Construct Validation of the Dietary Inflammatory Index (DII) among Young College-Aged Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Study Sample
2.2. Diet
2.3. Inflammation
2.4. Covariates Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fatty Acids 2018, 132, 41–48. [Google Scholar] [CrossRef]
- Hart, M.J.; Torres, S.J.; McNaughton, S.A.; Milte, C.M. Dietary patterns and associations with biomarkers of inflammation in adults: A systematic review of observational studies. Nutr. J. 2021, 20, 24. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villegas, A.; Ruiz-Canela, M.; de la Fuente-Arrillaga, C.; Gea, A.; Shivappa, N.; Hebert, J.R.; Martinez-Gonzalez, M.A. Dietary inflammatory index, cardiometabolic conditions and depression in the Seguimiento Universidad de Navarra cohort study. Br. J. Nutr. 2015, 114, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Julia, C.; Assmann, K.E.; Shivappa, N.; Hebert, J.R.; Wirth, M.D.; Hercberg, S.; Touvier, M.; Kesse-Guyot, E. Long-term associations between inflammatory dietary scores in relation to long-term C-reactive protein status measured 12 years later: Findings from the Supplementation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) cohort. Br. J. Nutr. 2017, 117, 306–314. [Google Scholar] [CrossRef]
- Almeida-de-Souza, J.; Santos, R.; Lopes, L.; Abreu, S.; Moreira, C.; Padrao, P.; Mota, J.; Moreira, P. Associations between fruit and vegetable variety and low-grade inflammation in Portuguese adolescents from LabMed Physical Activity Study. Eur. J. Nutr. 2018, 57, 2055–2068. [Google Scholar] [CrossRef] [PubMed]
- Adjibade, M.; Andreeva, V.A.; Lemogne, C.; Touvier, M.; Shivappa, N.; Hebert, J.R.; Wirth, M.D.; Hercberg, S.; Galan, P.; Julia, C.; et al. The Inflammatory Potential of the Diet Is Associated with Depressive Symptoms in Different Subgroups of the General Population. J. Nutr. 2017, 147, 879–887. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K. Stress, food, and inflammation: Psychoneuroimmunology and nutrition at the cutting edge. Psychosom. Med. 2010, 72, 365–369. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, C.K.; Yi, M.; Lui, K.O.; Huang, Y. Targeting endothelial dysfunction and inflammation. J. Mol. Cell Cardiol. 2022, 168, 58–67. [Google Scholar] [CrossRef]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef]
- Donath, M.Y.; Meier, D.T.; Boni-Schnetzler, M. Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. Endocr. Rev. 2019, 40, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Azarmanesh, D.; Bertone-Johnson, E.R.; Pearlman, J.; Liu, Z.; Carbone, E.T. The dietary inflammatory index is inversely associated with depression, which is minimally mediated by C-reactive protein. Nutr. Res. 2022, 97, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hebert, J.R.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 2015, 113, 665–671. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Mellen, P.B.; Gao, S.K.; Vitolins, M.Z.; Goff, D.C., Jr. Deteriorating dietary habits among adults with hypertension: DASH dietary accordance, NHANES 1988–1994 and 1999–2004. Arch Intern Med 2008, 168, 308–314. [Google Scholar] [CrossRef]
- Barbaresko, J.; Koch, M.; Schulze, M.B.; Nothlings, U. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hebert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef]
- Kotemori, A.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Shivappa, N.; Hebert, J.R.; Ishihara, J.; Inoue, M.; Tsugane, S.; Group, J.F.V.S. Validating the dietary inflammatory index using inflammatory biomarkers in a Japanese population: A cross-sectional study of the JPHC-FFQ validation study. Nutrition 2020, 69, 110569. [Google Scholar] [CrossRef]
