Validation of the Updated GloboDiet Version by Protein and Potassium Intake for the German National Nutrition Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment of Food Consumption by 24 h Recalls (GloboDiet)
2.4. Nitrogen, Potassium, and Sodium Urine Excretion
2.5. Energy Expenditure
2.6. Statistical Analysis
3. Results
3.1. Protein and Potassium
3.2. Sodium
3.3. Energy
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Staveren, W.A.; Ocké, M.C.; de Vries, J.H.M. Estimation of dietary intake. In Present Knowledge in Nutrition, 10th ed.; Erdman, J.W., MacDonald, J.A., Zeisel, S.H., Eds.; Wiley-Blackwell: Washington, DC, USA, 2012. [Google Scholar]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Willett, W.; Tinker, L.F.; Subar, A.F.; Spiegelman, D.; Rhodes, D.; Potischman, N.; Neuhouser, M.L.; et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake. Am. J. Epidemiol. 2015, 181, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Slimani, N.; Freisling, H.; Illner, A.-K.; Huybrechts, I. Methods to Determine Dietary Intake. In Nutrition Research Methodologies; Lovegrove, J.A., Hodson, L., Sharma, S., Lanham-New, S.A., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2015; pp. 48–70. [Google Scholar] [CrossRef]
- Bingham, S.A. Biomarkers in nutritional epidemiology. Public Health Nutr. 2002, 5, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Pao, E.M.; Cypel, Y.S. Estimation of dietary intake. In Present Knowledge in Nutrition, 7th ed.; Ziegler, E.E., Filer, L.J., Eds.; ILSI Press: Washington, DC, USA, 1996; pp. 498–507. [Google Scholar]
- Van Puyvelde, H.; Perez-Cornago, A.; Casagrande, C.; Nicolas, G.; Versele, V.; Skeie, G.; Schulze, M.B.; Johansson, I.; María Huerta, J.; Oliverio, A.; et al. Comparing calculated nutrient intakes using different food composition databases: Results from the European prospective investigation into cancer and nutrition (EPIC) cohort. Nutrients 2020, 12, 2906. [Google Scholar] [CrossRef]
- Baranowski, T. 24-hour recall and diet record methods. In Nutritional Epidemiology, 3rd ed.; Willett, W., Ed.; Oxford University Press: New York, NY, USA, 2013; pp. 49–69. [Google Scholar] [CrossRef]
- Crispim, S.P.; Geelen, A.; Siebelink, E.; Huybrechts, I.; Lillegaard, I.T.L.; Margaritis, I.; Rehurkova, I.; Slimani, N.; Ocke, M.C.; de Boer, E.; et al. Design aspects of 24 h recall assessments may affect the estimates of protein and potassium intake in dietary surveys. Public Health Nutr. 2012, 15, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Crispim, S.P.; Geelen, A.; de Vries, J.H.; Freisling, H.; Souverein, O.W.; Hulshof, P.J.; Ocke, M.C.; Boshuizen, H.; Andersen, L.F.; Ruprich, J.; et al. Bias in protein and potassium intake collected with 24-h recalls (EPIC-Soft) is rather comparable across European populations. Eur. J. Nutr. 2012, 51, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- de Boer, E.J.; Slimani, N.; van ‘t Veer, P.; Boeing, H.; Feinberg, M.; Leclercq, C.; Trolle, E.; Amiano, P.; Andersen, L.F.; Freisling, H.; et al. The European Food Consumption Validation Project: Conclusions and recommendations. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), S102–S107. [Google Scholar] [CrossRef]
