Sword Bean (Canavalia gladiata) Pods Induce Differentiation in MC3T3-E1 Osteoblast Cells by Activating the BMP2/SMAD/RUNX2 Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Sample Extract
2.3. Cell Culture and Differentiation
2.4. Cell Viability
2.5. ALP Activity
2.6. Collagen Synthesizing Activity
2.7. Mineralization Level Measurement
2.8. Real-Time Polymerase Chain Reaction (RT-PCR)
2.9. Western Blot Analysis
2.10. Statistical Analysis
3. Results
3.1. Effects of SB and SBP on Osteoblastic Cell Viability
3.2. SB and SBP Induce ALP Activity in MC3T3–E1 Cells
3.3. Effects of SB and SBP on Intracellular Collagen Synthesize Activity
3.4. Effects of SB and SBP on Mineralization
3.5. Effect of SB and SBP on the Expression of Genes Involved in Osteoblast Differentiation
3.6. Effect of SB and SBP on the Expression of Genes Involved in the BMP2/SMAD/RUNX2 Axis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ducy, P.; Schinke, T.; Karsenty, G. The osteoblast: A sophisticated fibroblast under central surveillance. Science 2000, 289, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M. New targets for intervention in the treatment of postmenopausal osteoporosis. Nat. Rev. Rheumatol. 2011, 7, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, J.; Zheng, Y.; Fan, Y.; Gu, Z. BMP2/7 heterodimer is a stronger inducer of bone regeneration in peri-implant bone defects model than BMP2 or BMP7 homodimer. Dent. Mater. J. 2012, 31, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Sykaras, N.; Opperman, L.A. Bone morphogenetic proteins (BMPs): How do they function and what can they offer the clinician? J. Oral Sci. 2003, 45, 57–73. [Google Scholar] [CrossRef]
- Nohe, A.; Keating, E.; Knaus, P.; Petersen, N.O. Signal transduction of bone morphogenetic protein receptors. Cell Signal. 2004, 16, 291–299. [Google Scholar] [CrossRef]
- Komori, T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int. J. Mol. Sci. 2019, 7, 1694. [Google Scholar] [CrossRef]
- Vimalraj, S.; Arumugam, B.; Miranda, P.J.; Selvamurugan, N. Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int. J. Biol. Macromol. 2015, 78, 202–208. [Google Scholar] [CrossRef]
- Rosset, E.M.; Bradshaw, A.D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 2016, 52–54, 78–87. [Google Scholar] [CrossRef]
- Maroni, P. Megakaryocytes in bone metastasis: Protection or progression? Cells 2019, 8, 134. [Google Scholar] [CrossRef]
- Hatori, T.; Maeda, T.; Suzuki, A.; Takahashi, K.; Kato, Y. SPARC is a decoy counterpart for c-Fos and is associated with osteoblastic differentiation of bone marrow stromal cells by inhibiting adipogenesis. Mol. Med. Rep. 2023, 27, 1–12. [Google Scholar] [CrossRef]
- Jadlowiec, J.; Koch, H.; Zhang, X.; Campbell, P.G.; Seyedain, M.; Sfeir, C. Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway. J. Biol. Chem. 2004, 279, 53323–53330. [Google Scholar] [CrossRef]
- Cho, Y.-E.; Kwun, I.-S. Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts. J. Nutr. Health. 2018, 51, 23–30. [Google Scholar] [CrossRef]
- Jeon, M.-H.; Kim, M.-H. Effect of Hijikia fusiforme fractions on proliferation and differentiation in osteoblastic MC3T3-E1 cells. J. Life Sci. 2011, 21, 300–308. [Google Scholar] [CrossRef]
- Jeon, M.; Kim, S.; Kim, B.; Cheon, J.; Park, S.; Oh, E.; Lee, S.; Kim, M. The effects of seaweed gongjindan on estrogen like activities, platelet aggregation and serum lipid levels in ovariectomized rats. J. Life Sci. 2013, 23, 1155–1162. [Google Scholar] [CrossRef]
- Lee, S.H.; Jung, B.H.; Kim, S.Y.; Chung, B.C. Determination of phytoestrogens in traditional medicinal herbs using gas chromatography–mass spectrometry. J. Nutr. Biochem. 2004, 15, 452–460. [Google Scholar] [CrossRef]