- Wirth, M.D.; Shivappa, N.; Davis, L.; Hurley, T.G.; Ortaglia, A.; Drayton, R.; Blair, S.N.; Hebert, J.R. Construct Validation of the Dietary Inflammatory Index among African Americans. J. Nutr. Health Aging 2017, 21, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L.; et al. Construct validation of the dietary inflammatory index among postmenopausal women. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef]
- Masaad, A.A.; Yusuf, A.M.; Shakir, A.Z.; Khan, M.S.; Khaleel, S.; Cheikh Ismail, L.; Faris, M.A.E.; Jahrami, H.A.; Shivappa, N.; Hebert, J.R.; et al. Sleep quality and Dietary Inflammatory Index among university students: A cross-sectional study. Sleep Breath. 2021, 25, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chen, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Lower Dietary Inflammatory Index Scores Are Associated with Lower Glycemic Index Scores among College Students. Nutrients 2018, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Costello, E.; Goodrich, J.; Patterson, W.B.; Rock, S.; Li, Y.; Baumert, B.; Gilliland, F.; Goran, M.I.; Chen, Z.; Alderete, T.L.; et al. Diet Quality Is Associated with Glucose Regulation in a Cohort of Young Adults. Nutrients 2022, 14, 3734. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rodriguez, M.; Rueda-Medina, B.; Gonzalez-Jimenez, E.; Correa-Bautista, J.E.; Ramirez-Velez, R.; Schmidt-RioValle, J. Dietary inflammatory index, bone health and body composition in a population of young adults: A cross-sectional study. Int. J. Food Sci. Nutr. 2018, 69, 1013–1019. [Google Scholar] [CrossRef]
- Carvalho, C.A.; Silva, A.A.M.; Assuncao, M.C.F.; Fonseca, P.C.A.; Barbieri, M.A.; Bettiol, H.; Shivappa, N.; Hebert, J.R. The dietary inflammatory index and insulin resistance or metabolic syndrome in young adults. Nutrition 2019, 58, 187–193. [Google Scholar] [CrossRef]
- Attlee, A.; Saravanan, C.; Shivappa, N.; Wirth, M.D.; Aljaberi, M.; Alkaabi, R.; Bataineh, M.F.; Hebert, J.R. Higher Dietary Inflammatory Index Scores Are Associated With Stress and Anxiety in Dormitory-Residing Female University Students in the United Arab Emirates. Front. Nutr. 2022, 9, 814409. [Google Scholar] [CrossRef]
- Alfreeh, L.; Abulmeaty, M.M.A.; Abudawood, M.; Aljaser, F.; Shivappa, N.; Hebert, J.R.; Almuammar, M.; Al-Sheikh, Y.; Aljuraiban, G.S. Association between the Inflammatory Potential of Diet and Stress among Female College Students. Nutrients 2020, 12, 2389. [Google Scholar] [CrossRef]
- Acik, M.; Cakiroglu, F.P. Evaluating the Relationship between Inflammatory Load of a Diet and Depression in Young Adults. Ecol. Food Nutr. 2019, 58, 366–378. [Google Scholar] [CrossRef]
- Aljuraiban, G.S.; Gibson, R.; Al-Freeh, L.; Al-Musharaf, S.; Shivappa, N.; Hebert, J.R.; Oude Griep, L.M.; Chan, Q. Associations Among Plant-Based Dietary Indexes, the Dietary Inflammatory Index, and Inflammatory Potential in Female College Students In Saudi Arabia: A Cross-Sectional Study. J. Acad. Nutr. Diet. 2022, 122, 771–785.e8. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Canela, M.; Bes-Rastrollo, M.; Martinez-Gonzalez, M.A. The Role of Dietary Inflammatory Index in Cardiovascular Disease, Metabolic Syndrome and Mortality. Int. J. Mol. Sci. 2016, 17, 1265. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ. Res. 2016, 118, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, D.; White, G.E.; Sekikawa, A.; Gianaros, P. Higher dietary inflammation is associated with increased odds of depression independent of Framingham Risk Score in the National Health and Nutrition Examination Survey. Nutr. Res. 2018, 54, 23–32. [Google Scholar] [CrossRef]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Bertone-Johnson, E.R.; Chocano-Bedoya, P.O.; Zagarins, S.E.; Micka, A.E.; Ronnenberg, A.G. Dietary vitamin D intake, 25-hydroxyvitamin D3 levels and premenstrual syndrome in a college-aged population. J. Steroid Biochem. Mol. Biol. 2010, 121, 434–437. [Google Scholar] [CrossRef]
