Vitamin D Status and Associated Factors of Older Adults in the Cross-Sectional 2015–2017 Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Ethics
2.2. Data Collection and Definition
2.3. Sample Detection
2.4. Data Analyses
3. Results
3.1. Basic Characteristics
3.2. Nutritional Status of Vitamin D
3.3. Influencing Factors for Vitamin D Inadequacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- van Schoor, N.; Lips, P. Global Overview of Vitamin D Status. Endocrinol. Metab. Clin. N. Am. 2017, 46, 845–870. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Xiao, P.; Ma, Y.; Fan, Z.; Zhou, F.; Zheng, J.; Zhang, L. Prevalence, trend, and predictor analyses of vitamin D deficiency in the US population, 2001–2018. Front. Nutr. 2022, 9, 965376. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, K.; Shahrokhi, M.; Huecker, M.R. Vitamin D. In StatPearls; StatPearls Publishing; Treasure Island, FL, USA. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441912/ (accessed on 29 January 2023).
- Shi, J.; He, L.; Yu, D.; Ju, L.; Guo, Q.; Piao, W.; Xu, X.; Zhao, L.; Yuan, X.; Cao, Q.; et al. Prevalence and Correlates of Metabolic Syndrome and Its Components in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Survey of Children and Lactating Mothers from 2016–2017. Nutrients 2022, 14, 3348. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.W. China Health Statistics Yearbook in 2018; China Union Medical University Press: Beijing, China, 2018. [Google Scholar]
- China CDC. Workbook of China Adult Chronic Disease and Nutrition Survey (2015–2017); China CDC: Beijing, China, 2015; (Unpublished Work). [Google Scholar]
- WS/T 441-2013; Method for Anemia Screen. National Health Commission of People’s Republic of China: Beijing, China, 2013.
- WS/T 428-2013; Criteria of Weight for Adults. National Health Commission of People’s Republic of China: Beijing, China, 2013.
- WS/T677-2020; Method for Vitamin D Deficiency Screening. National Health Commission of People’s Republic of China: Beijing, China, 2020.
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Piao, J.H.; Huo, J.S. China’s Nutrition and Health Status Monitoring Report 2010–2013 Part II Physical and Nutritional Status of the Population; People’s Medical Publishing House: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Zhao, L.Y.; Ding, G.Q.; Zhao, W.H. 2015–2017 China’s Population Nutrition and Health Status Monitoring Report; People’s Medical Publishing House: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Hu, Y.; Jiang, S.; Lu, J.; Yang, Z.; Yang, X.; Yang, L. Vitamin D Status for Chinese Children and Adolescents in CNNHS 2016–2017. Nutrients 2022, 14, 4928. [Google Scholar] [CrossRef] [PubMed]
