The Gestational Pathologies Effect on the Human Milk Redox Homeostasis: A First Step towards Its Definition
Abstract
:1. Introduction
2. Methods
2.1. Setting and Population
2.2. Collection Human Milk Samples
2.3. Biochemical Analysis
2.4. Statistical Methods
3. Results
3.1. Demographic Characteristics
3.2. Characteristics of the Human Milk Samples
3.3. GSH
3.4. LOOHs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eidelman, A.I.; Schanler, R.J. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef]
- Horta, B.L.; Victora, C.G. Long-Term Health Effects of Breastfeeding: A Systematic Review; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Hamosh, M. Bioactive factors in human milk. Pediatr. Clin. N. Am. 2001, 48, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human Milk Composition. Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Dritsakou, K.; Liosis, G.; Valsami, G.; Polychronopoulos, E.; Skouroliakou, M. The impact of maternal- and neonatal-associated factors on human milk’s macronutrients and energy. J. Matern. Neonatal Med. 2017, 30, 1302–1308. [Google Scholar] [CrossRef]
- ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [CrossRef]
- Zhu, Y.; Zhang, C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: A Global Perspective. Curr. Diab Rep. 2016, 16, 7. [Google Scholar] [CrossRef]
- Owen, C.G.; Martin, R.M.; Whincup, P.H.; Smith, G.D.; Cook, D.G. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am. J. Clin. Nutr. 2006, 84, 1043–1054. [Google Scholar] [CrossRef]
- Arenz, S.; Rückerl, R.; Koletzko, B.; Von Kries, R. Breast-feeding and childhood obesity—A systematic review. Int. J. Obes. 2004, 28, 1247–1256. [Google Scholar] [CrossRef]
- Hartmann, P.; Cregan, M. Lactogenesis and the effects of insulin-dependent diabetes mellitus and prematurity. J. Nutr. 2001, 131, 3016S–3020S. [Google Scholar] [CrossRef]
- Backes, C.H.; Markham, K.; Moorehead, P.; Cordero, L.; Nankervis, C.A.; Giannone, P.J. Maternal preeclampsia and neonatal outcomes. J. Pregnancy 2011, 2011, 214365. [Google Scholar] [CrossRef]
- Leitner, Y.; Harel, S.; Geva, R.; Eshel, R.; Yaffo, A.; Many, A. The neurocognitive outcome of IUGR children born to mothers with and without preeclampsia. J. Matern. Fetal Neonatal Med. 2012, 25, 2206–2208. [Google Scholar] [CrossRef]
- Hod, T.; Cerdeira, A.S.; Karumanchi, S.A. Molecular Mechanisms of Preeclampsia. Cold Spring Harb. Perspect. Med. 2015, 5, a023473. [Google Scholar] [CrossRef]
- Peila, C.; Bertino, E.; Cresi, F.; Coscia, A. Interactions between preeclampsia and composition of the human milk: What do we know? J. Matern. Fetal Neonatal Med. 2022, 35, 6219–6225. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Gazzolo, D.; Bertino, E.; Cresi, F.; Coscia, A. Influence of diabetes during pregnancy on human milk composition. Nutrients 2020, 12, 185. [Google Scholar] [CrossRef]
- Castillo-Castañeda, P.C.; Gaxiola-Robles, R.; Labrada-Martagón, V.; Acosta Vargas, B.; Méndez-Rodríguez, L.C.; Zenteno-Savín, T. Oxidative damage to proteins related to metals and antioxidant defenses in breastmilk. Nutr. Hosp. 2017, 34, 59–64. [Google Scholar] [CrossRef]
