Associations between the Dietary Inflammatory Index and Sleep Metrics in the Energy Balance Study (EBS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Diet Ascertainment and the DII
2.3. Sleep Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. General Participation Information
3.2. Dietary Inflammatory Index and Stationary Effects
3.3. Dietary Inflammatory Index and Longitudinal Effects
4. Discussion
4.1. Main Findings
4.2. Comparison with Other Studies
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National sleep foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- National Center for Chronic Disease Prevention and Health Promotion. Short Sleep Duration Among US Adults. Available online: https://www.cdc.gov/sleep/data_statistics.html (accessed on 15 February 2022).
- Dopheide, J.A. Insomnia overview: Epidemiology, pathophysiology, diagnosis and monitoring, and nonpharmacologic therapy. Am. J. Manag. Care 2020, 26, S76–S84. [Google Scholar] [CrossRef]
- Dang-Vu, T.T.; Desseilles, M.; Peigneux, P.; Maquet, P. A role for sleep in brain plasticity. Pediatr. Rehabil. 2006, 9, 98–118. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.J.; Rickard, T.C. Reconsidering the role of sleep for motor memory. Behav. Neurosci. 2009, 123, 1153–1157. [Google Scholar] [CrossRef]
- Walker, M.P. Cognitive consequences of sleep and sleep loss. Sleep Med. 2008, 9 (Suppl. S1), S29–S34. [Google Scholar] [CrossRef]
- Driver, H.S.; Taylor, S.R. Exercise and sleep. Sleep Med. Rev. 2000, 4, 387–402. [Google Scholar] [CrossRef]
- Grummon, A.H.; Sokol, R.L.; Lytle, L.A. Is late bedtime an overlooked sleep behaviour? Investigating associations between sleep timing, sleep duration and eating behaviours in adolescence and adulthood. Public Health Nutr. 2021, 24, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Shochat, T.; Cohen-Zion, M.; Tzischinsky, O. Functional consequences of inadequate sleep in adolescents: A systematic review. Sleep Med. Rev. 2014, 18, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Liao, B.; Nie, J.; Wang, W.; Wang, Y. The association between sleep duration and chronic diseases: A population-based cross-sectional study. Sleep Med. 2020, 73, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Jike, M.; Itani, O.; Watanabe, N.; Buysse, D.J.; Kaneita, Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 2018, 39, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.; Leong, C. Benzodiazepines and Z-Drugs: An Updated Review of Major Adverse Outcomes Reported on in Epidemiologic Research. Drugs RD 2017, 17, 493–507. [Google Scholar] [CrossRef]
- Holbrook, A.M.; Crowther, R.; Lotter, A.; Cheng, C.; King, D. Meta-analysis of benzodiazepine use in the treatment of insomnia. Can. Med. Assoc. J. 2000, 162, 225–233. [Google Scholar]
- Proctor, A.; Bianchi, M.T. Clinical Pharmacology in Sleep Medicine. ISRN Pharmacol. 2012, 2012, 914168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Renn, B.N.; Chu, F.; Torrence, N. Sleepless in the hospital: A systematic review of non-pharmacological sleep interventions. Gen. Hosp. Psychiatry 2019, 59, 58–66. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of Diet on Sleep Quality. Adv. Nutr. Int. Rev. J. 2016, 7, 938–949. [Google Scholar] [CrossRef] [Green Version]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Afaghi, A.; O’Connor, H.; Chow, C.M. High-glycemic-index carbohydrate meals shorten sleep onset. Am. J. Clin. Nutr. 2007, 85, 426–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapsimalis, F.; Basta, M.; Varouchakis, G.; Gourgoulianis, K.; Vgontzas, A.; Kryger, M. Cytokines and pathological sleep. Sleep Med. 2008, 9, 603–614. [Google Scholar] [CrossRef]
- Krueger, J.M. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci. 2003, 8, d520–550. [Google Scholar] [CrossRef] [Green Version]
- Krueger, J.M.; Majde, J.A. Humoral Links between Sleep and the Immune System. Ann. New York Acad. Sci. 2003, 992, 9–20. [Google Scholar] [CrossRef]
- Irwin, M.R. Sleep and inflammation: Partners in sickness and in health. Nat. Rev. Immunol. 2019, 19, 702–715. [Google Scholar] [CrossRef]
