Diurnal Variations in Serum Uric Acid, Xanthine, and Xanthine Oxidoreductase Activity in Male Patients with Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Height, Weight, and Blood Pressure
2.3. Blood Samples
2.4. Hypoxanthine and Xanthine
2.5. XOR Activity
2.6. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Diurnal Variations in Serum UA and Plasma Xanthine, Hypoxanthine, and XOR Activity
3.3. Formatting of Mathematical Components’ Correlation between ΔUA and Δxanthine and Δhypoxanthine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef]
- Hu, M.J.; Tan, J.S.; Gao, X.J.; Yang, J.G.; Yang, Y.J. Effect of Cheese Intake on Cardiovascular Diseases and Cardiovascular Biomarkers. Nutrients 2022, 14, 2936. [Google Scholar] [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Hansson, L.; Lindholm, L.H.; Niskanen, L.; Lanke, J.; Hedner, T.; Niklason, A.; Luomanmäki, K.; Dahlöf, B.; de Faire, U.; Mörlin, C.; et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: The Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999, 353, 611–616. [Google Scholar] [CrossRef]
- Yusuf, S.; Sleight, P.; Pogue, J.; Bosch, J.; Davies, R.; Dagenais, G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N. Engl. J. Med. 2000, 342, 145–153. [Google Scholar] [PubMed]
- Tuomilehto, J.; Rastenyte, D.; Birkenhäger, W.H.; Thijs, L.; Antikainen, R.; Bulpitt, C.J.; Fletcher, A.E.; Forette, F.; Goldhaber, A.; Palatini, P.; et al. Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. Systolic Hypertension in Europe Trial Investigators. N. Engl. J. Med. 1999, 340, 677–684. [Google Scholar] [CrossRef] [PubMed]
- UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998, 317, 703–713. [Google Scholar] [CrossRef]
- Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389.
- Sacks, F.M.; Pfeffer, M.A.; Moye, L.A.; Rouleau, J.L.; Rutherford, J.D.; Cole, T.G.; Brown, L.; Warnica, J.W.; Arnold, J.M.; Wun, C.C.; et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 1996, 335, 1001–1009. [Google Scholar] [CrossRef]
- Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N. Engl. J. Med. 1998, 339, 1349–1357. [CrossRef]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005, 52, 283–289. [Google Scholar] [CrossRef]
- Zgaga, L.; Theodoratou, E.; Kyle, J.; Farrington, S.M.; Agakov, F.; Tenesa, A.; Walker, M.; McNeill, G.; Wright, A.F.; Rudan, I.; et al. The association of dietary intake of purine-rich vegetables, sugar-sweetened beverages and dairy with plasma urate, in a cross-sectional study. PLoS ONE 2012, 7, e38123. [Google Scholar] [CrossRef] [PubMed]
- Danve, A.; Sehra, S.T.; Neogi, T. Role of diet in hyperuricemia and gout. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101723. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hsieh, M.C.; Chang, S.J. Metabolic syndrome, diabetes, and hyperuricemia. Curr. Opin. Rheumatol. 2013, 25, 210–216. [Google Scholar] [CrossRef]
- Bengtsson, C.; Lapidus, L.; Stendahl, C.; Waldenström, J. Hyperuricaemia and risk of cardiovascular disease and overall death. A 12-year follow-up of participants in the population study of women in Gothenburg, Sweden. Acta Medica Scand. 1988, 224, 549–555. [Google Scholar] [CrossRef]
- Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Predictors of stroke in middle-aged patients with non-insulin-dependent diabetes. Stroke 1996, 27, 63–68. [Google Scholar] [CrossRef]
- Alderman, M.H.; Cohen, H.; Madhavan, S.; Kivlighn, S. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension 1999, 34, 144–150. [Google Scholar] [CrossRef]
- Persky, V.W.; Dyer, A.R.; Idris-Soven, E.; Stamler, J.; Shekelle, R.B.; Schoenberger, J.A.; Berkson, D.M.; Lindberg, H.A. Uric acid: A risk factor for coronary heart disease? Circulation 1979, 59, 969–977. [Google Scholar] [CrossRef]