- Girotti, A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998, 39, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Minić, S.; Ješić, M.; Đurović, D.; Miletić, S.; Lugonja, N.; Marinković, V.; Nikolić-Kokić, A.; Spasić, S.; Vrvić, M.M. Redox properties of transitional milk from mothers of preterm infants. J. Paediatr. Child. Health 2018, 54, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Turoli, D.; Testolin, G.; Zanini, R.; Bellù, R. Determination of oxidative status in breast and formula milk. Acta Paediatr. 2004, 93, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Cortijo, D.; Gila-Diaz, A.; Herranz Carrillo, G.; Cañas, S.; Gil-Ramírez, A.; Ruvira, S.; Martin-Cabrejas, M.A.; Arribas, S.M. Influence of Neonatal Sex on Breast Milk Protein and Antioxidant Content in Spanish Women in the First Month of Lactation. Antioxidants 2022, 11, 1472. [Google Scholar] [CrossRef]
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef] [PubMed]
- Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000, 72, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Bertino, E.; Di Nicola, P.; Varalda, A.; Occhi, L.; Giuliani, F.; Coscia, A. Neonatal growth charts. J. Matern. Fetal Neonatal Med. 2012, 25 (Suppl. S1), 67–69. [Google Scholar] [CrossRef] [PubMed]
- Teskey, G.; Abrahem, R.; Cao, R.; Gyurjian, K.; Islamoglu, H.; Lucero, M.; Martinez, A.; Paredes, E.; Salaiz, O.; Robinson, B.; et al. Glutathione as a Marker for Human Disease. Adv. Clin. Chem. 2018, 87, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Shi, H.; Lian, K.; Diao, Y.; Chen, Y.; Ma, C.; Kang, W. Highly selective and sensitive determination of several antioxidants in human breast milk using high-performance liquid chromatography based on Ag(III) complex chemiluminescence detection. Food Chem. 2017, 218, 422–426. [Google Scholar] [CrossRef]
- Graziosi, A.; Perrotta, M.; Russo, D.; Gasparroni, G.; D’egidio, C.; Marinelli, B.; Di Marzio, G.; Falconio, G.; Mastropasqua, L.; Volti, G.L.; et al. Oxidative Stress Markers and the Retinopathy of Prematurity. J. Clin. Med. 2020, 9, 2711. [Google Scholar] [CrossRef]
- Ankrah, N.A.; Appiah-Opong, R.; Dzokoto, C. Human breastmilk storage and the glutathione content. J. Trop. Pediatr. 2000, 46, 111–113. [Google Scholar] [CrossRef]
- Whiting, P.H.; Kalansooriya, A.; Holbrook, I.; Haddad, F.; Jennings, P.E. The relationship between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br. J. Biomed. Sci. 2008, 65, 71–74. [Google Scholar] [CrossRef]
- López-Tinoco, C.; Roca, M.; García-Valero, A.; Murri, M.; Tinahones, F.J.; Segundo, C.; Bartha, J.L.; Aguilar-Diosdado, M. Oxidative stress and antioxidant status in patients with late-onset gestational diabetes mellitus. In Acta Diabetologica; Spring: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Madazli, R.; Benian, A.; Aydin, S.; Uzun, H.; Tolun, N. The plasma and placental levels of malondialdehyde, glutathione and superoxide dismutase in pre-eclampsia. J. Obstet. Gynaecol. 2002, 22, 477–480. [Google Scholar] [CrossRef]
- D’Souza, V.; Rani, A.; Patil, V.; Pisal, H.; Randhir, K.; Mehendale, S.; Wagh, G.; Gupte, S.; Joshi, S. Increased oxidative stress from early pregnancy in women who develop preeclampsia. Clin. Exp. Hypertens. 2016, 38, 225–232. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Jaleel, A.; Al’Kadri, H.M.; Akram, S.; Tamimi, W. Biomarkers of oxidative stress in women with pre-eclampsia. Biomark. Med. 2013, 7, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.M.; Zimmerman, M.C.; Moore, T.A. Oxidative stress in early pregnancy and the risk of preeclampsia. Pregnancy Hypertens. 2019, 18, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Llurba, E.; Gratacós, E.; Martín-Gallán, P.; Cabero, L.; Dominguez, C. A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy. Free Radic. Biol. Med. 2004, 37, 557–570. [Google Scholar] [CrossRef]