- Tasadduq, R.; Gordon, J.; Al-Ghanim, K.A.; Lian, J.B.; Van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Shakoori, A.R. Ethanol extract of Cissus quadrangularis enhances osteoblast differentiation and mineralization of murine pre-osteoblastic MC3T3-E1 cells. J. Cell. Physiol. 2017, 232, 540–547. [Google Scholar] [CrossRef]
- Yang, D.U.; Siddiqi, M.H.; Ahn, S.; Kang, S.; Noh, H.-Y.; Yang, D.C. In vitro evaluation of the potential therapeutic role of Dendropanax morbifera extract in ameliorating osteoporosis and resultant bone impairment using MC3T3-E1 cells. In Vitro Cell. Dev. Biol. 2018, 54, 346–354. [Google Scholar] [CrossRef]
- Seo, H.-J.; Eo, H.J.; Jeon, K.S.; Park, G.H.; Hong, S.C.; Jeong, J.B. Effects of cultivated wild panax ginseng extract on the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. Korean J. Plant Resour. 2020, 33, 227–236. [Google Scholar] [CrossRef]
- Guo, W.; Yang, X.G.; Shi, Y.L.; Wang, H. The effects and mechanism of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1. J. Orthop. Surg. Res. 2022, 17, 90. [Google Scholar] [CrossRef]
- Li, N.; Li, X.; Feng, Z.G.; Masayuki, Y. Chemical constituents from Canavalia gladiata. J. Shenyang Pharm. Univ. 2007, 24, 676–678. [Google Scholar]
- Gan, R.-Y.; Lui, W.Y.; Corke, H. Sword bean (Canavalia gladiata) as a source of antioxidant phenolics. Int. J. Food Sci. Technol. 2016, 51, 156–162. [Google Scholar] [CrossRef]
- Hwang, K.-Y.; Heo, W.; Hwang, H.-J.; Han, B.K.; Song, M.C.; Kim, Y.J. Anti-Inflammatory Effect of Immature Sword Bean Pod (Canavalia gladiata) in Lipopolysaccharide-Induced RAW264.7 Cells. J. Med. Food 2020, 23, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, K.H.; Chi, G.Y.; Cho, I.S.; Kim, H.Y.; Lee, Y.C. Enhancing Effect of Canavalia gladiata DC Semen on the Hematopoietic Expansion and Function of Stem Cells. Korea J. Herbol. 2012, 27, 9–16. [Google Scholar] [CrossRef]
- Kumar, P.; Reddy, Y.N. Protective Effect of Canavalia gladiata (Sword Bean) Fruit Extracts and Its Flavanoidal Contents, against Azathioprine-Induced Toxicity in Hepatocytes of Albino Rats. Toxicol. Environ. Chem. 2014, 96, 474–481. [Google Scholar] [CrossRef]
- Morris, J. Sword bean (Canavalia ensiformis (L.) DC.) genetic resources regenerated for potential medical, nutraceutical and agricultural traits. Genet. Resour. Crop Evol. 2007, 54, 585–592. [Google Scholar] [CrossRef]
- Cho, Y.-S.; Bae, Y.-l.; Shim, K.-H. Chemical Components in Different Parts of Korean Sword Bean (Canaualia gladiata). Korean J. Food Preserv. 1999, 6, 475–480. [Google Scholar]
- Hwang, H.-J.; Hwang, Y.J.; Kim, Y.J.; Kim, M.; Hwang, K.-A. Immature sword bean pods (Canavalia gladiata) inhibit adipogenesis in C3H10T1/2 cells and mice with high-fat diet–induced obesity. J. Chin. Med. Assoc. 2022, 85, 67–76. [Google Scholar] [CrossRef]
- Li, X. Improved Pyrogallol Autoxidation Method: A Reliable and Cheap Superoxide-Scavenging Assay Suitable for All Antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [Google Scholar] [CrossRef]
- Chew, Y.-L.; Arasi, C.; Goh, J.-K. Pyrogallol Induces Antimicrobial Effect and Cell Membrane Disruption on Methicillin-Resistant Staphylococcus aureus (MRSA). Curr. Bioact. Comp. 2022, 18, 38–46. [Google Scholar] [CrossRef]
- Yun, K.-J.; Koh, D.-J.; Kim, S.-H.; Park, S.J.; Ryu, J.H.; Kim, D.-G.; Lee, J.-Y.; Lee, K.-T. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. J. Agric. Food Chem. 2008, 56, 10265–10272. [Google Scholar] [CrossRef]
