The Association between Oxidative Balance Score and Urinary Levels of 8-Hydroxydeoxyguanosine among Japanese Adults
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Subjects
2.2. Data Collection
2.3. Urine Sampling and Laboratory Assay
2.4. Blood Analysis
2.5. Dietary Survey
2.6. Calculation of the OBS
2.7. Statistical Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondrial DNA sequence variation in human evolution and disease. Proc. Natl. Acad. Sci. USA 1994, 91, 8739–8746. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Pascucci, B.; D’Errico, M.; Parlanti, E.; Giovannini, S.; Dogliotti, E. Role of nucleotide excision repair proteins in oxidative DNA damage repair: An updating. Biochemistry 2011, 76, 4–15. [Google Scholar] [CrossRef]
- Barreiro, E.; Peinado, V.I.; Galdiz, J.B.; Ferrer, E.; Marin-Corral, J.; Sanchez, F.; Gea, J.; Barbera, J.A. Project EiC. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am. J. Respir. Crit. Care Med. 2010, 182, 477–488. [Google Scholar] [CrossRef]
- Albano, E. Alcohol, oxidative stress and free radical damage. Proc. Nutr. Soc. 2006, 65, 278–290. [Google Scholar] [CrossRef]
- Puntarulo, S. Iron, oxidative stress and human health. Mol. Aspects Med. 2005, 26, 299–312. [Google Scholar] [CrossRef]
- Sies, H.; Stahl, W.; Sevanian, A. Nutritional, dietary and postprandial oxidative stress. J. Nutr. 2005, 135, 969–972. [Google Scholar] [CrossRef]
- Hara, M.; Nishida, Y.; Shimanoe, C.; Otsuka, Y.; Nanri, H.; Yasukata, J.; Miyoshi, N.; Yamada, Y.; Horita, M.; Kawai, K.; et al. Intensity-specific effect of physical activity on urinary levels of 8-hydroxydeoxyguanosine in middle-aged Japanese. Cancer Sci. 2016, 107, 1653–1659. [Google Scholar] [CrossRef]
- Cheng, K.C.; Cahill, D.S.; Kasai, H.; Nishimura, S.; Loeb, L.A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J. Biol. Chem. 1992, 267, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Kasai, H.; Svoboda, P.; Yamasaki, S.; Kawai, K. Simultaneous determination of 8-hydroxydeoyguanosine, a marker of oxidative stress, and creatinine, a standardization compound, in urine. Ind. Health 2005, 43, 333–336. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989.
- Jacobs, D.R., Jr.; Tapsell, L.C. Food, not nutrients, is the fundamental unit in nutrition. Nutr. Rev. 2007, 65, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R., Jr.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78, 508S–513S. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Eastwood, M.A. Interaction of dietary antioxidants in vivo: How fruit and vegetables prevent disease? QJM 1999, 92, 527–530. [Google Scholar] [CrossRef]
- Wright, M.E.; Mayne, S.T.; Stolzenberg-Solomon, R.Z.; Li, Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am. J. Epidemiol. 2004, 160, 68–76. [Google Scholar] [CrossRef]
- Goodman, M.; Bostick, R.M.; Dash, C.; Flanders, W.D.; Mandel, J.S. Hypothesis: Oxidative stress score as a combined measure of pro-oxidant and antioxidant exposures. Ann. Epidemiol. 2007, 17, 394–399. [Google Scholar] [CrossRef]
