Dose-Dependent Beneficial Effect of Ketone Supplement-Evoked Ketosis on Anxiety Level in Female WAG/Rij Rats: Sometimes Less Is More
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Light–Dark Box Test
2.3. Experimental Design
2.4. Statistics
3. Results
3.1. Effect of KEMCT Administration on Anxiety Levels
3.2. Effect of KEMCT Administration on Blood Levels of R-βHB and Glucose as Well as Body Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bandelow, B.; Michaelis, S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin. Neurosci. 2015, 17, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, M.K.; Hovatta, I. Genetic insights into the neurobiology of anxiety. Trends Neurosci. 2023, 46, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Omori, N.E.; Malys, M.K.; Woo, G.; Mansor, L. Exploring the role of ketone bodies in the diagnosis and treatment of psychiatric disorders. Front. Psychiatry 2023, 14, 1142682. [Google Scholar] [CrossRef]
- Dias, B.G.; Banerjee, S.B.; Goodman, J.V.; Ressler, K.J. Towards new approaches to disorders of fear and anxiety. Curr. Opin. Neurobiol. 2013, 23, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Kemp, N.; Adeyemo, O.; Buchanan, P.; Stone, T.W. Anxiolytic activity of adenosine receptor activation in mice. Br. J. Pharmacol. 1995, 1116, 2127–2133. [Google Scholar] [CrossRef]
- Kakui, N.; Yokoyama, F.; Yamauchi, M.; Kitamura, K.; Imanishi, T.; Inoue, T.; Koyama, T. Anxiolytic-like profile of mirtazapine in rat conditioned fear stress model: Functional significance of 5-hydroxytryptamine 1A receptor and alpha1-adrenergic receptor. Pharmacol. Biochem. Behav. 2009, 92, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Using the conditioned fear stress (CFS) animal model to understand the neurobiological mechanisms and pharmacological treatment of anxiety. Shanghai Arch. Psychiatry 2012, 24, 241–249. [Google Scholar] [CrossRef]
- Bandelow, B.; Michaelis, S.; Wedekind, D. Treatment of anxiety disorders. Dialogues Clin. Neurosci. 2017, 19, 93–107. [Google Scholar] [CrossRef]
- Ari, C.; Kovács, Z.; Juhasz, G.; Murdun, C.; Goldhagen, C.R.; Koutnik, A.P.; Poff, A.M.; Kesl, S.L.; D’Agostino, D.P. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague-Dawley and Wistar Albino Glaxo/Rijswijk Rats. Front. Mol. Neurosci. 2016, 9, 137. [Google Scholar] [CrossRef]
- Bornebusch, A.B.; Mason, G.F.; Tonetto, S.; Damsgaard, J.; Gjedde, A.; Fink-Jensen, A.; Thomsen, M. Effects of ketogenic diet and ketone monoester supplement on acute alcohol withdrawal symptoms in male mice. Psychopharmacology 2021, 238, 833–844. [Google Scholar] [CrossRef]
- Hollis, F.; Mitchell, E.S.; Canto, C.; Wang, D.; Sandi, C. Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats. Neuropharmacology 2018, 138, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Kashiwaya, Y.; Bergman, C.; Lee, J.H.; Wan, R.; King, M.T.; Mughal, M.R.; Okun, E.; Clarke, K.; Mattson, M.P.; Veech, R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2013, 34, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Kesl, S.L.; Poff, A.M.; Ward, N.P.; Fiorelli, T.N.; Ari, C.; Van Putten, A.J.; Sherwood, J.W.; Arnold, P.; D’Agostino, D.P. Effects of exogenous ketone supplementation on blood ketone, glucose, triglyceride, and lipoprotein levels in Sprague-Dawley rats. Nutr. Metab. 2016, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Kovács, Z.; D’Agostino, D.P.; Ari, C. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats. Front. Behav. Neurosci. 2018, 12, 29. [Google Scholar] [CrossRef]