- Bou, R.; Codony, R.; Tres, A.; Decker, E.A.; Guardiola, F. Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: A review of the factors that influence the method’s performance. Anal. Biochem. 2008, 377, 1–15. [Google Scholar] [CrossRef]
- Gutikova, L.V. Chemical composition of milk of puerperas suffered from gestosis of different degree of severity. Biomed. Khim. 2007, 53, 332–337. [Google Scholar] [PubMed]
- Fares, S.; Sethom, M.M.; Kacem, S.; Ksibi, I.; Feki, M.; Jebnoun, S.; Kaabachi, N. Retinol and Alpha-tocopherol in the Colostrum of Lactating Tunisian Women Delivering Prematurely: Associations with Maternal Characteristics. Pediatr. Neonatol. 2016, 57, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Loverro, G.; Greco, P.; Capuano, F.; Carone, D.; Cormio, G.; Selvaggi, L. Lipoperoxidation and antioxidant enzymes activity in pregnancy complicated with hypertension. Eur. J. Obstet. Gynecol. Reprod. Biol. 1996, 70, 123–127. [Google Scholar] [CrossRef]
- Gupta, S.; Aziz, N.; Sekhon, L.; Agarwal, R.; Mansour, G.; Li, J.; Agarwal, A. Lipid peroxidation and antioxidant status in preeclampsia: A systematic review. Obstet. Gynecol. Surv. 2009, 64, 750–759. [Google Scholar] [CrossRef]
- Kaur, G.; Mishra, S.; Sehgal, A.; Prasad, R. Alterations in lipid peroxidation and antioxidant status in pregnancy with preeclampsia. Mol. Cell Biochem. 2008, 313, 37–44. [Google Scholar] [CrossRef]
- Erdem, M.; Harma, M.; Harma, I.M.; Arikan, I.; Barut, A. Comparative study of oxidative stress in maternal blood with that of cord blood and maternal milk. Arch. Gynecol. Obstet. 2012, 285, 371–375. [Google Scholar] [CrossRef]
- Silberstein, T.; Hamou, B.; Cervil, S.; Barak, T.; Burg, A.; Saphier, O. Colostrum of Preeclamptic Women Has a High Level of Polyphenols and Better Resistance to Oxidative Stress in Comparison to That of Healthy Women. Oxid. Med. Cell Longev. 2019, 2019, 1380605. [Google Scholar] [CrossRef]
- van Zoeren-Grobben, D.; Moison, R.; Ester, W.; Berger, H. Lipid peroxidation in human milk and infant formula: Effect of storage, tube feeding and exposure to phototherapy. Acta Pædiatrica 1993, 82, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Michalski, M.C.; Calzada, C.; Makino, A.; Michaud, S.; Guichardant, M. Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk--a preliminary study. Mol. Nutr. Food Res. 2008, 52, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Bertino, E.; Giribaldi, M.; Baro, C.; Giancotti, V.; Pazzi, M.; Peila, C.; Tonetto, P.; Arslanoglu, S.; Moro, G.E.; Cavallarin, L.; et al. Effect of prolonged refrigeration on the lipid profile, lipase activity, and oxidative status of human milk. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Santiago, L.T.C.; Freitas, N.A.; Meira Junior, J.D.; Corrente, J.E.; Paula, V.G.; Damasceno, D.C.; de Souza Rugolo, L.M.S. Oxidative status in colostrum and mature breast milk related to gestational age and fetal growth. J. Matern. Fetal Neonatal Med. 2023, 36, 2183763. [Google Scholar] [CrossRef]
- Ramiro-Cortijo, D.; Herranz Carrillo, G.; Singh, P.; Rebollo-Hernanz, M.; Rodríguez-Rodríguez, P.; Ruvira, S.; Martín-Trueba, M.; Martin, C.R.; Arribas, S.M. Maternal and Neonatal Factors Modulating Breast Milk Cytokines in the First Month of Lactation. Antioxidants 2023, 12, 996. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Repiso, C.; Velasco, I.; Garcia-Escobar, E.; Garcia-Serrano, S.; Rodríguez-Pacheco, F.; Linares, F.; Ruiz de Adana, M.S.; Rubio-Martin, E.; Garrido-Sanchez, L.; Cobos-Bravo, J.F.; et al. Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk? Antioxid. Redox Signal. 2014, 20, 847–853. [Google Scholar] [CrossRef]