- Kanchana, G.; Shyni, W.J.; Rajadurai, M.; Periasamy, R. Evaluation of antihyperglycemic effect of sinapic acid in normal and streptozotocin-induced diabetes in albino rats. Glob. J. Pharmacol. 2011, 5, 33–39. [Google Scholar]
- Sun, X.L.; Ito, H.; Masuoka, T.; Kamei, C.; Hatano, T. Effect of Polygala tenuifolia root extract on scopolamine-induced impairment of rat spatial cognition in an eight-arm radial maze task. Biol. Pharm. Bull. 2007, 30, 1727–1731. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Yu, Y.; Zhou, Y.; Pruett-Miler, S.M.; Zhang, G.-F.; Karner, C.M. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. Elife 2022, 11, e76963. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Iida, T.; Hiramitsu, M.; Inoue, T.; Aoi, S.; Kanazashi, M.; Ishizaki, F.; Harada, T. Effects of lemon beverage containing citric acid with calcium supplementation on bone metabolism and mineral density in postmenopausal women: Double-blind 11-month intervention study. J. Nutr. Metab. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sadhasivam, D.R.; Soundararajan, S.; Elumalai, S.; Karuppiah, P.; AL-Dhabi, N.A. Prophylactic supplementation of sinapic acid ameliorates zoledronic acid induced changes in osteoblast survival and differentiation. Biocatal. Agric. Biotechnol. 2020, 27, 101700. [Google Scholar] [CrossRef]
- Hapidin, H.; Hashim, N.M.; Kasiram, M.Z.; Abdullah, H. The Effects of Polyphenol, Tannic Acid, or Tannic Acid in Combination with Pamidronate on Human Osteoblast Cell Line Metabolism. Molecules 2022, 27, 451. [Google Scholar] [CrossRef]
- Rodan, G.A.; Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508–1514. [Google Scholar] [CrossRef]
- Buckbinder, L.; Crawford, D.T.; Qi, H.; Ke, H.Z.; Olson, L.M.; Long, K.R.; Bonnette, P.C.; Baumann, A.P.; Hambor, J.E.; Grasser, W.A.; et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc. Natl. Acad. Sci. USA 2007, 104, 10619–10624. [Google Scholar] [CrossRef]
- Costello, L.C.; Franklin, R.B.; Reynolds, M.A.; Chellaiah, M. The important role of osteoblasts and citrate production in bone formation: “osteoblast citration” as a new concept for an old relationship. Open Bone J. 2012, 4, 1–17. [Google Scholar] [CrossRef]
- Franklin, R.B.; Chellaiah, M.; Zou, J.; Reynolds, M.A.; Costello, L. Evidence that osteoblasts are specialized citrate-producing cells that provide the citrate for incorporation into the structure of bone. Open Bone J. 2014, 6, 1–7. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2010, 107, 22425–22429. [Google Scholar] [CrossRef] [PubMed]
- Domazetovic, V.; Marcucci, G.; Lantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 2017, 14, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yuan, X.; Feng, D.; Wu, M.; Yuan, Y.; Ma, C.; Xie, D.; Guo, J.; Liu, C.; Lu, Z. In vivo study of polyurethane and tannin-modified hydroxyapatite composites for calvarial regeneration. J. Tissue Eng. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Balagangadharan, A.; Trivedi, R.; Vairamani, M.; Selvamurugan, N. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr. Polym. 2019, 216, 1–16. [Google Scholar] [CrossRef]
- Trzeciakiewicz, A.; Habauzit, V.; Horcajada, M.N. When nutrition interacts with osteoblast function: Molecular mechanisms of polyphenols. Nutr. Res. Rev. 2009, 22, 68–81. [Google Scholar] [CrossRef]
- Yun, H.M.; Kim, B.; Jeong, Y.H.; Hong, J.T.; Park, K.R. Suffruticosol A elevates osteoblast differentiation targeting BMP2-Smad/1/5/8-RUNX2 in pre-osteoblasts. BioFactors 2023, 49, 127–139. [Google Scholar] [CrossRef]
- Kim, D.Y.; Jung, M.S.; Park, Y.G.; Yuan, H.D.; Quan, H.Y.; Chung, S.H. Ginsenoside Rh2 (S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways. BMB Rep. 2011, 44, 659–664. [Google Scholar] [CrossRef]
