Discovering the Individualized Factors Associated with Sarcopenia and Sarcopenic Obesity Phenotypes—A Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric and Clinical Assessment
2.3. Data Analysis
3. Results
3.1. The Sample
3.2. Logistic Regression Analysis
3.2.1. Gender
3.2.2. Age and BMI
3.2.3. Iron and Haematocrit Status
3.2.4. Lipid Profile
3.2.5. Protein Profile
3.2.6. Inflammation Profile
3.2.7. Association with Serum Biomarkers
3.3. Neural Network Analysis
3.3.1. Sarcopenia
3.3.2. Sarcopenic Obesity
3.3.3. Osteosarcopenia
3.3.4. Osteosarcopenic Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef] [PubMed]
- Ilich, J.Z.; Kelly, O.J.; Inglis, J.E.; Panton, L.B.; Duque, G.; Ormsbee, M.J. Interrelationship among muscle, fat, and bone: Connecting the dots on cellular, hormonal, and whole body levels. Ageing Res. Rev. 2014, 15, 51–60. [Google Scholar] [CrossRef]
- Kumari, M.; Khanna, A. Prevalence of Sarcopenic Obesity in Various Comorbidities, Diagnostic Markers, and Therapeutic Approaches: A Review. Ann. Geriatr. Med. Res. 2022, 26, 296–308. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Hao, Q.; Wu, J. Global prevalence of osteosarcopenic obesity amongst middle aged and older adults: A systematic review and meta-analysis. Arch. Osteoporos. 2023, 18, 60. [Google Scholar] [CrossRef]
- Tarantino, U.; Greggi, C.; Visconti, V.V.; Cariati, I.; Bonanni, R.; Gasperini, B.; Nardone, I.; Gasbarra, E.; Iundusi, R. Sarcopenia and bone health: New acquisitions for a firm liaison. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221138354. [Google Scholar] [CrossRef]
- Hamad, B.; Basaran, S.; Coskun Benlidayi, I. Osteosarcopenia among postmenopausal women and handgrip strength as a practical method for predicting the risk. Aging Clin. Exp. Res. 2020, 32, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Mozaffari, S.; Dehghani, Y.; Rezaei Amirkiasar, P.; Malekhosseini, A.A.; Rezanejad, M.; Holick, M.F. The lower basal metabolic rate is associated with increased risk of osteosarcopenia in postmenopausal women. BMC Womens. Health 2022, 22, 171. [Google Scholar] [CrossRef]
- Zamboni, M.; Nori, N.; Brunelli, A.; Zoico, E. How does adipose tissue contribute to inflammageing? Exp. Gerontol. 2021, 143, 111162. [Google Scholar] [CrossRef]
- Zupo, R.; Moroni, A.; Castellana, F.; Gasparri, C.; Catino, F.; Lampignano, L.; Perna, S.; Clodoveo, M.L.; Sardone, R.; Rondanelli, M. A Machine-Learning Approach to Target Clinical and Biological Features Associated with Sarcopenia: Findings from Northern and Southern Italian Aging Populations. Metabolites 2023, 13, 565. [Google Scholar] [CrossRef] [PubMed]
- de Campos, G.C.; Lourenço, R.A.; Lopes, C.S. Prevalence of Sarcopenic Obesity and its Association with Functionality, Lifestyle, Biomarkers and Morbidities in Older Adults: The FIBRA-RJ Study of Frailty in Older Brazilian Adults. Clinics 2020, 75, e1814. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Maeda, K.; Nagano, A.; Shimizu, A.; Ueshima, J.; Murotani, K.; Sato, K.; Hotta, K.; Morishita, S.; Tsubaki, A. Related Factors and Clinical Outcomes of Osteosarcopenia: A Narrative Review. Nutrients 2021, 13, 291. [Google Scholar] [CrossRef]