- Kuhnle, G.G.C. Biomarkers of intake. In Nutrition Research Methodologies; Lovegrove, J.A., Hodson, L., Sharma, S., Lanham-New, S.A., Eds.; John Wiley & Sons: Oxford, UK, 2015; pp. 90–107. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidance on the EU Menu methodology. EFSA J. 2014, 12, 1–77. [Google Scholar]
- EFSA. General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J. 2009, 7, 1–51. [Google Scholar]
- Slimani, N.; Casagrande, C.; Nicolas, G.; Freisling, H.; Huybrechts, I.; Ocké, M.C.; Niekerk, E.M.; Van Rossum, C.; Bellemans, M.; De Maeyer, M.; et al. The standardized computerized 24-h dietary recall method EPIC-Soft adapted for pan-European dietary monitoring. Eur. J. Clin. Nutr. 2011, 65, S5–S15. [Google Scholar] [CrossRef]
- Heuer, T.; Krems, C.; Moon, K.; Brombach, C.; Hoffmann, I. Food consumption of adults in Germany: Results of the German National Nutrition Survey II based on diet history interviews. Br. J. Nutr. 2015, 113, 1603–1614. [Google Scholar] [CrossRef]
- Gose, M.; Krems, C.; Heuer, T.; Hoffmann, I. Trends in food consumption and nutrient intake in Germany between 2006 and 2012: Results of the German National Nutrition Monitoring (NEMONIT). Br. J. Nutr. 2016, 115, 1498–1507. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Charrondiere, R.U.; van Kappel, A.L.; Ocke, M.C.; Lagiou, A.; van Liere, M.; Agudo, A.; Pala, V.; Brandstetter, B.; et al. Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. Comput. Meth Programs Biomed. 1999, 58, 251–266. [Google Scholar] [CrossRef]
- Bel-Serrat, S.; Knaze, V.; Nicolas, G.; Marchioni, D.M.; Steluti, J.; Mendes, A.; Crispim, S.P.; Fisberg, R.M.; Pereira, R.A.; Araujo, M.C.; et al. Adapting the standardised computer- and interview-based 24 h dietary recall method (GloboDiet) for dietary monitoring in Latin America. Public Health Nutr. 2017, 20, 2847–2858. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Park, J.Y.; Nicolas, G.; Paik, H.Y.; Kim, J.; Slimani, N. Adapting a standardised international 24 h dietary recall methodology (GloboDiet software) for research and dietary surveillance in Korea. Br. J. Nutr. 2015, 113, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Brustad, M.; Skeie, G.; Braaten, T.; Slimani, N.; Lund, E. Comparison of telephone vs face-to-face interviews in the assessment of dietary intake by the 24 h recall EPIC SOFT program–the Norwegian calibration study. Eur. J. Clin. Nutr. 2003, 57, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Crispim, S.P.; de Vries, J.H.; Geelen, A.; Souverein, O.W.; Hulshof, P.J.; Lafay, L.; Rousseau, A.S.; Lillegaard, I.T.; Andersen, L.F.; Huybrechts, I.; et al. Two non-consecutive 24 h recalls using EPIC-Soft software are sufficiently valid for comparing protein and potassium intake between five European centres–results from the European Food Consumption Validation (EFCOVAL) study. Br. J. Nutr. 2011, 105, 447–458. [Google Scholar] [CrossRef]
- Slimani, N.; Ferrari, P.; Ocke, M.; Welch, A.; Boeing, H.; Liere, M.; Pala, V.; Amiano, P.; Lagiou, A.; Mattisson, I.; et al. Standardization of the 24-hour diet recall calibration method used in the european prospective investigation into cancer and nutrition (EPIC): General concepts and preliminary results. Eur. J. Clin. Nutr. 2000, 54, 900–917. [Google Scholar] [CrossRef]