- Culleton, B.F.; Larson, M.G.; Kannel, W.B.; Levy, D. Serum uric acid and risk for cardiovascular disease and death: The Framingham Heart Study. Ann. Intern. Med. 1999, 131, 7–13. [Google Scholar] [CrossRef]
- Mooe, T.; Rabben, T.; Wiklund, U.; Franklin, K.A.; Eriksson, P. Sleep-disordered breathing in men with coronary artery disease. Chest 1996, 109, 659–663. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Yenokyan, G.; Newman, A.B.; O’Connor, G.T.; Punjabi, N.M.; Quan, S.F.; Redline, S.; Resnick, H.E.; Tong, E.K.; Diener-West, M.; et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: The sleep heart health study. Circulation 2010, 122, 352–360. [Google Scholar] [CrossRef]
- Hira, H.S.; Shukla, A.; Kaur, A.; Kapoor, S. Serum uric acid and lactate levels among patients with obstructive sleep apnea syndrome: Which is a better marker of hypoxemia? Ann. Saudi Med. 2012, 32, 37–42. [Google Scholar] [CrossRef]
- Shimizu, M.; Kasai, T.; Naito, R.; Sato, A.; Ishiwata, S.; Yatsu, S.; Shitara, J.; Matsumoto, H.; Murata, A.; Kato, T.; et al. Overnight changes in uric acid, xanthine oxidoreductase and oxidative stress levels and their relationships with sleep-disordered breathing in patients with coronary artery disease. Hypertens. Res. 2023, 46, 2293–2301. [Google Scholar] [CrossRef] [PubMed]
- Muiesan, M.L.; Agabiti-Rosei, C.; Paini, A.; Salvetti, M. Uric Acid and Cardiovascular Disease: An Update. Eur. Cardiol. 2016, 11, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective—A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Niu, J.; Neogi, T.; Chen, C.A.; Chaisson, C.; Hunter, D.; Zhang, Y. Nocturnal risk of gout attacks. Arthritis Rheumatol. 2015, 67, 555–562. [Google Scholar] [CrossRef]
- Muller, J.E.; Stone, P.H.; Turi, Z.G.; Rutherford, J.D.; Czeisler, C.A.; Parker, C.; Poole, W.K.; Passamani, E.; Roberts, R.; Robertson, T.; et al. Circadian variation in the frequency of onset of acute myocardial infarction. N. Engl. J. Med. 1985, 313, 1315–1322. [Google Scholar] [CrossRef]
- Suárez-Barrientos, A.; López-Romero, P.; Vivas, D.; Castro-Ferreira, F.; Núñez-Gil, I.; Franco, E.; Ruiz-Mateos, B.; García-Rubira, J.C.; Fernández-Ortiz, A.; Macaya, C.; et al. Circadian variations of infarct size in acute myocardial infarction. Heart 2011, 97, 970–976. [Google Scholar] [CrossRef]
- Devgun, M.S.; Dhillon, H.S. Importance of diurnal variations on clinical value and interpretation of serum urate measurements. J. Clin. Pathol. 1992, 45, 110–113. [Google Scholar] [CrossRef]
- Kanabrocki, E.L.; Third, J.L.; Ryan, M.D.; Nemchausky, B.A.; Shirazi, P.; Scheving, L.E.; McCormick, J.B.; Hermida, R.C.; Bremner, W.F.; Hoppensteadt, D.A.; et al. Circadian relationship of serum uric acid and nitric oxide. JAMA 2000, 283, 2240–2241. [Google Scholar] [CrossRef]
- Hakoda, M.; Masunari, N.; Yamada, M.; Fujiwara, S.; Suzuki, G.; Kodama, K.; Kasagi, F. Serum uric acid concentration as a risk factor for cardiovascular mortality: A longterm cohort study of atomic bomb survivors. J. Rheumatol. 2005, 32, 906–912. [Google Scholar] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Koyama, M.; Higashiura, Y.; Murase, T.; Nakamura, T.; Matsumoto, M.; Sakai, A.; Ohnishi, H.; Tanaka, M.; Saitoh, S.; et al. Differential regulation of hypoxanthine and xanthine by obesity in a general population. J. Diabetes Investig. 2020, 11, 878–887. [Google Scholar] [CrossRef]
- Murase, T.; Nampei, M.; Oka, M.; Miyachi, A.; Nakamura, T. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J. Chromatogr. B 2016, 1039, 51–58. [Google Scholar] [CrossRef]
- Sennels, H.P.; Jørgensen, H.L.; Goetze, J.P.; Fahrenkrug, J. Rhythmic 24-hour variations of frequently used clinical biochemical parameters in healthy young males—The Bispebjerg study of diurnal variations. Scand. J. Clin. Lab. Investig. 2012, 72, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Ebisuno, S.; Morimoto, S.; Yasukawa, S.; Yoshida, T.; Fukatani, T.; Minakata, S.; Uehara, M.; Ohkawa, T. [Circadian rhythms of lithogenic and inhibitory substances in the urine]. Hinyokika Kiyo 1986, 32, 667–671. [Google Scholar] [PubMed]