- Kaji, H. Interaction between Muscle and Bone. J. Bone Metab. 2014, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Lim, H.S.; Lee, M.Y.; Lee, Y.T.; Yoon, K.J.; Park, C.H. Sex-Specific Associations between Serum Ferritin and Osteosarcopenic Obesity in Adults Aged over 50 Years. Nutrients 2022, 14, 4023. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Inglis, J.E.; Kelly, O.J.; McGee, D.L. Osteosarcopenic obesity is associated with reduced handgrip strength, walking abilities, and balance in postmenopausal women. Osteoporos. Int. 2015, 26, 2587–2595. [Google Scholar] [CrossRef]
- Chen, X.; Kong, C.; Yu, H.; Gong, J.; Lan, L.; Zhou, L.; Gong, J.; Liu, P.; Xu, L.; Deng, Q. Association between osteosarcopenic obesity and hypertension among four minority populations in China: A cross-sectional study. BMJ Open 2019, 9, e026818. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Kye, S.; Chung, Y.S.; Lee, O. Association of serum vitamin D with osteosarcopenic obesity: Korea National Health and Nutrition Examination Survey 2008–2010. J. Cachexia. Sarcopenia Muscle 2017, 8, 259–266. [Google Scholar] [CrossRef]
- Mo, D.; Hsieh, P.; Yu, H.; Zhou, L.; Gong, J.; Xu, L.; Liu, P.; Chen, G.; Chen, Z.; Deng, Q. Osteosarcopenic obesity and its relationship with dyslipidemia in women from different ethnic groups of China. Arch. Osteoporos. 2018, 13, 65. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, W.; Han, P.; Kohzuki, M.; Guo, Q. Osteosarcopenic obesity associated with poor physical performance in the elderly Chinese community. Clin. Interv. Aging 2020, 15, 1343–1352. [Google Scholar] [CrossRef]
- Cacciatore, S.; Massaro, C.; Landi, F. Preventing Osteoporosis, Sarcopenia and Obesity to Care about Quality of Life. Ann. Geriatr. Med. Res. 2023, 27, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Clynes, M.A.; Gregson, C.L.; Bruyère, O.; Cooper, C.; Dennison, E.M. Osteosarcopenia: Where osteoporosis and sarcopenia collide. Rheumatology 2021, 60, 529–537. [Google Scholar] [CrossRef]
- Gortan Cappellari, G.; Guillet, C.; Poggiogalle, E.; Ballesteros Pomar, M.D.; Batsis, J.A.; Boirie, Y.; Breton, I.; Frara, S.; Genton, L.; Gepner, Y.; et al. Sarcopenic obesity research perspectives outlined by the sarcopenic obesity global leadership initiative (SOGLI)—Proceedings from the SOGLI consortium meeting in rome November 2022. Clin. Nutr. 2023, 42, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Kelly, O.J.; Gilman, J.C.; Boschiero, D.; Ilich, J.Z. Osteosarcopenic obesity: Current knowledge, revised identification criteria and treatment principles. Nutrients 2019, 11, 747. [Google Scholar] [CrossRef]