- Crispim, S.P.; Nicolas, G.; Casagrande, C.; Knaze, V.; Illner, A.K.; Huybrechts, I.; Slimani, N. Quality assurance of the international computerised 24 h dietary recall method (EPIC-Soft). Br. J. Nutr. 2014, 111, 506–515. [Google Scholar] [CrossRef]
- Slimani, N.; Bingham, S.; Runswick, S.; Ferrari, P.; Day, N.E.; Welch, A.A.; Key, T.J.; Miller, A.B.; Boeing, H.; Sieri, S.; et al. Group level validation of protein intakes estimated by 24-hour diet recall and dietary questionnaires against 24-hour urinary nitrogen in the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study. Cancer Epidemiol. Biomark. Prev. 2003, 12, 784–795. [Google Scholar]
- Kroke, A.; Klipstein-Grobusch, K.; Voss, S.; Moseneder, J.; Thielecke, F.; Noack, R.; Boeing, H. Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: Comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am. J. Clin. Nutr. 1999, 70, 439–447. [Google Scholar]
- Pascher, P.; Hemmerling, U.; Naß, S.; Stork, S. Deutscher Bauernverband. In Situationsbericht 2020/21. Trends und Fakten zur Landwirtschaft [Situation Report 2020/21. Trends and Facts on Agriculture]; Deutscher Bauernverband e. V. [The German Farmers’ Association]: Berlin, Germany, 2020. [Google Scholar]
- Linseisen, J.; Renner, B.; Buyken, A.; Watzl, B.; Ellrott, T.; Grune, T.; Hauner, H.; Heseker, H.; Kulling, S.E.; Nöthlings, U.; et al. Perspektiven für die Ernährungsforschung 2022. Position der Deutschen Gesellschaft für Ernährung e. V. [Perspectives for Nutrition Research 2022. Position of the German Nutrition Society e. V.]; Ernaehrungs Umschau: Wiesbaden, Germany, 2022; Volume 69, pp. 184–189. [Google Scholar]
- Bingham, S.A. Urine nitrogen as a biomarker for the validation of dietary protein intake. J. Nutr. 2003, 133, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Va, P.; Dodd, K.W.; Zhao, L.; Thompson-Paul, A.M.; Mercado, C.I.; Terry, A.L.; Jackson, S.L.; Wang, C.Y.; Loria, C.M.; Moshfegh, A.J.; et al. Evaluation of measurement error in 24-hour dietary recall for assessing sodium and potassium intake among US adults–National Health and Nutrition Examination Survey (NHANES), 2014. Am. J. Clin. Nutr. 2019, 109, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.G.; Murayi, T.; Clemens, J.C.; Baer, D.J.; Sebastian, R.S.; Moshfegh, A.J. The USDA Automated Multiple-Pass Method accurately assesses population sodium intakes. Am. J. Clin. Nutr. 2013, 97, 958–964. [Google Scholar] [CrossRef]
- Vandevijvere, S.; De Keyzer, W.; Chapelle, J.P.; Jeanne, D.; Mouillet, G.; Huybrechts, I.; Hulshof, P.; Van Oyen, H. Estimate of total salt intake in two regions of Belgium through analysis of sodium in 24-h urine samples. Eur. J. Clin. Nutr. 2010, 64, 1260–1265. [Google Scholar] [CrossRef]
- Livingstone, M.B.E.; Black, A.E. Markers of the validity of reported energy intake. J. Nutr. 2003, 133, 895S–920S. [Google Scholar] [CrossRef] [PubMed]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Dötsch, A.; Merz, B.; Louis, S.; Krems, C.; Herrmann, M.; Dörr, C.; Watzl, B.; Bub, A.; Straßburg, A.; Engelbert, A. Cross-sectional Human Observational Study of Energy and Nutrient Intake and the Intestinal Microbiome. JMIR Res. Protoc. 2023, 12, e42529. [Google Scholar] [CrossRef]
