic Triacylglycerol into VLDL Subclasses on High and Low Sugar Diets. Clin. Sci. 2017, 131, 2561–2573. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added Sugar Intake and Cardiovascular Diseases Mortality among US Adults. JAMA Intern. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef]
- Goletzke, J.; Herder, C.; Joslowski, G.; Bolzenius, K.; Remer, T.; Wudy, S.A.; Roden, M.; Rathmann, W.; Buyken, A.E. Habitually Higher Dietary Glycemic Index During Puberty Is Prospectively Related to Increased Risk Markers of Type 2 Diabetes in Younger Adulthood. Diabetes Care 2013, 36, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Bellissimo, M.P.; Zhang, I.; Ivie, E.A.; Tran, P.H.; Tangpricha, V.; Hunt, W.R.; Stecenko, A.A.; Ziegler, T.R.; Alvarez, J.A. Visceral Adipose Tissue Is Associated with Poor Diet Quality and Higher Fasting Glucose in Adults with Cystic Fibrosis. J. Cyst. Fibros. 2019, 18, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Ritz, P.; Krempf, M.; Cloarec, D.; Champ, M.; Charbonnel, B. Comparative Continuous-Indirect-Calorimetry Study of Two Carbohydrates with Different Glycemic Indices. Am. J. Clin. Nutr. 1991, 54, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Gannon, M.C.; Burmeister, L.A.; Lane, J.T.; Pyzdrowski, K.L. The Metabolic Response to Various Doses of Fructose in Type II Diabetic Subjects. Metabolis 1992, 41, 510–517. [Google Scholar] [CrossRef]
- Gibson, S.A. Are Diets High in Non-milk Extrinsic Sugars Conducive to Obesity? An Analysis from the Dietary and Nutritional Survey of British Adults. J. Hum. Nutr. Diet. 1996, 20, 229–238. [Google Scholar] [CrossRef]
- Marckmann, P.; Raben, A.; Astrup, A. Ad Libitum Intake of Low-Fat Diets Rich in Either Starchy Foods or Sucrose: Effects on Blood Lipids, Factor VII Coagulant Activity, and Fibrinogen. Metabolis 2000, 49, 731–735. [Google Scholar] [CrossRef]
- Lee, A.K.; Binongo, J.N.G.; Chowdhury, R.; Stein, A.D.; Gazmararian, J.A.; Vos, M.B.; Welsh, J.A. Consumption of Less Than 10% of Total Energy From Added Sugars Is Associated With Increasing HDL in Females During Adolescence: A Longitudinal Analysis. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2014, 3, e000615. [Google Scholar] [CrossRef]
- Sonestedt, E.; Hellstrand, S.; Schulz, C.-A.; Wallström, P.; Drake, I.; Ericson, U.; Gullberg, B.; Hedblad, B.; Orho-Melander, M. The Association between Carbohydrate-Rich Foods and Risk of Cardiovascular Disease Is Not Modified by Genetic Susceptibility to Dyslipidemia as Determined by 80 Validated Variants. PLoS ONE 2015, 10, e0126104. [Google Scholar] [CrossRef]
- Warfa, K.; Drake, I.; Wallström, P.; Engström, G.; Sonestedt, E. Association between Sucrose Intake and Acute Coronary Event Risk and Effect Modification by Lifestyle Factors: Malmö Diet and Cancer Cohort Study. Br. J. Nutr. 2016, 116, 1611–1620. [Google Scholar] [CrossRef]
- Liu, Z.; Tse, L.A.; Chan, D.; Wong, C.; Wong, S.Y.S. Dietary Sugar Intake Was Associated with Increased Body Fatness but Decreased Cardiovascular Mortality in Chinese Elderly: An 11-Year Prospective Study of Mr and Ms OS of Hong Kong. Int. J. Obes. 2018, 42, 808–816. [Google Scholar] [CrossRef]
- Nagata, C.; Wada, K.; Yamakawa, M.; Konishi, K.; Goto, Y.; Koda, S.; Mizuta, F.; Uji, T. Intake of Starch and Sugars and Total and Cause-Specific Mortality in a Japanese Community: The Takayama Study. Br. J. Nutr. 2019, 122, 820–828. [Google Scholar] [CrossRef]
- Sundborn, G.; Thornley, S.; Merriman, T.R.; Lang, B.; King, C.; Lanaspa, M.A.; Johnson, R.J. Are Liquid Sugars Different from Solid Sugar in Their Ability to Cause Metabolic Syndrome? Obesity 2019, 27, 879–887. [Google Scholar] [CrossRef]