- Katagiri, T.; Takahashi, N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002, 8, 147–159. [Google Scholar] [CrossRef]
- Young, M.F. Bone matrix proteins: Their function, regulation, and relationship to osteoporosis. Osteoporos. Int. 2003, 14 (Suppl. S3), S35–S42. [Google Scholar] [CrossRef]
- Seeman, E. Bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 2009, 19, 219–233. [Google Scholar] [CrossRef]
- Binay, S.; Kaptan, E. Transcription factor Runx2 changes the expression of some matricellular proteins in metastatic breast cancer cells. Mol. Biol. Rep. 2022, 49, 6433–6441. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Cabral, J.M.S.; da Silva, C.L.; Vashishth, D. Bone matrix non-collagenous proteins in tissue engineering: Creating new bone by mimicking the extracellular matrix. Polymers 2021, 13, 1095. [Google Scholar] [CrossRef]
- Franceschi, R.T.; Xiao, G.; Jiang, D.; Gopalakrishnan, R.; Yang, S.; Reith, E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect. Tissue Res. 2003, 44 (Suppl. S1), 109–116. [Google Scholar] [CrossRef]
- Byers, B.A.; García, A.J. Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng. 2004, 10, 1623–1632. [Google Scholar] [CrossRef]
- Wang, X.; Goh, C.H.; Li, B. p38 mitogen-activated protein kinase regulates osteoblast differentiation through osterix. Endocrinology 2007, 148, 1629–1637. [Google Scholar] [CrossRef]
- Ge, C.; Xiao, G.; Jiang, D.; Franceschi, R.T. Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 2007, 176, 709–718. [Google Scholar] [CrossRef]
- Acevedo-Olvera, L.; Diaz-Garcia, H.; Rodríguez-Cortes, O.; Campos-Rodríguez, R.R.; Caceres-Cortes, J.; Araujo-Ávarez, J.M.; Parra-Barrera, A.; Gutiérrez-Iglesias, G. Effect of dehydroepiandrosterone on expression of BMP2, SPARC and RUNX2 in human bone marrow mesenchymal stem cells. Rev. Mex. Ingeniería Quim. 2016, 15, 39–49. [Google Scholar]
Gene | Primer Sequences (5′→3′) | |
---|---|---|
ALP | Forward | AACCCAGACACAAGCATTCC |
Reverse | GAGAGCGAAGGGTCAGTCAG | |
COLI | Forward | CAAGATGTGCCACTCTGACT |
Reverse | TCTGACCTGTCTCCATGTTG | |
Runx2 | Forward | ACTCTTCTGGAGCCGTTTATG |
Reverse | GTGAATCTGGCCATGTTTGTG | |
SPARC | Forward | AAACATGGCAAGGTGTGTGA |
Reverse | TGCATGGTCCGATGTAGTC | |
OPN | Forward | AGCAAGAAACTCTTCCAAGCAA |
Reverse | GTGAGATTCGTCAGATTCATCCG | |
BMP2 | Forward | ACACAGCTGGTCACAGATAAG |
Reverse | CTTCCGCTGTTTGTGTTTGG | |
GAPDH | Forward | GTCAAGGCTGAGAACGGGAA |
Reverse | AAATGAGCCCCAGCCTTCTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.J.; Hwang, H.-J.; Go, H.; Park, N.; Hwang, K.-A. Sword Bean (Canavalia gladiata) Pods Induce Differentiation in MC3T3-E1 Osteoblast Cells by Activating the BMP2/SMAD/RUNX2 Pathway. Nutrients 2023, 15, 4372. https://doi.org/10.3390/nu15204372
Hwang YJ, Hwang H-J, Go H, Park N, Hwang K-A. Sword Bean (Canavalia gladiata) Pods Induce Differentiation in MC3T3-E1 Osteoblast Cells by Activating the BMP2/SMAD/RUNX2 Pathway. Nutrients. 2023; 15(20):4372. https://doi.org/10.3390/nu15204372
Chicago/Turabian StyleHwang, Yu Jin, Hye-Jeong Hwang, Hyunseo Go, NaYeong Park, and Kyung-A Hwang. 2023. "Sword Bean (Canavalia gladiata) Pods Induce Differentiation in MC3T3-E1 Osteoblast Cells by Activating the BMP2/SMAD/RUNX2 Pathway" Nutrients 15, no. 20: 4372. https://doi.org/10.3390/nu15204372
APA StyleHwang, Y. J., Hwang, H. -J., Go, H., Park, N., & Hwang, K. -A. (2023). Sword Bean (Canavalia gladiata) Pods Induce Differentiation in MC3T3-E1 Osteoblast Cells by Activating the BMP2/SMAD/RUNX2 Pathway. Nutrients, 15(20), 4372. https://doi.org/10.3390/nu15204372