- Stavitzski, N.M.; Landon, C.S.; Hinojo, C.M.; Poff, A.M.; Rogers, C.Q.; D’Agostino, D.P.; Dean, J.B. Exogenous ketone ester delays CNS oxygen toxicity without impairing cognitive and motor performance in male Sprague-Dawley rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, 100–111. [Google Scholar] [CrossRef]
- Ari, C.; D’Agostino, D.P.; Diamond, D.M.; Kindy, M.; Park, C.; Kovács, Z. Elevated Plus Maze Test Combined with Video Tracking Software to Investigate the Anxiolytic Effect of Exogenous Ketogenic Supplements. J. Vis. Exp. 2019, 143. [Google Scholar] [CrossRef]
- Kovács, Z.; D’Agostino, D.P.; Diamond, D.; Kindy, M.S.; Rogers, C.; Ari, C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front. Psychiatry 2019, 10, 363. [Google Scholar] [CrossRef]
- Kraeuter, A.K.; Phillips, R.; Sarnyai, Z. Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 101, 109913. [Google Scholar] [CrossRef]
- Coenen, A.M.; Van Luijtelaar, E.L. Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats. Behav. Genet. 2003, 33, 635–655. [Google Scholar] [CrossRef]
- Kovács, Z.; Brunner, B.; D’Agostino, D.P.; Ari, C. Age- and Sex-Dependent Modulation of Exogenous Ketone Supplement-Evoked Effects on Blood Glucose and Ketone Body Levels in Wistar Albino Glaxo Rijswijk Rats. Front. Neurosci. 2021, 14, 618422. [Google Scholar] [CrossRef]
- Saré, R.M.; Lemons, A.; Smith, C.B. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci. 2021, 11, 522. [Google Scholar] [CrossRef] [PubMed]
- Himanshu; Dharmila; Sarkar, D.; Nutan. A Review of Behavioral Tests to Evaluate Different Types of Anxiety and Anti-anxiety Effects. Clin. Psychopharmacol. Neurosci. 2020, 18, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Midzyanovskaya, I.S.; Shatskova, A.B.; Sarkisova, K.Y.; van Luijtelaar, G.; Tuomisto, L.; Kuznetsova, G.D. Convulsive and nonconvulsive epilepsy in rats: Effects on behavioral response to novelty stress. Epilepsy Behav. 2005, 6, 543–551. [Google Scholar] [CrossRef]
- Martin, P. Animal models sensitive to anti-anxiety agents. Acta Psychiatr. Scand. Suppl. 1998, 393, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Slawecki, C.J. Comparison of anxiety-like behavior in adolescent and adult Sprague-Dawley rats. Behav. Neurosci. 2005, 119, 1477–1483. [Google Scholar] [CrossRef]
- Desikan, A.; Wills, D.N.; Ehlers, C.L. Ontogeny and adolescent alcohol exposure in Wistar rats: Open field conflict, light/dark box and forced swim test. Pharmacol. Biochem. Behav. 2014, 122, 279–285. [Google Scholar] [CrossRef]
- Sarkisova, K.Y.; Kulikov, M.A. Behavioral characteristics of WAG/Rij rats susceptible and non-susceptible to audiogenic seizures. Behav. Brain Res. 2006, 166, 9–18. [Google Scholar] [CrossRef]
- Smythe, J.W.; Murphy, D.; Bhatnagar, S.; Timothy, C.; Costall, B. Muscarinic antagonists are anxiogenic in rats tested in the black-white box. Pharmacol. Biochem. Behav. 1996, 54, 57–63. [Google Scholar] [CrossRef]
- Ari, C.; Murdun, C.; Koutnik, A.P.; Goldhagen, C.R.; Rogers, C.; Park, C.; Bharwani, S.; Diamond, D.M.; Kindy, M.S.; D’Agostino, D.P.; et al. Exogenous Ketones Lower Blood Glucose Level in Rested and Exercised Rodent Models. Nutrients 2019, 11, 2330. [Google Scholar] [CrossRef]