- Bertone-Johnson, E.R.; Ronnenberg, A.G.; Houghton, S.C.; Nobles, C.; Zagarins, S.E.; Takashima-Uebelhoer, B.B.; Faraj, J.L.; Whitcomb, B.W. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum. Reprod. 2014, 29, 1987–1994. [Google Scholar] [CrossRef]
- Akbaraly, T.; Kerlau, C.; Wyart, M.; Chevallier, N.; Ndiaye, L.; Shivappa, N.; Hebert, J.R.; Kivimaki, M. Dietary inflammatory index and recurrence of depressive symptoms: Results from the Whitehall II Study. Clin. Psychol. Sci. 2016, 4, 1125–1134. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Paulo, J.A.; Lee, L.S.; Wu, B.; Banks, P.A.; Steen, H.; Conwell, D.L. Cytokine profiling of pancreatic fluid using the ePFT collection method in tandem with a multiplexed microarray assay. J. Immunol. Methods 2011, 369, 98–107. [Google Scholar] [CrossRef]
- Carson, R.T.; Vignali, D.A. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J. Immunol. Methods 1999, 227, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.M.; Hunter, D.J.; Colditz, G.A.; Manson, J.E.; Stampfer, M.J.; Corsano, K.A.; Rosner, B.; Kriska, A.; Willett, W.C. Reproducibility and Validity of a Self-Administered Physical Activity Questionnaire. Int. J. Epidemiol. 1994, 23, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Kim, D.H.; Lee, E.K.; Chung, K.W.; Chung, S.; Lee, B.; Seo, A.Y.; Chung, J.H.; Jung, Y.S.; Im, E.; et al. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis. 2019, 10, 367–382. [Google Scholar] [CrossRef]
- Tang, Y.; Liang, P.; Chen, J.; Fu, S.; Liu, B.; Feng, M.; Lin, B.; Lee, B.; Xu, A.; Lan, H.Y. The baseline levels and risk factors for high-sensitive C-reactive protein in Chinese healthy population. Immun. Ageing 2018, 15, 21. [Google Scholar] [CrossRef]
- Singh, T.; Newman, A.B. Inflammatory markers in population studies of aging. Ageing Res. Rev. 2011, 10, 319–329. [Google Scholar] [CrossRef]
- Puzianowska-Kuznicka, M.; Owczarz, M.; Wieczorowska-Tobis, K.; Nadrowski, P.; Chudek, J.; Slusarczyk, P.; Skalska, A.; Jonas, M.; Franek, E.; Mossakowska, M. Interleukin-6 and C-reactive protein, successful aging, and mortality: The PolSenior study. Immun. Ageing 2016, 13, 21. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef]
- Dagdeviren, S.; Jung, D.Y.; Friedline, R.H.; Noh, H.L.; Kim, J.H.; Patel, P.R.; Tsitsilianos, N.; Inashima, K.; Tran, D.A.; Hu, X.; et al. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J. 2017, 31, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, V.; Begin, C.; Corneau, L.; Dodin, S.; Lemieux, S. Gender differences in dietary intakes: What is the contribution of motivational variables? J. Hum. Nutr. Diet. 2015, 28, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Thiebaut, A.; Kesse, E.; Com-Nougue, C.; Clavel-Chapelon, F.; Benichou, J. Adjustment for energy intake in the assessment of dietary risk factors. Rev. Epidemiol. Sante Publique 2004, 52, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; Gonzalez-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 707. [Google Scholar] [CrossRef] [PubMed]
DII Quartiles | ||||||
---|---|---|---|---|---|---|
N (%) | Q1 67 (25.1) | Q2 66 (24.7) | Q3 72 (27.0) | Q4 62 (23.2) | ||
DII scores, mean (SD) | −2.6 (0.8) | −0.7 (0.5) | 1.0 (0.50) | 2.7 (0.7) | ||
Characteristics | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-Value | |
Age (y) | 21.1 (2.9) | 22.2 (3.6) | 20.9 (2.3) | 21.2 (2.7) | 0.005 * | |