- Karbasi, S.; Bahrami, A.; Asadi, Z.; Shahbeiki, F.; Naseri, M.; Zarban, A.; Ferns, G.A. The association of maternal dietary quality and the antioxidant-proxidant balance of human milk. Int. Breastfeed. J. 2022, 17, 56. [Google Scholar] [CrossRef]
- Karbasi, S.; Mohamadian, M.; Naseri, M.; Khorasanchi, Z.; Zarban, A.; Bahrami, A.; Ferns, G.A. A Mediterranean diet is associated with improved total antioxidant content of human breast milk and infant urine. Nutr. J. 2023, 22, 11. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.J.; Shennan, A.H.; Steer, P.J.; et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomised trial. Lancet 1999, 354, 810–816. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Kelly, F.J.; Briley, A.; Hunt, B.J.; Charnock-Jones, D.S.; Mallet, A.; Poston, L. Vitamin C and E supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am. J. Obstet. Gynecol. 2002, 187, 777–784. [Google Scholar] [CrossRef] [PubMed]
Healthy N = 46 | PE N = 39 | GDM N = 35 | ||
---|---|---|---|---|
Maternal characteristics | ||||
Age (years) | median (IQR) | 33.5 [31–37] | 35 [31–38] | 33 [30–36] |
Italian | n (%) | 35 (76.1) | 31 (79.5) | 21 (60.0) |
Cesarean Section | n (%) | 25 (54.4) | 28 (71.8) | 18 (51.4) |
Spontaneous Pregnancy | n (%) | 39 (84.8) | 31 (79.5) | 33 (94.3) |
Weight gain (kg) | mean (SD) | 10.9 (4.75) | 10.4 (5.65) | 9.2 (5.38) |
Primigravida | n (%) | 29 (63.0) | 25 (64.0) | 14 (40.0) |
Smoker | n (%) | 6 (13.0) | 2 (5.1) | 11 (31.4) |
Newborn characteristics | ||||
Singleton | n (%) | 38 (82.6) | 36 (92.3) | 31 (88.6) |
IUGR | n (%) | 2 (4.4) | 16 (41.0) | 7 (20.0) |
GA (weeks) | median (IQR) | 37 [31;39] | 32 [29–35] | 36 [33–39] |
Girl | n (%) | 19 (41.3) | 19 (48.7) | 21 (60.0) |
Birthweight (g) | mean (SD) | 2345 (1028) | 1542 (720) | 2540 (1035) |
Birthweight (z-score) | mean (SD) | −0.21 (0.934) | −1.16 (0.810) | −0.06 (1.406) |
SGA | n (%) | 6 (13.0) | 19 (50.0) | 8 (22.9) |
LGA | n (%) | 2 (4.4) | 0 (0.0) | 8 (22.9) |
All Samples | Colostrum | Transitional Milk | Mature Milk | |||||
---|---|---|---|---|---|---|---|---|
N. | Mean (nmol) | N. | Mean (nmol) | N. | Mean (nmol) | N. | Mean (nmol) | |
Healty | 7/100 | 1.05 | 2/36 | 0.88–1.22 | 2/33 | 0.55–1.44 | 3/31 | 4.36 |
PE | 1/84 | 34.22 | 0/31 | - | 1/30 | 34.22 | 0/23 | - |
GDM | 11/70 | 4.55 | 4/31 | 2.32 | 3/21 | 11.66 | 4/18 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peila, C.; Riboldi, L.; Spada, E.; Coscia, A.; Barbagallo, I.; Li Volti, G.; Galvano, F.; Gazzolo, D. The Gestational Pathologies Effect on the Human Milk Redox Homeostasis: A First Step towards Its Definition. Nutrients 2023, 15, 4546. https://doi.org/10.3390/nu15214546
Peila C, Riboldi L, Spada E, Coscia A, Barbagallo I, Li Volti G, Galvano F, Gazzolo D. The Gestational Pathologies Effect on the Human Milk Redox Homeostasis: A First Step towards Its Definition. Nutrients. 2023; 15(21):4546. https://doi.org/10.3390/nu15214546
Chicago/Turabian StylePeila, Chiara, Lorenzo Riboldi, Elena Spada, Alessandra Coscia, Ignazio Barbagallo, Giovanni Li Volti, Fabio Galvano, and Diego Gazzolo. 2023. "The Gestational Pathologies Effect on the Human Milk Redox Homeostasis: A First Step towards Its Definition" Nutrients 15, no. 21: 4546. https://doi.org/10.3390/nu15214546
APA StylePeila, C., Riboldi, L., Spada, E., Coscia, A., Barbagallo, I., Li Volti, G., Galvano, F., & Gazzolo, D. (2023). The Gestational Pathologies Effect on the Human Milk Redox Homeostasis: A First Step towards Its Definition. Nutrients, 15(21), 4546. https://doi.org/10.3390/nu15214546