- Kovács, Z.; Brunner, B.; D’Agostino, D.P.; Ari, C. Inhibition of adenosine A1 receptors abolished the nutritional ketosis-evoked delay in the onset of isoflurane-induced anesthesia in Wistar Albino Glaxo Rijswijk rats. BMC Anesthesiol. 2020, 20, 30. [Google Scholar] [CrossRef]
- Kovács, Z.; D’Agostino, D.P.; Ari, C. Ketone supplementation abolished isoflurane anesthesia-induced elevation in blood glucose level and increased recovery time from anesthesia in Wistar Albino Glaxo Rijswijk rats. BMC Anesthesiol. 2023, 23, 43. [Google Scholar] [CrossRef]
- D’Agostino, D.P.; Pilla, R.; Held, H.E.; Landon, C.S.; Puchowicz, M.; Brunengraber, H.; Ari, C.; Arnold, P.; Dean, J.B. Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Ari, C.; Murdun, C.; Goldhagen, C.; Koutnik, A.P.; Bharwani, S.R.; Diamond, D.M.; Kindy, M.; D’Agostino, D.P.; Kovacs, Z. Exogenous Ketone Supplements Improved Motor Performance in Preclinical Rodent Models. Nutrients 2020, 12, 2459. [Google Scholar] [CrossRef] [PubMed]
- Won, S.J.; Yoo, B.H.; Kauppinen, T.M.; Choi, B.Y.; Kim, J.H.; Jang, B.G.; Lee, M.W.; Sohn, M.; Liu, J.; Swanson, R.A.; et al. Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats. J. Neuroinflammation 2012, 9, 182. [Google Scholar] [CrossRef] [PubMed]
- Kambe, Y. Recent behavioral findings of pathophysiological involvement of lactate in the central nervous system. Biochim. Biophys. Acta. Gen. Subj. 2022, 1866, 130137. [Google Scholar] [CrossRef]
- Su, G.; Farhat, R.; Laxman, A.K.; Chapman-Natewa, K.; Nelson, I.E.; Chan, O. Astrocyte Glycogen Is a Major Source of Hypothalamic Lactate in Rats with Recurrent Hypoglycemia. Diabetes 2023, 72, 1154–1160. [Google Scholar] [CrossRef]
- Yang, C.; Pan, R.Y.; Guan, F.; Yuan, Z. Lactate metabolism in neurodegenerative diseases. Neural Regen. Res. 2024, 19, 69–74. [Google Scholar] [CrossRef]
- Clarke, K.; Tchabanenko, K.; Pawlosky, R.; Carter, E.; Todd King, M.; Musa-Veloso, K.; Ho, M.; Roberts, A.; Robertson, J.; Vanitallie, T.B.; et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul. Toxicol. Pharmacol. 2012, 63, 401–408. [Google Scholar] [CrossRef]
- Clarke, K.; Tchabanenko, K.; Pawlosky, R.; Carter, E.; Knight, N.S.; Murray, A.J.; Cochlin, L.E.; King, M.T.; Wong, A.W.; Roberts, A.; et al. Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regul. Toxicol. Pharmacol. 2012, 63, 196–208. [Google Scholar] [CrossRef]
- Tate, R.L.; Mehlman, M.A.; Tobin, R.B. Metabolic fate of 1,3-butanediol in the rat: Conversion to -hydroxybutyrate. J. Nutr. 1971, 101, 1719–1726. [Google Scholar] [CrossRef]
- Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef]
- Achanta, L.B.; Rae, C.D. β-Hydroxybutyrate in the brain: One molecule, multiple mechanisms. Neurochem. Res. 2017, 42, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends. Endocrinol. Metab. 2014, 25, 42–52. [Google Scholar] [CrossRef]