- Kayyali, U.S.; Donaldson, C.; Huang, H.; Abdelnour, R.; Hassoun, P.M. Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia. J. Biol. Chem. 2001, 276, 14359–14365. [Google Scholar] [CrossRef]
- Berry, C.E.; Hare, J.M. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J. Physiol. 2004, 555, 589–606. [Google Scholar] [CrossRef] [PubMed]
- Sahebjani, H. Changes in urinary uric acid excretion in obstructive sleep apnea before and after therapy with nasal continuous positive airway pressure. Chest 1998, 113, 1604–1608. [Google Scholar] [CrossRef]
- Deng, T.S.; Roenneberg, T. The flavo-enzyme xanthine oxidase is under circadian control in the marine alga Gonyaulax. Die Naturwissenschaften 2002, 89, 171–175. [Google Scholar] [CrossRef]
- Sun, R.; Huang, J.; Yang, N.; He, J.; Yu, X.; Feng, S.; Xie, Y.; Wang, G.; Ye, H.; Aa, J. Purine Catabolism Shows a Dampened Circadian Rhythmicity in a High-fat Diet-Induced Mouse Model of Obesity. Molecules 2019, 24, 4524. [Google Scholar] [CrossRef] [PubMed]
- Kanemitsu, T.; Tsurudome, Y.; Kusunose, N.; Oda, M.; Matsunaga, N.; Koyanagi, S.; Ohdo, S. Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARα. J. Biol. Chem. 2017, 292, 21397–21406. [Google Scholar] [CrossRef] [PubMed]
n = 30 | |
---|---|
Age, years | 67.6 ± 8.2 |
BMI, kg/m2 | 24.5 ± 3.6 |
Hypertension, n (%) | 22 (73) |
Dyslipidemia, n (%) | 27 (90) |
Diabetes mellitus, n (%) | 16 (53) |
Current smoker, n (%) | 8 (27) |
Creatinine, mg/dL | 0.74 ± 0.12 |
eGFR, mL/min/1.73 m2 | 83.4 ± 18.4 |
Medications | |
ACEis/ARBs, n (%) | 16 (53) |
β blockers, n (%) | 21 (70) |
Statins, n (%) | 28 (93) |
ΔUA | Δxanthine | Δhypoxanthine | ||||
---|---|---|---|---|---|---|
Coefficient | p | Coefficient | p | Coefficient | p | |
ΔUA | - | - | 0.42 | 0.02 | 0.37 | 0.04 |
Δxanthine | 0.42 | 0.02 | - | - | 0.73 | <0.001 |
Δhypoxanthine | 0.37 | 0.04 | 0.73 | <0.001 | - | - |
ΔUA | Δxanthine | Δhypoxanthine | ||||
---|---|---|---|---|---|---|
Coefficient | p | Coefficient | p | Coefficient | p | |
ΔUA | - | - | 0.19 | 0.31 | −0.27 | 0.15 |
Δxanthine | 0.19 | 0.31 | - | - | 0.47 | <0.01 |
Δhypoxanthine | −0.27 | 0.15 | 0.47 | <0.01 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, M.; Naito, R.; Sato, A.; Ishiwata, S.; Yatsu, S.; Shitara, J.; Matsumoto, H.; Murata, A.; Kato, T.; Suda, S.; et al. Diurnal Variations in Serum Uric Acid, Xanthine, and Xanthine Oxidoreductase Activity in Male Patients with Coronary Artery Disease. Nutrients 2023, 15, 4480. https://doi.org/10.3390/nu15204480
Shimizu M, Naito R, Sato A, Ishiwata S, Yatsu S, Shitara J, Matsumoto H, Murata A, Kato T, Suda S, et al. Diurnal Variations in Serum Uric Acid, Xanthine, and Xanthine Oxidoreductase Activity in Male Patients with Coronary Artery Disease. Nutrients. 2023; 15(20):4480. https://doi.org/10.3390/nu15204480
Chicago/Turabian StyleShimizu, Megumi, Ryo Naito, Akihiro Sato, Sayaki Ishiwata, Shoichiro Yatsu, Jun Shitara, Hiroki Matsumoto, Azusa Murata, Takao Kato, Shoko Suda, and et al. 2023. "Diurnal Variations in Serum Uric Acid, Xanthine, and Xanthine Oxidoreductase Activity in Male Patients with Coronary Artery Disease" Nutrients 15, no. 20: 4480. https://doi.org/10.3390/nu15204480
APA StyleShimizu, M., Naito, R., Sato, A., Ishiwata, S., Yatsu, S., Shitara, J., Matsumoto, H., Murata, A., Kato, T., Suda, S., Hiki, M., Kuwabara, M., Murase, T., Nakamura, T., & Kasai, T. (2023). Diurnal Variations in Serum Uric Acid, Xanthine, and Xanthine Oxidoreductase Activity in Male Patients with Coronary Artery Disease. Nutrients, 15(20), 4480. https://doi.org/10.3390/nu15204480