- Lundblad, M.W.; Jacobsen, B.K.; Johansson, J.; De Lucia Rolfe, E.; Grimsgaard, S.; Hopstock, L.A. Reference Values for DXA-Derived Visceral Adipose Tissue in Adults 40 Years and Older from a European Population: The Tromsø Study 2015–2016. J. Obes. 2021, 2021, 6634536. [Google Scholar] [CrossRef]
- Von Humboldt, S.; Leal, I. The Old and the Oldest-old: Do They Have Different Perspectives on Adjustment to Aging? Int. J. Gerontol. 2015, 9, 156–160. [Google Scholar] [CrossRef]
- Perna, S.; Spadaccini, D.; Nichetti, M.; Avanzato, I.; Faliva, M.A.; Rondanelli, M. Osteosarcopenic Visceral Obesity and Osteosarcopenic Subcutaneous Obesity, Two New Phenotypes of Sarcopenia: Prevalence, Metabolic Profile, and Risk Factors. J. Aging Res. 2018, 2018, 6147426. [Google Scholar] [CrossRef]
- Huang, T.; Li, C.; Chen, F.; Xie, D.; Yang, C.; Chen, Y.; Wang, J.; Li, J.; Zheng, F. Prevalence and risk factors of osteosarcopenia: A systematic review and meta-analysis. BMC Geriatr. 2023, 23, 369. [Google Scholar] [CrossRef] [PubMed]
- Shigehara, K.; Kato, Y.; Izumi, K.; Mizokami, A. Relationship between Testosterone and Sarcopenia in Older-Adult Men: A Narrative Review. J. Clin. Med. 2022, 11, 6202. [Google Scholar] [CrossRef]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscle Ligaments Tendons J. 2019, 3, 346–350. [Google Scholar] [CrossRef]
- Yu, R.; Wong, M.; Leung, J.; Lee, J.; Auyeung, T.W.; Woo, J. Incidence, reversibility, risk factors and the protective effect of high body mass index against sarcopenia in community-dwelling older Chinese adults. Geriatr. Gerontol. Int. 2014, 14, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Chand, M.R.; Agarwal, N.; Nishanth, D.; Jhuma, S. Association of Serum Ferritin Levels with Metabolic Syndrome in India: A Cross-Sectional Study. Maedica 2021, 16, 48–53. [Google Scholar] [PubMed]
- Niederau, C.; Berger, M.; Stremmel, W.; Starke, A.; Strohmeyer, G.; Ebert, R.; Siegel, E.; Creutzfeldt, W. Hyperinsulinaemia in non-cirrhotic haemochromatosis: Impaired hepatic insulin degradation? Diabetologia 1984, 26, 441–444. [Google Scholar] [CrossRef]
- Silva-Fhon, J.R.; Rojas-Huayta, V.M.; Aparco-Balboa, J.P.; Céspedes-Panduro, B.; Partezani-Rodrigues, R.A. Sarcopenia and albumin blood: Systematic review with meta-analysis. Biomedica 2021, 41, 590–603. [Google Scholar] [CrossRef] [PubMed]
Whole Sample (n = 1510) | Adult (n = 198) | Oldest (n = 1019) | Oldest Old (n = 293) | p Value Males | p Value Females | ||||
---|---|---|---|---|---|---|---|---|---|
Males (n = 47) (mean ± SD) | Females (n = 151) (mean ± SD) | Males (n = 309) (mean ± SD) | Females (n = 710) (mean ± SD) | Males (n = 54) (mean ± SD) | Females (n = 239) (mean ± SD) | ||||
Age (years) | 75.91 ± 12.89 | 49.96 ± 13.56 | 50.23 ± 12.50 | 76.61 ± 5.71 | 77.23 ± 5.42 | 88.78 ± 2.37 | 89.48 ± 2.79 | <0.001 | <0.001 |
BMI (kg/m2) | 26.25 ± 8.37 | 32.59 ± 8.98 | 30.29 ± 18.53 | 25.68 ± 4.84 | 26.31 ± 6.59 | 22.97 ± 3.71 | 23.75 ± 4.64 | <0.001 | <0.001 |