- Wang, J.; Shang, L.; Light, K.; O’Loughlin, J.; Paradis, G.; Gray-Donald, K. Associations between Added Sugar (Solid vs. Liquid) Intakes, Diet Quality, and Adiposity Indicators in Canadian Children. Appl. Physiol. Nutr. Metab. 2015, 40, 835–841. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Cheung, A.; Ayoub-Charette, S.; Ahmed, A.; Lee, D.; Au-Yeung, F.; Qi, X.; Back, S.; McGlynn, N.; Ha, V.; et al. Important Food Sources of Fructose-Containing Sugars and Adiposity: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Am. J. Clin. Nutr. 2023, 117, 741–765. [Google Scholar] [CrossRef]
- Sievenpiper, J.L.; de Souza, R.J.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Beyene, J.; Chiavaroli, L.; Buono, M.D.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of Fructose on Body Weight in Controlled Feeding Trials: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2012, 156, 291. [Google Scholar] [CrossRef]
- Chiu, S.; Sievenpiper, J.L.; de Souza, R.J.; Cozma, A.I.; Mirrahimi, A.; Carleton, A.J.; Ha, V.; Buono, M.D.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of Fructose on Markers of Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Eur. J. Clin. Nutr. 2014, 68, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Ayoub-Charette, S.; Liu, Q.; Khan, T.A.; Au-Yeung, F.; Mejia, S.B.; de Souza, R.J.; Wolever, T.M.; Leiter, L.A.; Kendall, C.; Sievenpiper, J.L. Important Food Sources of Fructose-Containing Sugars and Incident Gout: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. BMJ Open 2019, 9, e024171. [Google Scholar] [CrossRef]
- Attuquayefio, T.; Stevenson, R.J.; Oaten, M.J.; Francis, H.M. A Four-Day Western-Style Dietary Intervention Causes Reductions in Hippocampal-Dependent Learning and Memory and Interoceptive Sensitivity. PLoS ONE 2017, 12, e0172645. [Google Scholar] [CrossRef]
- Morenga, L.T.; Mallard, S.; Mann, J. Dietary Sugars and Body Weight: Systematic Review and Meta-Analyses of Randomised Controlled Trials and Cohort Studies. BMJ Br. Med. J. 2013, 346, e7492. [Google Scholar] [CrossRef]
- Rasad, H.; Entezari, M.H.; Ghadiri, E.; Mahaki, B.; Pahlavani, N. The Effect of Honey Consumption Compared with Sucrose on Lipid Profile in Young Healthy Subjects (Randomized Clinical Trial). Clin. Nutr. Espen 2018, 26, 8–12. [Google Scholar] [CrossRef]
- Angelopoulos, T.J.; Lowndes, J.; Sinnett, S.; Rippe, J.M. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease. Nutrients 2016, 8, 179. [Google Scholar] [CrossRef]
- DiMeglio, D.; Mattes, R. Liquid versus Solid Carbohydrate: Effects on Food Intake and Body Weight. Int. J. Obes. 2000, 24, 794–800. [Google Scholar] [CrossRef]
- Yu, Z.; Lowndes, J.; Rippe, J. High-Fructose Corn Syrup and Sucrose Have Equivalent Effects on Energy-Regulating Hormones at Normal Human Consumption Levels. Nutr. Res. 2013, 33, 1043–1052. [Google Scholar] [CrossRef]
- Angelopoulos, T.J.; Lowndes, J.; Sinnett, S.; Rippe, J.M. Fructose Containing Sugars Do Not Raise Blood Pressure or Uric Acid at Normal Levels of Human Consumption. J. Clin. Hypertens. 2015, 17, 87–94. [Google Scholar] [CrossRef]
- Reid, M.; Hammersley, R.; Hill, A.J.; Skidmore, P. Long-Term Dietary Compensation for Added Sugar: Effects of Supplementary Sucrose Drinks over a 4-Week Period. Br. J. Nutr. 2007, 97, 193–203. [Google Scholar] [CrossRef]
- Campos, V.; Despland, C.; Brandejsky, V.; Kreis, R.; Schneiter, P.; Chiolero, A.; Boesch, C.; Tappy, L. Sugar- and Artificially Sweetened Beverages and Intrahepatic Fat: A Randomized Controlled Trial. Obesity 2015, 23, 2335–2339. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.W.; Nielsen, B.M.; Husby, I.; Bugge, A.; El-Naaman, B.; Andersen, L.B.; Trolle, E.; Heitmann, B.L. Association between Sweet Drink Intake and Adiposity in Danish Children Participating in a Long-term Intervention Study. Pediatr. Obes. 2013, 8, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming Fructose-Sweetened, Not Glucose-Sweetened, Beverages Increases Visceral Adiposity and Lipids and Decreases Insulin Sensitivity in Overweight/Obese Humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Bremer, A.A.; Medici, V.; Nakajima, K.; Ito, Y.; Nakano, T.; Chen, G.; Fong, T.H.; Lee, V.; Menorca, R.I.; et al. Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL-Cholesterol, and Apolipoprotein-B in Young Men and Women. J. Clin. Endocrinol. Metab. 2011, 96, E1596–E1605. [Google Scholar] [CrossRef]