- Laktasic-Zerjavic, N.; Korsic, M.; Crncevic-Orlic, Z.; Kovac, Z.; Polasek, O.; Soldo-Juresa, D. Vitamin D status, dependence on age, and seasonal variations in the concentration of vitamin D in Croatian postmenopausal women initially screened for osteoporosis. Clin. Rheumatol. 2010, 29, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Karampela, I.; Sakelliou, A.; Vallianou, N.; Christodoulatos, G.S.; Magkos, F.; Dalamaga, M. Vitamin D and Obesity: Current Evidence and Controversies. Curr. Obes. Rep. 2021, 10, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Bosdou, J.K.; Konstantinidou, E.; Anagnostis, P.; Kolibianakis, E.M.; Goulis, D.G. Vitamin D and obesity: Two interacting players in the field of infertility. Nutrients 2019, 11, 1455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, A.; Cai, J.; Hou, J.; Deng, H.; Liu, C. Bionics investigation of blood 25-hydroxyvitamin D in the interpretable biomechanics diagnosis of childhood anemia. Acta Biochim. Pol. 2023, 70, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Espelt, A.; Marí-Dell’Olmo, M.; Penelo, E.; Bosque-Prous, M. Applied Prevalence Ratio estimation with different Regression models: An example from a cross-national study on substance use research. Adicciones 2016, 29, 105–112. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. | 25(OH)D Concentration (ng/mL) | Vitamin D Nutritional Status (%, 95%CI) | ||||
---|---|---|---|---|---|---|---|
Median (P25–P75) | p Value | Sufficiency | Insufficiency | Deficiency | pValue | ||
Total | 6273 | 18.48 (13.27–24.71) | 41.73 (38.52–44.93) | 36.10 (34.20–38.00) | 22.17 (19.58–24.76) | ||
Sex | <0.0001 | <0.0001 | |||||
Male | 3130 | 20.30 (14.72–26.54) | 50.65 (47.06–54.24) | 33.18 (30.75–35.60) | 16.17 (13.75–18.59) | ||
Female | 3143 | 16.86 (12.08–22.56) | 33.50 (30.14–36.87) | 38.79 (36.43–41.16) | 27.70 (24.60–30.80) | ||
Age group | <0.0001 | <0.0001 | |||||
60–69 years | 2726 | 18.96 (13.88–25.11) a | 44.08 (40.62–47.53) | 36.14 (33.85–38.44) | 19.78 (17.08–22.47) | ||
70–79 years | 2667 | 18.15 (12.82–24.28) | 38.69 (34.96–42.43) | 35.95 (33.46–38.44) | 25.35 (22.11–28.59) | ||
80 years+ | 880 | 17.65 (12.87–24.57) | 38.93 (34.69–43.17) | 36.41 (32.98–39.84) | 24.66 (21.14–28.19) | ||
Ethnicity | <0.0001 | 0.0018 | |||||
Han | 5565 | 18.67 (13.58–24.91) | 42.80 (39.49–46.11) | 36.48 (34.50–38.46) | 20.72 (18.17–23.27) | ||
Minorities | 708 | 16.73 (11.52–22.94) | 33.23 (24.05–42.42) | 33.09 (27.43–38.75) | 33.68 (24.78–42.58) | ||
Region type | <0.0001 | 0.0004 | |||||
Urban | 2433 | 17.19 (12.62–23.09) | 36.93 (33.07–40.80) | 38.63 (35.97–41.29) | 24.44 (20.99–27.88) | ||
Rural | 3840 | 19.32 (13.77–25.79) | 45.52 (41.51–49.54) | 34.10 (31.85–36.35) | 20.38 (17.26–23.49) | ||
District | <0.0001 | <0.0001 | |||||
Eastern | 2096 | 20.77 (15.29–27.12) a | 50.81 (45.02–56.61) | 35.21 (31.38–39.05) | 13.98 (10.76–17.19) | ||
Midlands | 1903 | 18.78 (13.65–24.86) b | 43.34 (37.98–48.70) | 36.35 (33.25–39.46) | 20.31 (15.94–24.68) | ||
Western | 2274 | 16.25 (11.33–22.14) c | 31.76 (26.97–36.56) | 36.73 (33.90–39.57) | 31.50 (26.62–36.38) | ||