Fe (mcg/dL) | 65.94 ± 32.81 | 69.55 ± 26.46 | 81.60 ± 45.27 | 68.41 ± 37.02 | 67.75 ± 32.18 | 58.64 ± 24.59 | 59.15 ± 29.20 | 0.30 | <0.01 |
Ferritin (ng/mL) | 176.14 ± 159.39 | 159.50 ± 129.49 | 107.63 ± 78.58 | 271.06 ± 304.39 | 146.71 ± 280.50 | 240.07 ± 156.54 | 132.66 ± 104.56 | 0.66 | 0.82 |
Total Cholesterol (mg/dL) | 183.52 ± 44.15 | 166.18 ± 49.14 | 197.57 ± 47.70 | 168.91 ± 38.44 | 192.1 ± 44.40 | 163.61 ± 40.24 | 183.83 ± 44.15 | 0.73 | 0.1 |
Albumin (g) | 3.83 ± 3.51 | 3.67 ± 0.44 | 4.00 ± 0.31 | 3.63 ± 0.56 | 3.69 ± 0.45 | 4.91 ± 9.43 | 4.13 ± 5.99 | 0.18 | 0.32 |
Albumin (%) | 54.97 ± 6.24 | 57.44 ± 5.37 | 57.51 ± 4.37 | 54.95 ± 6.38 | 55.51 ± 5.47 | 52.39 ± 9.74 | 53.97 ± 6.62 | <0.05 | <0.01 |
Gamma Protein (g/L) | 16.80 ± 4.58 | 14.83 ± 3.01 | 17.14 ± 5.35 | 17.44 ± 4.88 | 16.33 ± 4.54 | 17.26 ± 4.08 | 17.22 ± 4.40 | 0.18 | 0.09 |
ESR (mm/hr) | 43.55 ± 31.19 | 24.58 ± 24.17 | 37.53 ± 27.78 | 41.44 ± 31.67 | 43.20 ± 30.55 | 41.18 ± 29.22 | 48.97 ± 32.72 | 0.19 | 0.10 |
CRP (mg/dL) | 1.29 ± 2.70 | 0.94 ± 1.07 | 0.81 ± 1.91 | 1.74 ± 3.51 | 1.07 ± 2.36 | 1.85 ± 3.29 | 1.29 ± 2.40 | 0.71 | 0.51 |
Ca (mmol/L) | 10.08 ± 27.68 | 9.05 ± 0.56 | 9.53 ± 0.59 | 9.12 ± 0.90 | 9.20 ± 0.61 | 8.67 ± 1.44 | 13.50 ± 60.17 | <0.05 | 0.34 |
gGT (U/L) | 32.27 ± 37.91 | 28.58 ± 13.93 | 29.40 ± 20.51 | 34.09 ± 34.35 | 32.36 ± 42.49 | 30.10 ± 24.38 | 31.31 ± 34.99 | 0.69 | 0.93 |
Glycemia (mg/dL) | 107.58 ± 41.15 | 96.77 ± 30.58 | 133.07 ± 80.79 | 111.83 ± 44.66 | 106.78 ± 40.09 | 109.60 ± 38.50 | 103.11 ± 37.73 | 0.44 | <0.05 |
Whole Sample (n = 1510) | Adult (n = 198) | Oldest (n = 1019) | Oldest Old (n = 293) | ||||
---|---|---|---|---|---|---|---|
Males (n = 47) N (%) | Females (n = 151) N (%) | Males (n = 309) N (%) | Females (n = 710) N (%) | Males (n = 54) N (%) | Females (n = 239) N (%) | ||
Sarcopenia | 264 (17.5%) | 8 (17%) | 2 (1.3%) | 109 (35.3%) | 73 (10.3%) | 29 (53.7%) | 43 (18%) |
Sarcopenic Obesity | 159 (10.5%) | 6 (12.8%) | 2 (1.3%) | 71 (23%) | 43 (6.1%) | 17 (31.5%) | 20 (8.4%) |
Osteosarcopenia | 222 (14.7%) | 5 (10.6%) | 2 (1.3%) | 84 (27.2%) | 68 (9.6%) | 21 (38.9%) | 42 (17.6%) |
Osteosarcopenic Obesity | 29 (1.9%) | 2 (4.3%) | 0 (0%) | 14 (4.5%) | 8 (1.1%) | 1 (1.9%) | 4 (1.7%) |
B (Regression’s Coefficient) | p Value | Odds Ratio | Risk | ||
---|---|---|---|---|---|
Gender Females (reference category Males) | |||||
Sarcopenia | −1.527 | <0.001 | 0.217 | −78.3% | |
Sarcopenic obesity | −1.555 | <0.001 | 0.211 | −79.9% | |
Osteosarcopenia | −1.173 | <0.001 | 0.309 | −69.1% | |
Osteosarcopenic obesity | −1.367 | <0.001 | 0.255 | −74.5% | |
Age and BMI | |||||
Age (from lowest to highest) | |||||
Sarcopenia | 0.027 | <0.001 | 1.027 | 2.7% | |
Sarcopenic obesity | 0.016 | <0.05 | 1.017 | 1.7% | |
Osteosarcopenia | 0.031 | <0.001 | 1.031 | 3.1% | |
BMI (from lowest to highest) | |||||
Sarcopenia | −0.282 | <0.001 | 0.754 | −24.6% | |
Sarcopenic obesity | −0.123 | <0.001 | 0.884 | −11.6% | |