- Sharma, A.K.; Rani, E.; Waheed, A.; Rajput, S.K. Pharmacoresistant epilepsy: A current update on non-conventional pharmacological and non-pharmacological interventions. J. Epilepsy Res. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Masino, S.A.; Kawamura, M., Jr.; Ruskin, D.N.; Geiger, J.D.; Boison, D. Purines and neuronal excitability: Links to the ketogenic diet. Epilepsy Res. 2012, 100, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Ruskin, D.N.; Kawamura, M.; Masino, S.A. Adenosine and Ketogenic Treatments. J. Caffeine Adenosine Res. 2020, 10, 104–109. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, M.; Wang, X.; Zhao, Y.; Zhao, Q.; Ding, H.; Dong, Q.; Cui, M. Ischemic preconditioning with a ketogenic diet improves brain ischemic tolerance through increased extracellular adenosine levels and hypoxia-inducible factors. Brain Res. 2017, 1667, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, M., Jr.; Ruskin, D.N.; Masino, S.A. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J. Neurosci. 2010, 30, 3886–3895. [Google Scholar] [CrossRef]
- Ribeiro, J.A. Purinergic inhibition of neurotransmitter release in the central nervous system. Pharmacol. Toxicol. 1995, 77, 299–305. [Google Scholar] [CrossRef]
- Simeone, T.A.; Simeone, K.A.; Rho, J.M. Ketone bodies as anti-seizure agents. Neurochem. Res. 2017, 42, 2011–2018. [Google Scholar] [CrossRef]
- Juge, N.; Gray, J.A.; Omote, H.; Miyaji, T.; Inoue, T.; Hara, C.; Uneyama, H.; Edwards, R.H.; Nicoll, R.A.; Moriyama, Y. Metabolic control of vesicular glutamate transport and release. Neuron 2010, 68, 99–112. [Google Scholar] [CrossRef]
- Masino, S.A.; Geiger, J.D. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci. 2008, 31, 273–278. [Google Scholar] [CrossRef]
- Stahl, S.M. Brainstorms: Symptoms and circuits, part 2: Anxiety disorders. J. Clin. Psychiatry 2003, 64, 1408–1409. [Google Scholar] [CrossRef] [PubMed]
- El Yacoubi, M.; Ledent, C.; Parmentier, M.; Costentin, J.; Vaugeois, J.M. The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A2A adenosine receptor antagonists. Psychopharmacology 2000, 148, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Florio, C.; Prezioso, A.; Papaioannou, A.; Vertua, R. Adenosine A1 receptors modulate anxiety in CD1 mice. Psychopharmacology 1998, 136, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Irenius, E.; Kull, B.; Schulte, G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 2001, 61, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Ciruela, F.; Casadó, V.; Rodrigues, R.J.; Luján, R.; Burgueño, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S.R.; Mallol, J.; et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci. 2006, 26, 2080–2087. [Google Scholar] [CrossRef]
- Cunha, R.A.; Ferré, S.; Vaugeois, J.M.; Chen, J.F. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr. Pharm. Des. 2008, 14, 1512–1524. [Google Scholar] [CrossRef]
- Cunha, R.A. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal. 2005, 1, 111–134. [Google Scholar] [CrossRef]
- Grillon, C.; Baas, J.M.; Pine, D.S.; Lissek, S.; Lawley, M.; Ellis, V.; Levine, J. The benzodiazepine alprazolam dissociates contextual fear from cued fear in humans as assessed by fear-potentiated startle. Biol. Psychiatry 2006, 60, 760–766. [Google Scholar] [CrossRef]
- Norberg, M.M.; Krystal, J.H.; Tolin, D.F. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biol. Psychiatry 2008, 63, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.J.; Lu, V.B.; Puhl, H.L., 3rd; Ikeda, S.R. β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J. Neurosci. 2013, 33, 19314–19325. [Google Scholar] [CrossRef]