- Lowndes, J.; Sinnett, S.; Pardo, S.; Nguyen, V.T.; Melanson, K.J.; Yu, Z.; Lowther, B.E.; Rippe, J.M. The Effect of Normally Consumed Amounts of Sucrose or High Fructose Corn Syrup on Lipid Profiles, Body Composition and Related Parameters in Overweight/Obese Subjects. Nutrients 2014, 6, 1128–1144. [Google Scholar] [CrossRef]
- Theytaz, F.; de Giorgi, S.; Hodson, L.; Stefanoni, N.; Rey, V.; Schneiter, P.; Giusti, V.; Tappy, L. Metabolic Fate of Fructose Ingested with and without Glucose in a Mixed Meal. Nutrients 2014, 6, 2632–2649. [Google Scholar] [CrossRef]
- Renault, K.M.; Carlsen, E.M.; Nørgaard, K.; Nilas, L.; Pryds, O.; Secher, N.J.; Olsen, S.F.; Halldorsson, T.I. Intake of Sweets, Snacks and Soft Drinks Predicts Weight Gain in Obese Pregnant Women: Detailed Analysis of the Results of a Randomised Controlled Trial. PLoS ONE 2015, 10, e0133041. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Medici, V.; Bremer, A.A.; Lee, V.; Lam, H.D.; Nunez, M.V.; Chen, G.X.; Keim, N.L.; Havel, P.J. A Dose-Response Study of Consuming High-Fructose Corn Syrup–Sweetened Beverages on Lipid/Lipoprotein Risk Factors for Cardiovascular Disease in Young Adults. Am. J. Clin. Nutr. 2015, 101, 1144–1154. [Google Scholar] [CrossRef]
- Vázquez-Durán, M.; Orea-Tejeda, A.; Castillo-Martínez, L.; Cano-García, Á.; Téllez-Olvera, L.; Keirns-Davis, C. A Randomized Control Trial for Reduction of Caloric and Non-Caloric Sweetened Beverages in Young Adults: Effects in Weight, Body Composition and Blood Pressure. Nutrición Hosp. 2016, 33, 1372–1378. [Google Scholar] [CrossRef]
- Despland, C.; Walther, B.; Kast, C.; Campos, V.; Rey, V.; Stefanoni, N.; Tappy, L. A Randomized-Controlled Clinical Trial of High Fructose Diets from Either Robinia Honey or Free Fructose and Glucose in Healthy Normal Weight Males. Clin. Nutr. Espen 2017, 19, 16–22. [Google Scholar] [CrossRef]
- Choi, A.; Ha, K.; Joung, H.; Song, Y. Frequency of Consumption of Whole Fruit, Not Fruit Juice, Is Associated with Reduced Prevalence of Obesity in Korean Adults. J. Acad. Nutr. Diet. 2019, 119, 1842–1851.e2. [Google Scholar] [CrossRef] [PubMed]
- Hirt, J.; Nordhausen, T.; Appenzeller-Herzog, C.; Ewald, H. Citation Tracking for Systematic Literature Searching: A Scoping Review. Res. Synth. Methods 2023, 14, 563–579. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Population: Humans of any health status; pregnant women were included if the outcome was measured at the maternal level. | Population: Pregnant women where outcomes were measured at the infant- or dyad-level. |
Study Design: All types of intervention and observational study designs (primary literature). | Study Design: Ecological studies; narrative reviews; systematic reviews; meta-analyses. |
Exposure: Oral intake of added sugars, free sugars, extrinsic sugars, or SSB. SSBs were defined broadly to include all kinds of sweetened beverages and oral sugar solutions (e.g., sweet tea, lemonade, sports drinks, energy drinks, fruit drinks, sweetened/flavored milks, experimentally created glucose solutions, etc.) | Exposure: Parenteral or enteral nutrition; studies only reporting total or intrinsic sugars; sugar used as an analgesic in infants; label, marketing, or educational studies on consumer perception of sugar; dietary pattern studies where added sugars intake was not directly assessed in relation to a health outcome; whole fruit intake; intervention/exposure groups that did not differ significantly by sugar content/intake but by another nutrient (e.g., fiber); studies assessing the effects of policy/tax changes on added sugars intake. |