- Van Hoydonck, P.G.; Temme, E.H.; Schouten, E.G. A dietary oxidative balance score of vitamin C, beta-carotene and iron intakes and mortality risk in male smoking Belgians. J. Nutr. 2002, 132, 756–761. [Google Scholar] [CrossRef]
- Dash, C.; Goodman, M.; Flanders, W.D.; Mink, P.J.; McCullough, M.L.; Bostick, R.M. Using pathway-specific comprehensive exposure scores in epidemiology: Application to oxidative balance in a pooled case-control study of incident, sporadic colorectal adenomas. Am. J. Epidemiol. 2013, 178, 610–624. [Google Scholar] [CrossRef]
- Kong, S.Y.; Goodman, M.; Judd, S.; Bostick, R.M.; Flanders, W.D.; McClellan, W. Oxidative balance score as predictor of all-cause, cancer, and noncancer mortality in a biracial US cohort. Ann. Epidemiol. 2015, 25, 256–262.e251. [Google Scholar] [CrossRef]
- Labadie, J.; Goodman, M.; Thyagarajan, B.; Gross, M.; Sun, Y.; Fedirko, V.; Bostick, R.M. Associations of oxidative balance-related exposures with incident, sporadic colorectal adenoma according to antioxidant enzyme genotypes. Ann. Epidemiol. 2013, 23, 223–226. [Google Scholar] [CrossRef]
- Lakkur, S.; Goodman, M.; Bostick, R.M.; Citronberg, J.; McClellan, W.; Flanders, W.D.; Judd, S.; Stevens, V.L. Oxidative balance score and risk for incident prostate cancer in a prospective U.S. cohort study. Ann. Epidemiol. 2014, 24, 475–478.e4. [Google Scholar] [CrossRef]
- Annor, F.B.; Goodman, M.; Okosun, I.S.; Wilmot, D.W.; Il’yasova, D.; Ndirangu, M.; Lakkur, S. Oxidative stress, oxidative balance score, and hypertension among a racially diverse population. J. Am. Soc. Hypertens. 2015, 9, 592–599. [Google Scholar] [CrossRef]
- Cho, A.R.; Kwon, Y.J.; Lim, H.J.; Lee, H.S.; Kim, S.; Shim, J.Y.; Lee, H.R.; Lee, Y.J. Oxidative balance score and serum gamma-glutamyltransferase level among Korean adults: A nationwide population-based study. Eur. J. Nutr. 2018, 57, 1237–1244. [Google Scholar] [CrossRef]
- Mao, Z.; Bostick, R.M. Associations of dietary, lifestyle, other participant characteristics, and oxidative balance scores with plasma F2-isoprostanes concentrations in a pooled cross-sectional study. Eur. J. Nutr. 2021, 61, 1541–1560. [Google Scholar] [CrossRef]
- Berridge, M.J. Vitamin D cell signalling in health and disease. Biochem. Biophys. Res. Commun. 2015, 460, 53–71. [Google Scholar] [CrossRef]
- Joshi, R.; Adhikari, S.; Patro, B.S.; Chattopadhyay, S.; Mukherjee, T. Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radic. Biol. Med. 2001, 30, 1390–1399. [Google Scholar] [CrossRef]
- Hernandez-Ruiz, A.; Garcia-Villanova, B.; Guerra-Hernandez, E.; Amiano, P.; Ruiz-Canela, M.; Molina-Montes, E. A Review of A Priori Defined Oxidative Balance Scores Relative to Their Components and Impact on Health Outcomes. Nutrients 2019, 11, 774. [Google Scholar] [CrossRef]