Physical Activity (PA) (MET hours) | 80.1 (58.3) | 56.6 (51.6) | 51.2 (44.0) | 34.4 (35.5) | 0.001 * | |
Body Mass Index (kg/m2) | 22.6 (2.7) | 23.0 (3.3) | 23.4 (3.4) | 23.1 (3.3) | 0.25 | |
Waist Circumference (cm) | 75.6 (8.2) | 78.0 (8.3) | 78.2 (8.9) | 78.2 (9.5) | 0.64 | |
Subject Characteristics | N (%) | N (%) | N (%) | N (%) | ||
Race | White | 59 (88.0) | 57 (86.3) | 68 (94.5) | 53 (85.5) | 0.33 |
Other | 8 (12.0) | 9 (13.7) | 4 (5.5) | 9 (14.5) | ||
Smoking | Never/Past Smoker | 64 (95.5) | 62 (93.9) | 66 (91.7) | 60 (96.8) | 0.60 |
Current Smoker | 3 (4.5) | 4 (6.1) | 6 (8.3) | 2 (3.2) | ||
BMI | Underweight or Normal Weight | 54 (80.6) | 52 (78.8) | 53 (73.6) | 47 (75.8) | 0.77 |
Overweight or Obese | 13 (19.4) | 14 (21.2) | 19 (26.4) | 15 (24.2) | ||
Waist Circumference | Low Risk (≤35″) | 60 (89.5) | 59 (89.4) | 62 (86.1) | 53 (85.5) | 0.84 |
High Risk (>35″) | 7 (10.5) | 7 (10.6) | 10 (13.9) | 19 (14.5) | ||
NSAID Use | Currently Using | 11 (16.4) | 19 (28.8) | 23 (32.0) | 21 (33.9) | 0.10 |
Not Currently Using | 56 (83.6) | 47 (71.2) | 49 (68.0) | 41 (66.1) |
Inflammatory Biomarkers | Mean (SD) | Median | IQR a | Min | Max |
---|---|---|---|---|---|
CRP (mg/L) b | 2.6 (2.0) | 1.9 | 1.1, 3.6 | 0.3 | 8.9 |
Interleukin (IL)-1β c | 1.8 (3.8) | 0.7 | 0.1, 2.4 | 0.1 | 48.2 |
IL-2 | 7.2 (59.2) | 1.5 | 0.6, 2.8 | 0.1 | 948.8 |
IL-4 | 22.8 (166.6) | 5.6 | 3.1, 9.5 | 0.1 | 2581.4 |
IL-5 | 0.6 (2.6) | 0.2 | 0.1, 0.4 | 0.1 | 41.3 |
IL-6 | 7.0 (15.7) | 2.2 | 1.2, 4.2 | 0.1 | 111.1 |
IL-7 | 3.1 (3.7) | 2.1 | 0.5, 4.2 | 0.1 | 35.8 |
IL-8 | 2.6 (6.3) | 1.7 | 1.2, 2.3 | 0.1 | 91.7 |
IL-10 | 32.3 (108.7) | 10.5 | 6.3, 21.8 | 0.5 | 1586.6 |
IL-12p70 | 41.6 (228.6) | 3.5 | 1.5, 9.8 | 0.1 | 2919.9 |
IL-13 | 4.6 (15.2) | 2.3 | 0.9, 4.1 | 0.1 | 227.5 |
TNF-α | 6.0 (5.6) | 4.8 | 2.5, 8.1 | 0.5 | 64.2 |
GMCSF | 15.5 (22.2) | 7.0 | 1.9, 24.1 | 0.1 | 238.3 |
IFN-Υ | 8.6 (49.4) | 2.3 | 0.8, 4.6 | 0.1 | 620.0 |
Quartiles of DII | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p-Trend | |
C-Reactive Protein (CRP) b | |||||
Model 1: Age-Adjusted, β (SE) | Ref e | 0.92 (0.13) | 1.02 (0.14) | 1.04 (0.15) | 0.63 |
Model 2: Most Parsimonious c, β (SE) | Ref | 0.90 (0.12) | 0.98 (0.13) | 1.00 (0.14) | 0.84 |
Model 3: Fully Adjusted d, β (SE) | Ref | 0.88 (0.13) | 0.94 (0.13) | 0.99 (0.15) | 0.97 |
Interleukin (IL)-1β | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.51 (0.37) | 1.44 (0.35) | 1.34 (0.33) | 0.25 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.57 (0.38) | 1.57 (0.38) | 1.45 (0.36) | 0.15 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.53 (0.39) | 1.52 (0.38) | 1.35 (0.36) | 0.27 |
IL-2 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.69 (0.38) | 1.74 (0.38) | 1.19 (0.27) | 0.35 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.71 (0.38) | 1.86 (0.41) | 1.26 (0.28) | 0.23 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.64 (0.37) | 1.69 (0.38) | 1.11 (0.27) | 0.57 |
IL-4 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.15 (0.23) | 1.43 (0.29) | 1.12 (0.23) | 0.35 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.19 (0.24) | 1.50 (0.30) | 1.19 (0.25) | 0.22 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.16 (0.24) | 1.42 (0.29) | 1.11 (0.25) | 0.40 |
IL-5 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.11 (0.16) | 0.97 (0.14) | 1.15 (0.17) | 0.55 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.09 (0.16) | 0.99 (0.14) | 1.16 (0.18) | 0.48 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.15 (0.17) | 1.02 (0.15) | 1.19 (0.19) | 0.43 |
