Adipose Tissue Metabolism in Response to Food Intake
Conflicts of Interest
References
- Kopp, W. How Western Diet and Lifestyle Drive The Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. What we talk about when we talk about fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef]
- Nakadate, K.; Kawakami, K.; Yamazaki, N. Combined Ingestion of Tea Catechin and Citrus β-Cryptoxanthin Improves Liver Function via Adipokines in Chronic Obesity. Nutrients 2023, 15, 3345. [Google Scholar] [CrossRef]
- Waters, D.J. Devising a New Dialogue for Nutrition Science: How Life Course Perspective, U-Shaped Thinking, Whole Organism Thinking, and Language Precision Contribute to Our Understanding of Biological Heterogeneity and Forge a Fresh Advance toward Precision Medicine. J. Anim. Sci. 2020, 98, skaa051. [Google Scholar] [CrossRef]
- Luong, Q.; Huang, J.; Lee, K.Y. Deciphering White Adipose Tissue Heterogeneity. Biology 2019, 8, 23. [Google Scholar] [CrossRef]
- Koster, A.; Murphy, R.A.; Eiriksdottir, G.; Aspelund, T.; Sigurdsson, S.; Lang, T.F.; Gudnason, V.; Launer, L.J.; Harris, T.B. Fat Distribution and Mortality: The AGES-Reykjavik Study. Obesity 2015, 23, 893–897. [Google Scholar] [CrossRef]
- Kuk, J.L.; Katzmarzyk, P.T.; Nichaman, M.Z.; Church, T.S.; Blair, S.N.; Ross, R. Visceral Fat Is an Independent Predictor of All-Cause Mortality in Men*. Obesity 2006, 14, 336–341. [Google Scholar] [CrossRef]
- Ebbert, J.; Jensen, M. Fat Depots, Free Fatty Acids, and Dyslipidemia. Nutrients 2013, 5, 498–508. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Casas, R.; Rimm, E.B.; Tresserra-Rimbau, A.; Romaguera, D.; Martínez, J.A.; Salas-Salvadó, J.; Martínez-González, M.A.; Vidal, J.; Ruiz-Canela, M.; et al. Loss of Visceral Fat Is Associated with a Reduction in Inflammatory Status in Patients with Metabolic Syndrome. Mol. Nutr. Food Res. 2023, 67, e2200264. [Google Scholar] [CrossRef]
- Nirengi, S.; Stanford, K. Brown Adipose Tissue and Aging: A Potential Role for Exercise. Exp. Gerontol. 2023, 178, 112218. [Google Scholar] [CrossRef]
- Dallon, B.W.; Parker, B.A.; Hodson, A.E.; Tippetts, T.S.; Harrison, M.E.; Appiah, M.M.A.; Witt, J.E.; Gibbs, J.L.; Gray, H.M.; Sant, T.M.; et al. Insulin Selectively Reduces Mitochondrial Uncoupling in Brown Adipose Tissue in Mice. Biochem. J. 2018, 475, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Baxa, U.; Niu, G.; Chen, X.; Veech, R.L. A Ketogenic Diet Increases Brown Adipose Tissue Mitochondrial Proteins and UCP1 Levels in Mice. IUBMB Life 2013, 65, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Maretich, P.; Kajimura, S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol. Metab. 2018, 29, 191–200. [Google Scholar] [CrossRef]
- Wang, S.; Pan, M.-H.; Hung, W.-L.; Tung, Y.-C.; Ho, C.-T. From White to Beige Adipocytes: Therapeutic Potential of Dietary Molecules against Obesity and Their Molecular Mechanisms. Food Funct. 2019, 10, 1263–1279. [Google Scholar] [CrossRef]
- Dinas, P.C.; Valente, A.; Granzotto, M.; Rossato, M.; Vettor, R.; Zacharopoulou, A.; Carrillo, A.E.; Davies, N.A.; Gkiata, P.; Jamurtas, A.Z.; et al. Browning Formation Markers of Subcutaneous Adipose Tissue in Relation to Resting Energy Expenditure, Physical Activity and Diet in Humans. Horm. Mol. Biol. Clin. Investig. 2017, 31, 20170008. [Google Scholar] [CrossRef]
- Piotrowska, K.; Tarnowski, M. Bone Marrow Adipocytes—Role in Physiology and Various Nutritional Conditions in Human and Animal Models. Nutrients 2021, 13, 1412. [Google Scholar] [CrossRef]
- Pachón-Peña, G.; Bredella, M.A. Bone Marrow Adipose Tissue in Metabolic Health. Trends Endocrinol. Metab. 2022, 33, 401–408. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Bredella, M.A.; Pachon-Peña, G.; Zhao, W.; Zhang, X.; Faje, A.T.; Resulaj, M.; Polineni, S.P.; Holmes, T.M.; Lee, H.; et al. The Dynamics of Human Bone Marrow Adipose Tissue in Response to Feeding and Fasting. JCI Insight 2021, 6, e138636. [Google Scholar] [CrossRef]
- L Newton, A.; J Hanks, L.; Davis, M.; Casazza, K. The Relationships among Total Body Fat, Bone Mineral Content and Bone Marrow Adipose Tissue in Early-Pubertal Girls. Bonekey Rep. 2013, 2, 315. [Google Scholar] [CrossRef]
- Vander Wyst, K.B.; Hu, H.H.; Peña, A.; Olson, M.L.; Bailey, S.S.; Shaibi, G.Q. Bone Marrow Adipose Tissue Content in Latino Adolescents with Prediabetes and Obesity. Obesity 2021, 29, 2100–2107. [Google Scholar] [CrossRef]
- Bredella, M.A.; Fazeli, P.K.; Miller, K.K.; Misra, M.; Torriani, M.; Thomas, B.J.; Ghomi, R.H.; Rosen, C.J.; Klibanski, A. Increased Bone Marrow Fat in Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2009, 94, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo, A.E.; Vliora, M. Adipose Tissue Metabolism in Response to Food Intake. Nutrients 2023, 15, 4811. https://doi.org/10.3390/nu15224811
Carrillo AE, Vliora M. Adipose Tissue Metabolism in Response to Food Intake. Nutrients. 2023; 15(22):4811. https://doi.org/10.3390/nu15224811
Chicago/Turabian StyleCarrillo, Andres E., and Maria Vliora. 2023. "Adipose Tissue Metabolism in Response to Food Intake" Nutrients 15, no. 22: 4811. https://doi.org/10.3390/nu15224811
APA StyleCarrillo, A. E., & Vliora, M. (2023). Adipose Tissue Metabolism in Response to Food Intake. Nutrients, 15(22), 4811. https://doi.org/10.3390/nu15224811