Latitude | <0.0001 | <0.0001 | |||||
Tropical | 460 | 27.57 (23.09–33.71) a | 83.79 (75.47–92.10) | 13.82 (6.26–21.37) | 2.40 (0.59–4.21) | ||
Subtropical | 2557 | 21.19 (16.14–26.84) b | 55.04 (50.42–59.66) | 33.40 (30.43–36.37) | 11.56 (8.68–14.43) | ||
Warm temperate | 2317 | 15.05 (10.84–20.13) d | 24.34 (20.98–27.71) | 41.13 (38.55–43.71) | 34.53 (30.15–38.91) | ||
Medium temperate | 939 | 16.22 (11.97–21.23) c | 30.25 (25.51–34.99) | 41.10 (37.30–44.90) | 28.65 (22.86–34.44) | ||
BMI | <0.0001 | <0.0001 | |||||
Thin | 396 | 20.01 (13.35–25.77) | 47.77 (40.97–54.56) | 28.90 (23.66–34.13) | 23.34 (18.29–28.39) | ||
Normal | 3226 | 19.15 (13.73–25.88) | 45.34 (41.54–49.14) | 33.82 (31.54–36.11) | 20.84 (17.95–23.73) | ||
Overweight | 1905 | 17.95 (13.27–23.40) | 38.45 (35.04–41.86) | 39.64 (37.04–42.25) | 21.91 (18.97–24.84) | ||
Obese | 746 | 17.05 (12.07–22.33) | 33.37 (29.07–37.66) | 39.18 (35.11–43.24) | 27.46 (22.75–32.16) | ||
Abdominal obesity | <0.0001 | <0.0001 | |||||
No | 3089 | 19.55 (14.06–26.08) a | 47.10 (43.26–50.93) | 33.71 (31.27–36.14) | 19.20 (16.50–21.89) | ||
Pre-abdominal obesity | 1109 | 18.55 (13.10–24.55) b | 42.23 (38.03–46.44) | 35.28 (31.74–38.83) | 22.48 (18.87–26.09) | ||
Abdominal obesity | 2075 | 17.26 (12.39–22.56) c | 34.08 (30.83–37.33) | 39.82 (37.30–42.34) | 26.10 (22.69–29.51) | ||
Anemia | 0.307 | 0.456 | |||||
No | 5627 | 18.54 (13.30–24.75) | 41.97 (38.74–45.20) | 36.12 (34.16–38.09) | 21.91 (19.27–24.55) | ||
Yes | 646 | 18.00 (13.04–24.37) | 39.40 (32.99–45.81) | 35.90 (31.70–40.11) | 24.70 (19.34–30.06) | ||
Season * | <0.0001 | <0.0001 | |||||
Spring | 740 | 17.59 (12.65–23.90) b | 37.94 (28.59–47.29) | 37.74 (31.42–44.07) | 24.32 (16.97–31.66) | ||
Summer | 133 | 20.58 (15.90–25.42) a | 53.29 (39.02–67.56) | 35.55 (22.69–48.42) | 11.15 (2.14–20.16) | ||
Autumn | 2662 | 19.41 (14.39–25.17) a | 46.67 (42.70–50.65) | 37.25 (34.82–39.69) | 16.07 (13.43–18.71) | ||
Winter | 2738 | 17.51 (12.10–24.23) b | 37.45 (32.96–41.94) | 34.58 (31.94–37.22) | 27.97 (23.85–32.10) | ||
Education | 0.032 | 0.158 | |||||
Primary | 4754 | 18.62 (13.25–24.95) a | 42.13 (38.62–45.64) | 35.02 (33.01–37.04) | 22.85 (19.96–25.73) | ||
Middle | 1355 | 18.27 (13.55–24.31) ab | 41.03 (37.04–45.01) | 38.81 (35.64–41.98) | 20.16 (16.85–23.47) | ||
College | 164 | 17.30 (12.54–22.19) b | 37.20 (27.74–46.67) | 40.97 (32.09–49.84) | 21.83 (14.34–29.32) | ||
Marriage | <0.0001 | <0.0001 | |||||
Yes | 5142 | 18.78 (13.60–24.93) | 43.02 (39.73–46.31) | 35.78 (33.74–37.82) | 21.20 (18.63–23.78) | ||
No | 1131 | 17.01 (12.09–23.34) | 34.65 (30.46–38.84) | 37.86 (34.52–41.21) | 27.48 (23.52–31.45) |
Characteristics | Odds Ratio (OR) | Prevalence Ratio (PR) | ||
---|---|---|---|---|
OR (95%CI) | p Value | PR (95%CI) | p Value | |
Sex | ||||
Male | Ref | Ref | ||
Female | 2.43 (2.10–2.80) | <0.0001 | 2.46 (2.18–2.79) | <0.0001 |