- Bingham, S.A.; Cummings, J.H. The use of creatinine output as a check on the completeness of 24-hour urine collections. Hum. Nutr. Clin. Nutr. 1985, 39, 343–353. [Google Scholar]
- Joossens, J.V.; Geboers, J. Monitoring salt intake of the population: Methodological considerations. In Surveillance of the Dietary Habits of the Population with Regard to Cardiovascular Diseases. EURO Nut Report 2; de Backer, G.G., Pedoe, H.T., Ducimetière, P., Eds.; Department of Human Nutrition, Agricultural University: Wageningen, The Netherlands, 1983; pp. 61–73. [Google Scholar]
- Hartmann, B.M.; Heuer, T.; Hoffmann, I. The German Nutrient Database: Effect of different versions on the calculated energy and nutrient intake of the German population. J. Food Compost. Anal. 2015, 42, 26–29. [Google Scholar] [CrossRef]
- Tasevska, N.; Runswick, S.A.; Bingham, S.A. Urinary potassium is as reliable as urinary nitrogen for use as a recovery biomarker in dietary studies of free living individuals. J. Nutr. 2006, 136, 1334–1340. [Google Scholar] [CrossRef]
- Bingham, S.A.; Cummings, J.H. Urine nitrogen as an independent validatory measure of dietary intake: A study of nitrogen balance in individuals consuming their normal diet. Am. J. Clin. Nutr. 1985, 42, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.S.; Midthune, D.; Carroll, R.J.; Krebs-Smith, S.; Subar, A.F.; Troiano, R.P.; Dodd, K.; Schatzkin, A.; Bingham, S.A.; Ferrari, P.; et al. Adjustments to improve the estimation of usual dietary intake distributions in the population. J. Nutr. 2004, 134, 1836–1843. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A.; Cassidy, A.; Cole, T.J.; Welch, A.; Runswick, S.A.; Black, A.E.; Thurnham, D.; Bates, C.; Khaw, K.T.; Key, T.J. Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br. J. Nutr. 1995, 73, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.E. Proteins and Amino Acids. In Modern Nutrition in Health and Disease, 10th ed.; Shils, M.E., Shike, M., Ross, A.C., Caballero, B., Cousins, R.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 23–61. [Google Scholar]
- Biesalski, H.K. Stoffwechsel und Wirkung der Nahrungsbestandteile [Metabolism and effect of food components]. In Ernährungsmedizin. Nach dem Curriculum Ernährungsmedizin der Bundesärztekammer [Nutritional Medicine. According to the Curriculum Nutritional Medicine of the German Medical Association], 2. überarbeitete und erweiterte Auflage ed.; Biesalski, H.K., Fürst, P., Kasper, H., Kluthe, R., Pölert, W., Puchstein, C., Stähelin, H.B., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 1999; pp. 102–104. [Google Scholar]
- Holbrook, J.T.; Patterson, K.Y.; Bodner, J.E.; Douglas, L.W.; Veillon, C.; Kelsay, J.L.; Mertz, W.; Smith, J.C., Jr. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 1984, 40, 786–793. [Google Scholar] [CrossRef]
- Müller, M.J.; Bosy-Westphal, A.; Klaus, S.; Kreymann, G.; Luhrmann, P.M.; Neuhauser-Berthold, M.; Noack, R.; Pirke, K.M.; Platte, P.; Selberg, O.; et al. World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: Generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. Am. J. Clin. Nutr. 2004, 80, 1379–1390. [Google Scholar]
- CamNtech Ltd. Actiheart User Manual 4.0.129; CamNtech Ltd.: Cambridgeshire, UK, 2018. [Google Scholar]