IL-6 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.05 (0.24) | 1.28 (0.28) | 0.96 (0.22) | 0.86 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.09 (0.25) | 1.27 (0.28) | 0.97 (0.22) | 0.89 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.02 (0.23) | 1.16 (0.27) | 0.88 (0.21) | 0.78 |
IL-7 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.05 (0.24) | 1.28 (0.29) | 1.06 (0.25) | 0.57 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.10 (0.25) | 1.35 (0.31) | 1.13 (0.26) | 0.42 |
Model 3: Fully Adjusted d, β (SE) | Ref | (0.25) | 1.27 (0.30) | 1.06 (0.27) | 0.60 |
IL-8 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.05 (0.13) | 1.05 (0.12) | 0.99 (0.12) | 0.96 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.07 (0.13) | 1.08 (0.13) | 1.03 (0.13) | 0.77 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.10 (0.13) | 1.08 (0.13) | 1.07 (0.14) | 0.60 |
IL-10 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 0.91 (0.17) | 0.97 (0.18) | 0.63 (0.12) | 0.04 * |
Model 2: Most Parsimonious c, β (SE) | Ref | 0.93 (0.17) | 0.95 (0.17) | 0.63 (0.12) | 0.03 * |
Model 3: Fully Adjusted d, β (SE) | Ref | 0.91 (0.17) | 0.96 (0.18) | 0.62 (0.12) | 0.04 * |
IL-12p70 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.44 (0.46) | 1.82 (0.57) | 1.06 (0.34) | 0.61 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.43 (0.46) | 1.77 (0.56) | 1.04 (0.34) | 0.68 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.43 (0.47) | 1.69 (0.55) | 1.03 (0.36) | 0.75 |
IL-13 | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.10 (0.26) | 1.28 (0.30) | 1.18 (0.29) | 0.37 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.11 (0.26) | 1.29 (0.30) | 1.19 (0.29) | 0.36 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.07 (0.26) | 1.17 (0.28) | 1.09 (0.28) | 0.64 |
TNF-α | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.28 (0.16) | 1.16 (0.14) | 1.20 (0.15) | 0.24 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.29 (0.16) | 1.20 (0.15) | 1.24 (0.16) | 0.15 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.32 (0.17) | 1.21 (0.16) | 1.26 (0.17) | 0.17 |
GMCSF | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.53 (0.42) | 1.48 (0.39) | 1.39 (0.38) | 0.24 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.57 (0.42) | 1.63 (0.43) | 1.51 (0.41) | 0.12 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.55 (0.43) | 1.55 (0.43) | 1.43 (0.42) | 0.23 |
IFN-Υ | |||||
Model 1: Age-Adjusted, β (SE) | Ref | 1.31 (0.33) | 1.36 (0.33) | 1.04 (0.26) | 0.78 |
Model 2: Most Parsimonious c, β (SE) | Ref | 1.37 (0.34) | 1.45 (0.35) | 1.11 (0.28) | 0.58 |
Model 3: Fully Adjusted d, β (SE) | Ref | 1.38 (0.35) | 1.42 (0.35) | 1.13 (0.30) | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azarmanesh, D.; Pearlman, J.; Carbone, E.T.; DiNatale, J.C.; Bertone-Johnson, E.R. Construct Validation of the Dietary Inflammatory Index (DII) among Young College-Aged Women. Nutrients 2023, 15, 4553. https://doi.org/10.3390/nu15214553
Azarmanesh D, Pearlman J, Carbone ET, DiNatale JC, Bertone-Johnson ER. Construct Validation of the Dietary Inflammatory Index (DII) among Young College-Aged Women. Nutrients. 2023; 15(21):4553. https://doi.org/10.3390/nu15214553
Chicago/Turabian StyleAzarmanesh, Deniz, Jessica Pearlman, Elena T. Carbone, Janie C. DiNatale, and Elizabeth R. Bertone-Johnson. 2023. "Construct Validation of the Dietary Inflammatory Index (DII) among Young College-Aged Women" Nutrients 15, no. 21: 4553. https://doi.org/10.3390/nu15214553
APA StyleAzarmanesh, D., Pearlman, J., Carbone, E. T., DiNatale, J. C., & Bertone-Johnson, E. R. (2023). Construct Validation of the Dietary Inflammatory Index (DII) among Young College-Aged Women. Nutrients, 15(21), 4553. https://doi.org/10.3390/nu15214553