Age group | ||||
60–69 years | Ref | Ref | ||
70–79 years | 1.31 (1.14–1.50) | 0.295 | 1.30 (1.14–1.47) | <0.0001 |
80 years+ | 1.48 (1.22–1.81) | 0.005 | 1.49 (1.24–1.80) | <0.0001 |
Ethnicity | ||||
Han | Ref | Ref | ||
Minorities | 1.61 (1.10–2.36) | 0.014 | 1.58 (1.29–1.94) | <0.0001 |
Region type | ||||
Rural | Ref | Ref | ||
Urban | 1.46 (1.21–1.77) | 0.0001 | 1.49 (1.31–1.69) | <0.0001 |
District | ||||
Eastern | Ref | Ref | ||
Midlands | 1.34 (1.01–1.76) | 0.069 | 1.34 (1.16–1.55) | <0.0001 |
Western | 2.82 (2.11–3.75) | <0.0001 | 3.03 (2.61–3.53) | <0.0001 |
Latitude | ||||
tropical | Ref | Ref | ||
Subtropical | 4.82 (2.42–9.59) | 0.010 | 5.16 (3.87–6.96) | <0.0001 |
Warm temperate | 23.08 (11.57–46.03) | <0.0001 | 24.34 (18.17–33.02) | <0.0001 |
Medium temperate | 16.55 (7.96–34.39) | <0.0001 | 18.26 (13.27–25.40) | <0.0001 |
BMI | ||||
Thin | 1.16 (0.88–1.53) | 0.292 | 1.12 (0.88–1.44) | 0.354 |
Normal | Ref | Ref | ||
Overweight | 1.02 (0.87–1.20) | 0.944 | 1.01 (0.87–1.18) | 0.883 |
Obese | 0.93 (0.72–1.21) | 0.341 | 0.94 (0.74–1.18) | 0.574 |
Abdominal obesity | ||||
No | Ref | Ref | ||
Pre-abdominal obesity | 1.09 (0.91–1.30) | 0.746 | 1.09 (0.92–1.30) | 0.303 |
Abdominal obesity | 1.24 (1.03–1.50) | 0.038 | 1.21 (1.02–1.45) | 0.032 |
Anemia | ||||
No | Ref | Ref | ||
Yes | 1.37 (1.10–1.70) | 0.005 | 1.38 (1.14–1.67) | 0.001 |
Season | ||||
Spring | 1.07 (0.55–2.10) | 0.330 | 1.09 (0.70–1.69) | 0.700 |
Summer | Ref | |||
Autumn | 0.70 (0.36–1.37) | 0.010 | 0.72 (0.48–1.08) | 0.115 |
Winter | 1.05 (0.53–2.05) | 0.353 | 1.07 (0.71–1.61) | 0.759 |
Education | ||||
Primary | Ref | Ref | ||
Middle | 1.21 (1.00–1.45) | 0.717 | 1.24 (1.06–1.44) | 0.006 |
College | 1.33 (0.86–2.04) | 0.381 | 1.47 (1.01–2.16) | 0.047 |
Marriage | ||||
Yes | Ref | Ref | ||
No | 1.16 (0.97–1.39) | 0.096 | 1.17 (1.00–1.38) | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Wang, R.; Mao, D.; Chen, J.; Li, M.; Li, W.; Yang, X.; Yang, L. Vitamin D Status and Associated Factors of Older Adults in the Cross-Sectional 2015–2017 Survey. Nutrients 2023, 15, 4476. https://doi.org/10.3390/nu15204476
Hu Y, Wang R, Mao D, Chen J, Li M, Li W, Yang X, Yang L. Vitamin D Status and Associated Factors of Older Adults in the Cross-Sectional 2015–2017 Survey. Nutrients. 2023; 15(20):4476. https://doi.org/10.3390/nu15204476
Chicago/Turabian StyleHu, Yichun, Rui Wang, Deqian Mao, Jing Chen, Min Li, Weidong Li, Xiaoguang Yang, and Lichen Yang. 2023. "Vitamin D Status and Associated Factors of Older Adults in the Cross-Sectional 2015–2017 Survey" Nutrients 15, no. 20: 4476. https://doi.org/10.3390/nu15204476
APA StyleHu, Y., Wang, R., Mao, D., Chen, J., Li, M., Li, W., Yang, X., & Yang, L. (2023). Vitamin D Status and Associated Factors of Older Adults in the Cross-Sectional 2015–2017 Survey. Nutrients, 15(20), 4476. https://doi.org/10.3390/nu15204476