- Hara, M.; Higaki, Y.; Imaizumi, T.; Taguchi, N.; Nakamura, K.; Nanri, H.; Sakamoto, T.; Horita, M.; Shinchi, K.; Tanaka, K. Factors influencing participation rate in a baseline survey of a genetic cohort in Japan. J. Epidemiol. 2010, 20, 40–45. [Google Scholar] [CrossRef]
- Hara, M.; Shimanoe, C.; Otsuka, Y.; Nishida, Y.; Nanri, H.; Horita, M.; Yasukata, J.; Miyoshi, N.; Yamada, Y.; Higaki, Y.; et al. Factors associated with non-participation in a face-to-face second survey conducted 5 years after the baseline survey. J. Epidemiol. 2015, 25, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Health Promotion and Nutrition Division. Health Service Bureau, Ministry of Health and Welfare of Japan. Fifth Revision of the Recommended Dietary Allowances for Japanese; Daiichi Syuppan: Tokyo, Japan, 1994. (In Japanese)
- Fujimoto, S.; Watanabe, T.; Sakamoto, A.; Yukawa, K.; Morimoto, K. Studies on the physical surface area of Japanese. 18. Calculation formulas in three stages over all ages. Nihon Eiseigaku Zasshi 1968, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Nanri, A.; Hori, A.; Sato, M.; Kawai, K.; Kasai, H.; Mizoue, T. Lower serum levels of total cholesterol are associated with higher urinary levels of 8-hydroxydeoxyguanosine. Nutr. Metab. 2013, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Goto, C.T.Y.; Imaeda, N.; Takekuma, K.; Kuriki, K.; Igarashi, F.; Ikeda, M.; Tokudome, S. Validation study of fatty acid consumption assessed with a short food frequency questionnaire against plasma concentration in middle-aged Japanese people. Scand. J. Nutr. 2006, 50, 77–82. [Google Scholar] [CrossRef]
- Imaeda, N.; Goto, C.; Sasakabe, T.; Mikami, H.; Oze, I.; Hosono, A.; Naito, M.; Miyagawa, N.; Ozaki, E.; Ikezaki, H.; et al. Reproducibility and validity of food group intake in a short food frequency questionnaire for the middle-aged Japanese population. Environ. Health Prev. Med. 2021, 26, 28. [Google Scholar] [CrossRef] [PubMed]
- Tokudome, S.; Goto, C.; Imaeda, N.; Tokudome, Y.; Ikeda, M.; Maki, S. Development of a data-based short food frequency questionnaire for assessing nutrient intake by middle-aged Japanese. Asian Pac. J. Cancer Prev. APJCP 2004, 5, 40–43. [Google Scholar]
- Tokudome, Y.; Goto, C.; Imaeda, N.; Hasegawa, T.; Kato, R.; Hirose, K.; Tajima, K.; Tokudome, S. Relative validity of a short food frequency questionnaire for assessing nutrient intake versus three-day weighed diet records in middle-aged Japanese. J. Epidemiol. 2005, 15, 135–145. [Google Scholar] [CrossRef]
- Science and Technology Agency of Japan. Standard Tables of Food Composition in Japan, 5th ed.; Ministry of Finance: Tokyo, Japan, 2001. (In Japanese)
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Barregard, L.; Moller, P.; Henriksen, T.; Mistry, V.; Koppen, G.; Rossner, P.; Sram, R.J.; Weimann, A.; Poulsen, H.E.; Ntaf, R.; et al. Human and methodologicalsources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid. Redox Signal 2013, 18, 2377–2391. [Google Scholar] [CrossRef]