- Redwine, L.; Hauger, R.L.; Gillin, J.C.; Irwin, M. Effects of Sleep and Sleep Deprivation on Interleukin-6, Growth Hormone, Cortisol, and Melatonin Levels in Humans1. J. Clin. Endocrinol. Metab. 2000, 85, 3597–3603. [Google Scholar] [CrossRef] [Green Version]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Kheirandish-Gozal, L.; Gozal, D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int. J. Mol. Sci. 2019, 20, 459. [Google Scholar] [CrossRef] [Green Version]
- Slavish, D.C.; Graham-Engeland, J.E.; Engeland, C.G.; Taylor, D.J.; Buxton, O.M. Insomnia symptoms are associated with elevated C-reactive protein in young adults. Psychol. Health 2018, 33, 1396–1415. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, N.; Andreeva, V.; Kesse-Guyot, E.; Hercberg, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013, 39, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Vernia, F.; Di Ruscio, M.; Ciccone, A.; Viscido, A.; Frieri, G.; Stefanelli, G.; Latella, G. Sleep disorders related to nutrition and digestive diseases: A neglected clinical condition. Int. J. Med. Sci. 2021, 18, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hebert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaad, A.A.; Yusuf, A.M.; Shakir, A.Z.; Khan, M.S.; Khaleel, S.; Ismail, L.C.; Faris, M.A.-I.E.; Jahrami, H.A.; Shivappa, N.; Hebert, J.R.; et al. Sleep quality and Dietary Inflammatory Index among university students: A cross-sectional study. Sleep Breath. 2021, 25, 2221–2229. [Google Scholar] [CrossRef]
- Lopes, T.V.; Borba, M.E.; Lopes, R.V.; Fisberg, R.M.; Paim, S.L.; Teodoro, V.V.; Zimberg, I.Z.; Araújo, L.B.; Shivappa, N.; Hébert, J.R.; et al. Association between inflammatory potential of the diet and sleep parameters in sleep apnea patients. Nutrition 2019, 66, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Jessup, A.; Turner-McGrievy, G.; Shivappa, N.; Hurley, T.G.; Hébert, J.R. Changes in dietary inflammatory potential predict changes in sleep quality metrics, but not sleep duration. Sleep 2020, 43, zsaa093. [Google Scholar] [CrossRef]
- Kase, B.E.; Liu, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Associations between dietary inflammatory index and sleep problems among adults in the United States, NHANES 2005–2016. Sleep Health 2021, 7, 273–280. [Google Scholar] [CrossRef]
- Bazyar, H.; Javid, A.Z.; Behbahani, H.B.; Shivappa, N.; Hebert, J.R.; Khodaramhpour, S.; Zadeh, S.K.; Aghamohammadi, V. The association between dietary inflammatory index with sleep quality and obesity amongst iranian female students: A cross-sectional study. Int. J. Clin. Pract. 2021, 75, e14061. [Google Scholar] [CrossRef]
- Hand, G.A.; Shook, R.P.; Paluch, A.E.; Baruth, M.; Crowley, E.P.; Jaggers, J.R.; Prasad, V.K.; Hurley, T.G.; Hebert, J.R.; O’Connor, D.P.; et al. The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance. Res. Q. Exerc. Sport 2013, 84, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Hébert, J.R.; Hand, G.A.; Youngstedt, S.D.; Hurley, T.G.; Shook, R.P.; Paluch, A.E.; Sui, X.; James, S.L.; Blair, S.N. Association between actigraphic sleep metrics and body composition. Ann. Epidemiol. 2015, 25, 773–778. [Google Scholar] [CrossRef] [Green Version]
- Riestra, P.; Gebreab, S.Y.; Xu, R.; Khan, R.J.; Gaye, A.; Correa, A.; Min, N.; Sims, M.; Davis, S.K. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: Findings from the Jackson heart study. BMC Genet. 2017, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Asensio, E.M.; Coltell, O.; Sorlí, J.V.; Estruch, R.; Martínez-González, M.; Salas-Salvadó, J.; Castañer, O.; Arós, F.; Lapetra, J.; et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: Dietary modulation in the PREDIMED randomized trial. Cardiovasc. Diabetol. 