- Ziegler, E.E.; Filer, L.J.; International Life Sciences Institute-Nutrition Foundation. Present Knowledge in Nutrition, 7th ed.; ILSI Press, International Life Sciences Institute: Washington, DC, USA, 1996. [Google Scholar]
- Butte, N.F.; Caballero, B. Energy needs: Assessment and requirements. In Modern Nutrition in Health and Disease, 10th ed.; Shils, M.E., Shike, M., Ross, A.C., Caballero, B., Cousins, R.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 136–148. [Google Scholar]
- Liu, J.; Tang, W.; Chen, G.; Lu, Y.; Feng, C.; Tu, X.M. Correlation and agreement: Overview and clarification of competing concepts and measures. Shanghai Arch. Psychiatry 2016, 28, 115–120. [Google Scholar]
- Datta, D. Blandr: A Bland-Altman Method Comparison Package for R; Zenodo: Genève, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kwiecien, R.; Kopp-Schneider, A.; Blettner, M. Konkordanzanalyse [Concordance analysis]. Dtsch. Arztebl. Int. 2011, 108, 515–521. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef]
- Koch, S.A.J.; Conrad, J.; Cade, J.E.; Weinhold, L.; Alexy, U.; Nöthlings, U. Validation of the web-based self-administered 24-h dietary recall myfood24-Germany: Comparison with a weighed dietary record and biomarkers. Eur. J. Nutr. 2021, 60, 4069–4082. [Google Scholar] [CrossRef]
- McLean, R.M.; Farmer, V.L.; Nettleton, A.; Cameron, C.M.; Cook, N.R.; Woodward, M.; Campbell, N.R.C. Twenty-four-hour diet recall and diet records compared with 24-hour urinary excretion to predict an individual’s sodium consumption: A systematic review. J. Clin. Hypertens. 2018, 20, 1360–1376. [Google Scholar] [CrossRef] [PubMed]
- James, W.P.; Ralph, A.; Sanchez-Castillo, C.P. The dominance of salt in manufactured food in the sodium intake of affluent societies. Lancet 1987, 1, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Campino, C.; Hill, C.; Baudrand, R.; Martínez-Aguayo, A.; Aglony, M.; Carrasco, C.A.; Ferrada, C.; Loureiro, C.; Vecchiola, A.; Bancalari, R.; et al. Usefulness and pitfalls in sodium intake estimation: Comparison of dietary assessment and urinary excretion in Chilean children and adults. Am. J. Hypertens. 2016, 29, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Doubly labelled water assessment of energy expenditure: Principle, practice, and promise. Eur. J. Appl. Physiol. 2017, 117, 1277–1285. [Google Scholar] [CrossRef]
All | Men | Women | |
---|---|---|---|
Participants (n (%)) | 109 (100) | 52 (47.7) | 57 (52.3) |
Age (years) (mean) | 49.6 | 50.3 | 49.0 |
Descriptive percentages | % 1 | % 1 | % 1 |
Age (years) | |||
<40 | 33 | 33 | 33 |
40–59 | 32 | 33 | 32 |
≥60 | 35 | 35 | 35 |
Body mass index (kg/m2) | |||
<25 | 60 | 50 | 68 |
25, 0–29, 9 | 33 | 44 | 23 |
≥30, 0 | 7 | 6 | 9 |
School education | |||
Low (<10 years) | 8 | 6 | 8 |
Intermediate (10 years) | 17 | 13 | 19 |
High (>10 years) | 76 | 81 | 72 |
Smoking status | |||
Non-smokers | 91 | 92 | 89 |
Occasional smokers | 6 | 4 | 7 |
Smokers | 4 | 4 | 4 |
Protein Intake and Excretion | Mean 1 | CI (Mean) 2 | Std Error | P05 | P50 | P95 | Diff |
---|---|---|---|---|---|---|---|
Men (n = 51) | |||||||
Protein intake | 101 | 88/114 | 6 | 53 | 91 | 223 | |
Protein excretion, lower limit | 106 n.s. | 94/119 n.s. | 6 | 65 | 99 | 190 | −5 |
Protein excretion, upper limit | 123 * | 109/137 n.s. | 7 | 75 | 114 | 220 | −22 |