- Bourin, M. Animal models for screening anxiolytic-like drugs: A perspective. Dialogues Clin. Neurosci. 2015, 17, 295–303. [Google Scholar] [CrossRef]
- Lezak, K.R.; Missig, G.; Carlezon, W.A., Jr. Behavioral methods to study anxiety in rodents. Dialogues Clin. Neurosci. 2017, 19, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Bear, T.; Roy, N.; Dalziel, J.; Butts, C.; Coad, J.; Young, W.; Parkar, S.G.; Hedderley, D.; Dinnan, H.; Martell, S.; et al. Anxiety-like Behavior in Female Sprague Dawley Rats Associated with Cecal Clostridiales. Microorganisms 2023, 11, 1773. [Google Scholar] [CrossRef] [PubMed]
Water (Control; Group 1; Mean ± S.E.M.) | 3 g/kg KEMCT (Group 2; Mean ± S.E.M.; Level of Significance/p-Value) | 5 g/kg KEMCT (Group 3; Mean ± S.E.M.; Level of Significance/p-Value) | |
---|---|---|---|
Time spent in light compartment (s) | 119.4 ± 7.34 - | 235.5 ± 24.09 **/0.0025 | 169.8 ± 29.0 ns/0.2106 |
Latency to exit light compartment (s) | 55.4 ± 9.19 - | 163.3 ± 39.43 */0.0271 | 115.5 ± 28.75 ns/0.2582 |
Latency to first reentry to the light compartment (s) | 24.8 ± 4.89 - | 23.0 ± 8.29 ns/0.9877 | 42.0 ± 13.43 ns/0.3527 |
Number of chamber transitions | 7.1 ± 0.72 - | 3.8 ± 1.13 */0.0351 | 3.6 ± 0.75 */0.0284 |
Number of risk assessments | 7.3 ± 0.99 - | 4.4 ± 1.55 ns/0.2234 | 4.9 ± 0.92 ns/0.3509 |
Blood R-βHB Level (mmol/L; Mean ± S.E.M.; Level of Significance/p-Value) | Blood Glucose Level (mg/dL; Mean ± S.E.M.; Level of Significance/p-Value) | Body Weight (g; Mean ± S.E.M.; Level of Significance/p-Value) | |
---|---|---|---|
Group 1 (Control) | |||
Baseline | 0.74 ± 0.04 - | 85.25 ± 2.71 - | 197.75 ± 3.31 - |
First gavage | 0.75 ± 0.03 ns/0.9329 | 82.88 ± 3.32 ns/0.5448 | - - |
Seventh gavage | 0.75 ± 0.03 ns/0.9719 | 85.50 ± 5.18 ns/0.9979 | 197.25 ± 2.72 ns/0.9587 |
Group 2 (3 g/kg KEMCT) | |||
Baseline | 0.80 ± 0.03 - | 88.00 ± 2.87 - | 184.25 ± 3.03 - |
First gavage | 2.70 ± 0.36 **/0.0027 | 64.00 ± 3.54 ***/0.0002 | - - |
Seventh gavage | 3.05 ± 0.21 ****/<0.0001 | 63.25 ± 4.00 **/0.0057 | 182.75 ± 3.59 ns/0.4633 |
Group 3 (5 g/kg KEMCT) | |||
Baseline | 0.81 ± 0.03 - | 85.88 ± 1.99 - | 186.00 ± 3.38 - |
First gavage | 3.56 ± 0.22 ****/<0.0001 | 55.75 ± 3.54 ***/0.0002 | - - |
Seventh gavage | 4.83 ± 0.40 ****/<0.0001 | 60.88 ± 3.28 ***/0.0003 | 184.75 ± 3.58 ns/0.6092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauch, E.; Ari, C.; Kovács, Z. Dose-Dependent Beneficial Effect of Ketone Supplement-Evoked Ketosis on Anxiety Level in Female WAG/Rij Rats: Sometimes Less Is More. Nutrients 2023, 15, 4412. https://doi.org/10.3390/nu15204412
Rauch E, Ari C, Kovács Z. Dose-Dependent Beneficial Effect of Ketone Supplement-Evoked Ketosis on Anxiety Level in Female WAG/Rij Rats: Sometimes Less Is More. Nutrients. 2023; 15(20):4412. https://doi.org/10.3390/nu15204412
Chicago/Turabian StyleRauch, Enikő, Csilla Ari, and Zsolt Kovács. 2023. "Dose-Dependent Beneficial Effect of Ketone Supplement-Evoked Ketosis on Anxiety Level in Female WAG/Rij Rats: Sometimes Less Is More" Nutrients 15, no. 20: 4412. https://doi.org/10.3390/nu15204412
APA StyleRauch, E., Ari, C., & Kovács, Z. (2023). Dose-Dependent Beneficial Effect of Ketone Supplement-Evoked Ketosis on Anxiety Level in Female WAG/Rij Rats: Sometimes Less Is More. Nutrients, 15(20), 4412. https://doi.org/10.3390/nu15204412