Outcome: Body weight, body composition, obesity, diabetes, and cardiovascular health; any intermediate biomarkers for these diseases; cause-specific mortality due to these diseases. | Analysis: Studies that did not statistically assess the association between added sugars intake and a prespecified health outcome; studies that only analyzed added sugars intake as a confounder/covariate. |
Timeline: Studies from 1990 to 2021. | Language: Non-English publications. |
Characteristic | Grand Total | Source of Added Sugars | |
---|---|---|---|
Liquids Only | Mixed | ||
n (% of total, column-wise) | 245 | 137 | 108 |
Study design | |||
Parallel arm trial | 40 (16%) | 30 (22%) | 10 (9%) |
Crossover trial | 14 (6%) | 7 (5%) | 7 (6%) |
Cohort | 122 (50%) | 85 (62%) | 37 (34%) |
Cross-sectional | 64 (26%) | 13 (9%) | 51 (47%) |
Other | 5 (2%) | 2 (1%) | 3 (1%) |
Age group 1,2 | |||
Infant | 3 (1%) | 1 (1%) | 2 (2%) |
Toddler | 21 (9%) | 13 (9%) | 8 (7%) |
Child | 84 (34%) | 50 (36%) | 34 (31%) |
Adolescent | 62 (25%) | 29 (21%) | 33 (31%) |
Adult | 159 (65%) | 87 (64%) | 72 (67%) |
Senior | 60 (24%) | 29 (21%) | 31 (29%) |
Baseline health status 1 | |||
Healthy | 223 (91%) | 130 (95%) | 93 (86%) |
Diabetes | 11 (4%) | 2 (1%) | 8 (8%) |
Cardiovascular disease | 7 (3%) | 4 (3%) | 3 (3%) |
Other health condition | 4 (2%) | 1 (1%) | 4 (3%) |
Baseline weight status | |||
Exclusively normal weight | 9 (4%) | 5 (4%) | 4 (4%) |
Exclusively overweight or obese | 28 (11%) | 17 (12%) | 11 (10%) |
Mixed status 3 | 208 (85%) | 115 (84%) | 93 (86%) |
Primary Outcomes 1,3 | |||
Body composition | 87 (36%) | 50 (36%) | 37 (34%) |
Body weight | 55 (22%) | 32 (23%) | 23 (21%) |
Cardiovascular health | 79 (32%) | 44 (32%) | 35 (32%) |
Diabetes mellitus | 55 (22%) | 34 (25%) | 21 (19%) |
Metabolic measures | 19 (8%) | 9 (7%) | 10 (9%) |
Mortality | 13 (5%) | 6 (4%) | 7 (6%) |
Obesity | 38 (16%) | 23 (17%) | 15 (14%) |
Other | 25 (10%) | 9 (7%) | 16 (15%) |
Characteristic | Clinical Trial (n = 56) | Cohort (n = 125) | Cross-Sectional (n = 64) | |||
---|---|---|---|---|---|---|
TEI-Controlled 1 | TEI Not Controlled For 1 | TEI-Controlled 1 | TEI Not Controlled For 1 | TEI-Controlled 1 | TEI Not Controlled For 1 | |
n (% within column) | 15 (27%) | 41 (73%) | 95 (76%) | 30 (24%) | 40 (63%) | 24 (38%) |
Dietary Energy Balance 2 | ||||||
Positive | 0 | 0 | 1 (1%) | 0 | 0 | 0 |
Neutral | 6 (40%) | 4 (10%) | 1 (1%) | 0 | 1 (3%) | 0 |
Negative | 2 (13%) | 0 | 1 (1%) | 0 | 0 | 0 |
Unspecified | 9 (60%) | 39 (95%) | 93 (98%) | 30 (100%) | 39 (98%) | 24 (100%) |
Reported TEI | 11 (73%) | 22 (54%) | 79 (83%) | 9 (30%) | 32 (80%) | 12 (50%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleming, S.A.; Peregoy, J.A.; Paul, T.L.; Scott, M.O.; Gaine, P.C. Charting the Chronology of Research on Added Sugars: A Scoping Review and Evidence Map. Nutrients 2023, 15, 4974. https://doi.org/10.3390/nu15234974
Fleming SA, Peregoy JA, Paul TL, Scott MO, Gaine PC. Charting the Chronology of Research on Added Sugars: A Scoping Review and Evidence Map. Nutrients. 2023; 15(23):4974. https://doi.org/10.3390/nu15234974
Chicago/Turabian StyleFleming, Stephen A., Jennifer A. Peregoy, Tristen L. Paul, Maria O. Scott, and P. Courtney Gaine. 2023. "Charting the Chronology of Research on Added Sugars: A Scoping Review and Evidence Map" Nutrients 15, no. 23: 4974. https://doi.org/10.3390/nu15234974
APA StyleFleming, S. A., Peregoy, J. A., Paul, T. L., Scott, M. O., & Gaine, P. C. (2023). Charting the Chronology of Research on Added Sugars: A Scoping Review and Evidence Map. Nutrients, 15(23), 4974. https://doi.org/10.3390/nu15234974