Women (n = 56) | |||||||
Protein intake | 68 | 61/74 | 3 | 39 | 64 | 103 | |
Protein excretion, lower limit | 70 n.s. | 64/75 n.s. | 3 | 41 | 68 | 114 | −2 |
Protein excretion, upper limit | 80 * | 74/87 * | 3 | 47 | 78 | 132 | −12 |
Potassium intake and excretion | |||||||
Men (n = 51) | |||||||
Potassium intake | 3848 | 3502/4194 | 172 | 2085 | 3754 | 6282 | |
Potassium excretion, lower limit | 3692 n.s. | 3276/4109 n.s. | 207 | 1843 | 3417 | 6927 | 156 |
Potassium excretion, upper limit | 4316 * | 3829/4802 n.s. | 242 | 2154 | 3993 | 8096 | −468 |
Women (n = 56) | |||||||
Potassium intake | 3145 | 2893/3397 | 126 | 1836 | 2999 | 4687 | |
Potassium excretion, lower limit | 3295 n.s. | 2871/3719 n.s. | 211 | 1503 | 2817 | 6599 | −150 |
Potassium excretion, upper limit | 3851 n.s. | 3356/4346 n.s. | 247 | 1757 | 3293 | 7713 | −706 |
Men (n = 51) | Mean 1 | CI (Mean) 2 | Std Error | P05 | P50 | P95 | Diff |
---|---|---|---|---|---|---|---|
Sodium intake | 2889 | 2481/3297 | 203 | 812 | 2714 | 5185 | |
Sodium excretion lower limit | 4598 * | 4018/5178 * | 289 | 1948 | 4170 | 8224 | −1709 |
Sodium excretion upper limit | 5079 * | 4438/5720 * | 319 | 2152 | 4606 | 9085 | −2190 |
Women (n = 56) | |||||||
Sodium intake | 2406 | 2032/2780 | 190 | 922 | 2118 | 5290 | |
Sodium excretion lower limit | 4151 * | 3416/4886 * | 367 | 1493 | 3436 | 9470 | −1745 |
Sodium excretion upper limit | 4585 * | 3773/5397 * | 405 | 1649 | 3796 | 10,461 | −2179 |
Men (n = 43) | Mean 1 | CI (Mean) 2 | Std Error | P05 | P50 | P95 | Diff |
---|---|---|---|---|---|---|---|
Energy intake | 2580 | 2354/2806 | 112 | 1434 | 2542 | 3786 | |
Resting metabolic rate | 1755 | 1715/1794 | 20 | 1518 | 1788 | 1919 | |
Activity energy expenditure | 396 | 339/453 | 28 | 164 | 352 | 731 | |
Total energy expenditure | 2388 n.s. | 2298/2479 n.s. | 45 | 1948 | 2373 | 2850 | −192 |
Women (n = 39) | |||||||
Energy intake | 2019 | 1827/2211 | 95 | 1060 | 1953 | 2910 | |
Resting metabolic rate | 1347 | 1293/1401 | 27 | 1150 | 1316 | 1550 | |
Activity energy expenditure | 494 | 406/581 | 43 | 210 | 411 | 1017 | |
Total energy expenditure | 2047 n.s. | 1926/2167 n.s. | 60 | 1634 | 1934 | 2753 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wittig, F.; Krems, C.; Engelbert, A.K.; Strassburg, A. Validation of the Updated GloboDiet Version by Protein and Potassium Intake for the German National Nutrition Monitoring. Nutrients 2023, 15, 4418. https://doi.org/10.3390/nu15204418
Wittig F, Krems C, Engelbert AK, Strassburg A. Validation of the Updated GloboDiet Version by Protein and Potassium Intake for the German National Nutrition Monitoring. Nutrients. 2023; 15(20):4418. https://doi.org/10.3390/nu15204418
Chicago/Turabian StyleWittig, Friederike, Carolin Krems, Ann Katrin Engelbert, and Andrea Strassburg. 2023. "Validation of the Updated GloboDiet Version by Protein and Potassium Intake for the German National Nutrition Monitoring" Nutrients 15, no. 20: 4418. https://doi.org/10.3390/nu15204418
APA StyleWittig, F., Krems, C., Engelbert, A. K., & Strassburg, A. (2023). Validation of the Updated GloboDiet Version by Protein and Potassium Intake for the German National Nutrition Monitoring. Nutrients, 15(20), 4418. https://doi.org/10.3390/nu15204418