- Fleming, D.J.; Jacques, P.F.; Dallal, G.E.; Tucker, K.L.; Wilson, P.W.; Wood, R.J. Dietary determinants of iron stores in a free-living elderly population. The Framingham Heart Study. Am. J. Clin. Nutr. 1998, 67, 722–733. [Google Scholar] [CrossRef]
- Serafini, M.; Del Rio, D. Understanding the association between dietary antioxidants, redox status and disease: Is the Total Antioxidant Capacity the right tool? Redox. Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lettieri-Barbato, D.; Tomei, F.; Sancini, A.; Morabito, G.; Serafini, M. Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: A meta-analysis. Br. J. Nutr. 2013, 109, 1544–1556. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef]
- Liao, C.; Gao, W.; Cao, W.; Lv, J.; Yu, C.; Wang, S.; Zhou, B.; Pang, Z.; Cong, L.; Dong, Z.; et al. The association of cigarette smoking and alcohol drinking with body mass index: A cross-sectional, population-based study among Chinese adult male twins. BMC Public Health 2016, 16, 311. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kewalramani, G.; Yuen, G.; Pulinilkunnil, T.; An, D.; Innis, S.M.; Allard, M.F.; Wambolt, R.B.; Qi, D.; Abrahani, A.; et al. Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary ω-6 polyunsaturated fatty acids. Free Radic. Biol. Med. 2006, 41, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.L.; John, E.M.; Torres-Mejia, G.; Lundgreen, A.; Lewinger, J.P.; Stern, M.C.; Hines, L.; Baumgartner, K.B.; Giuliano, A.R.; Wolff, R.K. Angiogenesis genes, dietary oxidative balance and breast cancer risk and progression: The Breast Cancer Health Disparities Study. Int. J. Cancer 2014, 134, 629–644. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Ayremlou, P.; Zarrin, R. Higher Oxidative Balance Score Is Associated with Better Glycemic Control among Iranian Adults with Type-2 Diabetes. Int. J. Vitam. Nutr. Res. 2019, 91, 31–39. [Google Scholar] [CrossRef]
Men (n = 3083) a | Women (n = 4469) b | |||||||
---|---|---|---|---|---|---|---|---|
Standardized β | β | 95% CI | p | Standardized β | β | 95% CI | p | |
Antioxidant | ||||||||
Carotene (μg/1000 kcal) | 0.02 | 0.00002 | (−0.00002, 0.00005) | 0.39 | 0.01 | 0.000005 | (−0.00001, 0.00002) | 0.61 |
Vitamin E (mg/1000 kcal) | −0.05 | 0.020 | (−0.06, 0.02) | 0.29 | −0.04 | −0.015 | (−0.04, 0.005) | 0.14 |
Vitamin C (mg/1000 kcal) | 0.05 | 0.0006 | (0.0002, 0.003) | 0.02 | 0.02 | 0.0005 | (−0.0001, 0.001) | 0.11 |
Physical activity level | −0.01 | 0.075 | (−0.21, 0.08) | 0.41 | −0.02 | −0.122 | (−0.26, 0.02) | 0.09 |
Use of NSAIDs | 0.01 | 0.031 | (−0.04, 0.08) | 0.52 | 0.01 | 0.019 | (−0.03, 0.07) | 0.46 |
Pro-oxidant | ||||||||
n-3 PUFA (g/1000 kcal) | −0.002 | 0.00004 | (−0.00008, 0.00007) | 0.94 | 0.002 | 0.000002 | (−0.00005, 0.00006) | 0.93 |
n-6 PUFA (g/1000 kcal) | 0.01 | 0.00001 | (−0.00002, 0.00002) | 0.78 | 0.02 | 0.000005 | (−0.00001, 0.00002) | 0.41 |