2016, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- Reyner, A.; Horne, J.A. Gender- and Age-Related Differences in Sleep Determined by Home-Recorded Sleep Logs and Actimetry From 400 Adults. Sleep 1995, 18, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Burgard, S.A.; Ailshire, J.A. Gender and Time for Sleep among U.S. Adults. Am. Sociol. Rev. 2013, 78, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Tonetti, L.; Fabbri, M.; Natale, V. Sex Difference in Sleep-Time Preference and Sleep Need: A Cross-Sectional Survey among Italian Pre-Adolescents, Adolescents, and Adults. Chrono. Int. 2008, 25, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Glavin, E.E.; Matthew, J.; Spaeth, A.M. Gender Differences in the Relationship Between Exercise, Sleep, and Mood in Young Adults. Health Educ. Behav. 2022, 49, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Cain, S.W.; Chang, A.-M.; Phillips, A.J.K.; Münch, M.Y.; Gronfier, C.; Wyatt, J.K.; Dijk, D.-J.; Wright, K.P.; Czeisler, C.A. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S3), 15602–15608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Park, S.-Y.; Shvetsov, Y.B.; Wilkens, L.R.; Le Marchand, L.; Boushey, C.J.; Paik, H.-Y. Sex differences in sociodemographic and lifestyle factors associated with diet quality in a multiethnic population. Nutrition 2019, 66, 147–152. [Google Scholar] [CrossRef]
- McNaughton, S.A.; Ball, K.; Crawford, D.; Mishra, G.D. An Index of Diet and Eating Patterns Is a Valid Measure of Diet Quality in an Australian Population. J. Nutr. 2008, 138, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Frazier-Wood, A.C.; Kim, J.; Davis, J.S.; Jung, S.Y.; Chang, S. In cross-sectional observations, dietary quality is not associated with CVD risk in women; in men the positive association is accounted for by BMI. Br. J. Nutr. 2015, 113, 1244–1253. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Leung, C.W.; Li, Y.; Ding, E.; Chiuve, S.; Hu, F.B.; Willett, W.C. Trends in Dietary Quality Among Adults in the United States, 1999 Through 2010. JAMA Intern. Med. 2014, 174, 1587–1595. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. Int. Rev. J. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.; Mignault, D.; Allison, D.; Rabasa-Lhoret, R. Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am. J. Clin. Nutr. 2007, 85, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Mignault, D.; St.-Onge, M.; Karelis, A.D.; Allison, D.B.; Rabasa-Lhoret, R. Evaluation of the Portable HealthWear Armband: A device to measure total daily energy expenditure in free-living type 2 diabetic individuals. Diabetes Care 2005, 28, 225–227. [Google Scholar] [CrossRef]
- O’Driscoll, D.M.; Turton, A.R.; Copland, J.M.; Strauss, B.J.; Hamilton, G. Energy expenditure in obstructive sleep apnea: Validation of a multiple physiological sensor for determination of sleep and wake. Sleep Breath. 2013, 17, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Bahammam, A.S.; Sharif, M.M. Sleep estimation using BodyMedia′s SenseWear™ armband in patients with obstructive sleep apnea. Ann. Thorac. Med. 2013, 8, 53–57. [Google Scholar] [CrossRef]
- Soric, M.; Turkalj, M.; Kucic, D.; Marusic, I.; Plavec, D.; Misigoj-Durakovic, M. Validation of a multi-sensor activity monitor for assessing sleep in children and adolescents. Sleep Med. 2013, 14, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Hébert, J.R.; Shivappa, N.; Hand, G.A.; Hurley, T.G.; Drenowatz, C.; McMahon, D.; Shook, R.P.; Blair, S.N. Anti-inflammatory Dietary Inflammatory Index scores are associated with healthier scores on other dietary indices. Nutr. Res. 2016, 36, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social Desirability Bias in Dietary Self-Report May Compromise the Validity of Dietary Intake Measures. Leuk. Res. 1995, 24, 389–398. [Google Scholar] [CrossRef]
- Adams, S.A.; Matthews, C.E.; Ebbeling, C.B.; Moore, C.G.; Cunningham, J.E.; Fulton, J.; Hebert, J.R. The Effect of Social Desirability and Social Approval on Self-Reports of Physical Activity. Am. J. Epidemiol. 2005, 161, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Garner, D.M.; Olmsted, M.P.; Bohr, Y.; Garfinkel, P.E. The Eating Attitudes Test: Psychometric features and clinical correlates. Psychol. Med. 1982, 12, 871–878. [Google Scholar] [CrossRef]