Osteosarcopenia | −0.272 | <0.001 | 0.762 | −23.8% | |
Iron and haematocrit status | |||||
Fe (from lowest to highest) | |||||
Sarcopenia | −0.014 | <0.05 | 0.986 | −1.4% | |
Sarcopenic obesity | −0.024 | <0.01 | 0.976 | −2.4% | |
Ferritin (from lowest to highest) | |||||
Sarcopenic obesity | 0.001 | <0.05 | 1.001 | 0.1% | |
Lipid profile | |||||
Total Cholesterol (from lowest to highest) | |||||
Sarcopenia | −0.026 | <0.05 | 0.974 | −2.6% | |
Osteosarcopenia | −0.032 | <0.01 | 0.969 | −3.1% | |
Protein Profile | |||||
Albumin (%) (from lowest to highest) | Sarcopenia | −0.135 | <0.001 | 0.874 | −12.6% |
Sarcopenic obesity | −0.130 | <0.01 | 0.878 | −12.2% | |
Osteosarcopenia | −0.127 | <0.001 | 0.881 | −11.9% | |
Albumin (g) (from lowest to highest) | |||||
Sarcopenia | −0.102 | <0.01 | 0.903 | −9.7% | |
Osteosarcopenia | −0.089 | <0.05 | 0.915 | −8.5% | |
Gamma proteins (from lowest to highest) | |||||
Sarcopenia | −0.074 | <0.05 | 0.929 | −7.1% | |
Inflammation | |||||
ESR (from lowest to highest) | |||||
Sarcopenia | 0.008 | <0.01 | 1.008 | 0.8% | |
Sarcopenic obesity | 0.007 | <0.05 | 1.007 | 0.7% | |
Osteosarcopenia | 0.008 | <0.05 | 1.008 | 0.8% | |
CRP (from lowest to highest) | |||||
Sarcopenia | 0.072 | <0.05 | 1.074 | 7.4% | |
Sarcopenic obesity | 0.082 | <0.05 | 1.085 | 8.5% | |
Micronutrients | |||||
Ca (from lowest to highest) | |||||
Osteosarcopenia | −0.449 | <0.05 | 0.638 | −36.2% | |
Other | |||||
GgT (from lowest to highest) | |||||
Osteosarcopenic obesity | 0.009 | <0.01 | 1.009 | 0.9% | |
Glycemia (from lowest to highest) | |||||
Osteosarcopenic obesity | 0.009 | <0.01 | 1.009 | 0.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, A.; Perna, S.; Azzolino, D.; Gasparri, C.; Zupo, R.; Micheletti Cremasco, M.; Rondanelli, M. Discovering the Individualized Factors Associated with Sarcopenia and Sarcopenic Obesity Phenotypes—A Machine Learning Approach. Nutrients 2023, 15, 4536. https://doi.org/10.3390/nu15214536
Moroni A, Perna S, Azzolino D, Gasparri C, Zupo R, Micheletti Cremasco M, Rondanelli M. Discovering the Individualized Factors Associated with Sarcopenia and Sarcopenic Obesity Phenotypes—A Machine Learning Approach. Nutrients. 2023; 15(21):4536. https://doi.org/10.3390/nu15214536
Chicago/Turabian StyleMoroni, Alessia, Simone Perna, Domenico Azzolino, Clara Gasparri, Roberta Zupo, Margherita Micheletti Cremasco, and Mariangela Rondanelli. 2023. "Discovering the Individualized Factors Associated with Sarcopenia and Sarcopenic Obesity Phenotypes—A Machine Learning Approach" Nutrients 15, no. 21: 4536. https://doi.org/10.3390/nu15214536
APA StyleMoroni, A., Perna, S., Azzolino, D., Gasparri, C., Zupo, R., Micheletti Cremasco, M., & Rondanelli, M. (2023). Discovering the Individualized Factors Associated with Sarcopenia and Sarcopenic Obesity Phenotypes—A Machine Learning Approach. Nutrients, 15(21), 4536. https://doi.org/10.3390/nu15214536