SFA (g/1000 kcal) | 0.02 | 0.006 | (−0.007, 0.018) | 0.38 | 0.01 | 0.004 | (−0.004, 0.01) | 0.30 |
Serum ferritin level (μg/L) | 0.50 | 0.269 | (0.25, 0.29) | <0.01 | 0.64 | 0.323 | (0.31, 0.33) | <0.01 |
Alcohol consumption | −0.08 | −0.028 | (−0.04, −0.02) | <0.01 | −0.04 | −0.020 | (−0.004, −0.012) | <0.01 |
Smoking status | 0.10 | 0.047 | (0.03, 0.06) | <0.01 | 0.05 | 0.047 | (0.02, 0.07) | <0.01 |
Total OBS | −0.16 | −0.031 | (−0.04, −0.02) | <0.01 | −0.13 | −0.028 | (−0.03, −0.02) | <0.01 |
Dietary OBS c | −0.15 | −0.039 | (−0.05, −0.03) | <0.01 | −0.13 | −0.033 | (−0.04, −0.03) | <0.01 |
Lifestyle OBS d | −0.09 | −0.028 | (−0.04, −0.02) | <0.01 | −0.05 | −0.021 | (−0.03, −0.01) | <0.01 |
Men | Women | |||||
---|---|---|---|---|---|---|
Q1 (n = 501) | Q4 (n = 818) | p Trend a | Q1 (n = 872) | Q4 (n = 1511) | p Trend | |
Age (years) | 61.2 (7.7) | 62.6 (7.8) | <0.01 | 60.3 (8.0) | 60.5 (8.3) | 0.70 |
Body mass index | 24.1 (3.2) | 23.4 (2.8) | <0.01 | 22.5 (3.3) | 22.1 (3.0) | 0.02 |
Total energy intake (kcal/d) | 1876 (319) | 1897 (319) | 0.06 | 1462 (245) | 1524 (218) | <0.01 |
Hypertension, n (%) | 167 (33.3) | 236 (28.9) | 0.17 | 168 (19.3) | 268 (17.7) | 0.37 |
Diabetes, n (%) | 50 (10.0) | 79 (9.7) | 0.87 | 43 (4.9) | 65 (4.3) | 0.85 |
Dyslipidemia, n (%) | 71 (14.2) | 152 (18.6) | 0.01 | 160 (18.4) | 295 (19.5) | 0.48 |
Carotene (μgRE/1000 kcal) | 1205 (358) | 1782 (695) | <0.01 | 1875 (625) | 2788 (1045) | <0.01 |
Vitamin E (mg/1000 kcal) | 4.0 (0.9) | 4.3 (1.1) | <0.01 | 5.5 (1.3) | 5.8 (1.4) | <0.01 |
Vitamin C (mg/1000 kcal) | 39.7 (11.3) | 56.1 (18.0) | <0.01 | 62.0 (18.2) | 83.4 (24.8) | <0.01 |
n-3 PUFA (g/1000 kcal) | 1.3 (0.3) | 1.2 (0.3) | <0.01 | 1.6 (0.4) | 1.5 (0.1) | <0.01 |
n-6 PUFA (g/1000 kcal) | 5.9 (1.3) | 5.5 (1.3) | <0.01 | 7.7 (1.9) | 7.0 (1.7) | <0.01 |
SFA (g/1000 kcal) | 5.9 (1.3) | 5.6 (1.3) | <0.01 | 7.3 (1.6) | 7.1 (1.5) | <0.01 |
Current smoker, n (%) | 259 (51.7) | 65 (7.8) | <0.01 | 138 (15.8) | 10 (0.7) | <0.01 |
Current drinker, n (%) | 472 (94.2) | 475 (58.1) | <0.01 | 506 (58.0) | 388 (25.7) | <0.01 |
Physical activity level | 1.43 (0.08) | 1.47 (0.11) | <0.01 | 1.41 (0.07) | 1.47 (0.08) | <0.01 |
Serum ferritin level (μg/L) | 157 (1.9) | 62.7 (2.3) | <0.01 | 62.6 (2.5) | 31.9 (2.8) | <0.01 |
Use of NSAIDs, n (%) | 5 (1.0) | 108 (13.2) | <0.01 | 8 (0.9) | 147 (9.7) | <0.01 |
OBS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p for Trend a | ||||||
Men | ||||||||||
n (%) | 501 (16.2) | 816 (26.4) | 950 (30.8) | 819 (26.5) | ||||||
Model 1 b | 4.12 | (3.96–4.29) | 3.76 | (3.65–3.88) | 3.69 | (3.59–3.80) | 3.30 | (3.20–3.41) | <0.01 | |
Model 2 c | 4.12 | (3.96–4.29) | 3.77 | (3.65–3.89) | 3.70 | (3.59–3.81) | 3.29 | (3.19–3.40) | <0.01 | |
Model 3 d | 4.14 | (3.98–4.31) | 3.78 | (3.66–3.90) | 3.69 | (3.59–3.80) | 3.28 | (3.17–3.38) | <0.01 | |
Women | ||||||||||
n (%) | 873 (19.5) | 1312 (29.3) | 776 (17.4) | 1511 (33.8) | ||||||
Model 1 | 4.53 | (4.38–4.68) | 4.26 | (4.14–4.37) | 4.17 | (4.02–4.32) | 3.75 | (3.65–3.84) | <0.01 | |
Model 2 | 4.47 | (4.33–4.61) | 4.25 | (4.15–4.36) | 4.16 | (4.02–4.30) | 3.78 | (3.69–3.87) | <0.01 | |
Model 3 | 4.49 | (4.35–4.63) | 4.25 | (4.02–4.29) | 4.16 | (4.02–4.29) | 3.77 | (3.69–3.86) | <0.01 |
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n (%) | Standardized β a | β | 95% CI | p | n (%) | Standardized β | β | 95% CI | p | |
Age category, years a | ||||||||||
45–49 | 314 (10.2) | −0.15 | −0.031 | (−0.05, −0.01) | <0.01 | 588 (13.2) | −0.11 | −0.029 | (−0.05, −0.01) | <0.01 |
50–54 | 363 (11.8) | −0.19 | −0.035 | (−0.05, −0.02) | <0.01 | 592 (13.3) | −0.16 | −0.036 | (−0.05, −0.02) | <0.01 |
55–59 | 504 (16.4) | −0.19 | −0.035 | (−0.05, −0.02) | <0.01 | 738 (16.5) | −0.12 | −0.021 | (−0.03, −0.01) | <0.01 |
60–64 | 666 (21.6) | −0.16 | −0.029 | (−0.01, −0.02) | <0.01 | 916 (20.5) | −0.09 | −0.015 | (−0.03, −0.004) | 0.13 |
65–69 | 651 (21.1) | −0.17 | −0.033 | (−0.05, −0.02) | <0.01 | 912 (20.4) | −0.16 | −0.030 | (−0.04, −0.02) | <0.01 |
70–74 | 585 (19.9) | −0.16 | −0.028 | (−0.04, −0.01) | <0.01 | 723 (16.2) | −0.21 | −0.043 | (−0.06, −0.028) | <0.01 |
BMI category, kg/m2 b | ||||||||||
<18.5 | 74 (2.4) | −0.18 | −0.033 | (−0.08, 0.01) | 0.16 | 392 (8.8) | −0.19 | −0.042 | (−0.06, −0.02) | <0.01 |
18.5–24.9 | 2087 (67.7) | −0.15 | −0.029 | (−0.04, −0.02) | <0.01 | 3300 (73.8) | −0.13 | −0.029 | (−0.04, −0.02) | <0.01 |
≥25.0 | 922 (29.9) | −0.18 | −0.034 | (−0.05, −0.02) | <0.001 | 777 (17.4) | −0.09 | −0.017 | (−0.03, −0.004) | <0.01 |
Menopausal status c | ||||||||||
Premenopausal | 809 (18.1) | −0.14 | −0.034 | (−0.05, −0.02) | <0.01 | |||||
Postmenopausal | 3660 (81.9) | −0.15 | −0.027 | (−0.03, −0.02) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanri, H.; Hara, M.; Nishida, Y.; Shimanoe, C.; Li, Y.-S.; Kasai, H.; Kawai, K.; Higaki, Y.; Tanaka, K. The Association between Oxidative Balance Score and Urinary Levels of 8-Hydroxydeoxyguanosine among Japanese Adults. Nutrients 2023, 15, 4533. https://doi.org/10.3390/nu15214533
Nanri H, Hara M, Nishida Y, Shimanoe C, Li Y-S, Kasai H, Kawai K, Higaki Y, Tanaka K. The Association between Oxidative Balance Score and Urinary Levels of 8-Hydroxydeoxyguanosine among Japanese Adults. Nutrients. 2023; 15(21):4533. https://doi.org/10.3390/nu15214533
Chicago/Turabian StyleNanri, Hinako, Megumi Hara, Yuichiro Nishida, Chisato Shimanoe, Yun-Shan Li, Hiroshi Kasai, Kazuaki Kawai, Yasuki Higaki, and Keitaro Tanaka. 2023. "The Association between Oxidative Balance Score and Urinary Levels of 8-Hydroxydeoxyguanosine among Japanese Adults" Nutrients 15, no. 21: 4533. https://doi.org/10.3390/nu15214533
APA StyleNanri, H., Hara, M., Nishida, Y., Shimanoe, C., Li, Y. -S., Kasai, H., Kawai, K., Higaki, Y., & Tanaka, K. (2023). The Association between Oxidative Balance Score and Urinary Levels of 8-Hydroxydeoxyguanosine among Japanese Adults. Nutrients, 15(21), 4533. https://doi.org/10.3390/nu15214533