- Wilson, K.; St-Onge, M.-P.; Tasali, E. Diet Composition and Objectively Assessed Sleep Quality: A Narrative Review. J. Acad. Nutr. Diet. 2022, 122, 1182–1195. [Google Scholar] [CrossRef]
- Peuhkuri, K.; Sihvola, N.; Korpela, R. Diet promotes sleep duration and quality. Nutr. Res. 2012, 32, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, S.; Matthews, K.A.; von Känel, R.; Hall, M.H.; Thurston, R.C. Sleep characteristics and inflammatory biomarkers among midlife women. Sleep 2018, 41, zsy049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaput, J.-P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Tsereteli, N.; Vallat, R.; Fernandez-Tajes, J.; Delahanty, L.M.; Ordovas, J.M.; Drew, D.A.; Valdes, A.M.; Segata, N.; Chan, A.T.; Wolf, J.; et al. Impact of insufficient sleep on dysregulated blood glucose control under standardised meal conditions. Diabetologia 2022, 65, 356–365. [Google Scholar] [CrossRef]
- Morris, C.J.; Yang, J.N.; Garcia, J.I.; Myers, S.; Bozzi, I.; Wang, W.; Buxton, O.M.; Shea, S.A.; Scheer, F.A.J.L. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl. Acad. Sci. USA 2015, 112, E2225–34. [Google Scholar] [CrossRef] [Green Version]
- Pivovarova, O.; Jürchott, K.; Rudovich, N.; Hornemann, S.; Ye, L.; Möckel, S.; Murahovschi, V.; Kessler, K.; Seltmann, A.-C.; Maser-Gluth, C.; et al. Changes of Dietary Fat and Carbohydrate Content Alter Central and Peripheral Clock in Humans. J. Clin. Endocrinol. Metab. 2015, 100, 2291–2302. [Google Scholar] [CrossRef] [Green Version]
- Daneshzad, E.; Heshmati, J.; Basirat, V.; Keshavarz, S.-A.; Qorbani, M.; Larijani, B.; Bellissimo, N.; Azadbakht, L. The Effect of the Dietary Approaches to Stop Hypertension (DASH) Diet on Sleep, Mental Health, and Hormonal Changes: A Randomized Clinical Trial in Women With Type 2 Diabetes. Front. Nutr. 2022, 9, 775543. [Google Scholar] [CrossRef]
- Tan, X.; Alén, M.; Wang, K.; Tenhunen, J.; Wiklund, P.; Partinen, M.; Cheng, S. Effect of Six-Month Diet Intervention on Sleep among Overweight and Obese Men with Chronic Insomnia Symptoms: A Randomized Controlled Trial. Nutrients 2016, 8, 751. [Google Scholar] [CrossRef]
- Heath, G.; Dorrian, J.; Coates, A. Associations between shift type, sleep, mood, and diet in a group of shift working nurses. Scand. J. Work. Environ. Health 2019, 45, 402–412. [Google Scholar] [CrossRef]
- Zuraikat, F.; Makarem, N.; St-Onge, M.-P.; Xi, H.; Akkapeddi, A.; Aggarwal, B. A Mediterranean Dietary Pattern Predicts Better Sleep Quality in US Women from the American Heart Association Go Red for Women Strategically Focused Research Network. Nutrients 2020, 12, 2830. [Google Scholar] [CrossRef]
- Randler, C.; Engelke, J. Gender differences in chronotype diminish with age: A meta-analysis based on morningness/chronotype questionnaires. Chronobiol. Int. 2019, 36, 888–905. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.K.; Patterson, F.; Lozano, A.; Hanlon, A. Differences in morning–evening type and sleep duration between Black and White adults: Results from a propensity-matched UK Biobank sample. Chronobiol. Int. 2017, 34, 740–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.; Goodman, M.; Huang, T.; Wallace, M.L.; Johnson, D.A.; Bertisch, S.; Redline, S. Racial-ethnic Differences in Actigraphy, Questionnaire, and Polysomnography Indicators of Healthy Sleep: The Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2021, 2021, kwab232. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Shivappa, N.; Wirth, M.D.; Hebert, J.R.; Mikhailidis, D.P.; Kengne, A.P.; Banach, M. Dietary inflammatory index and cardiometabolic risk in US adults. Atherosclerosis 2018, 276, 23–27. [Google Scholar] [CrossRef]
- Malone, S.K.; Zemel, B.S.; Compher, C.; Souders, M.C.; Chittams, J.; Thompson, A.L.; Lipman, T.H. Characteristics Associated With Sleep Duration, Chronotype, and Social Jet Lag in Adolescents. J. Sch. Nurs. 2016, 32, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.F.; Schumacher, L.M.; Lanoye, A.; LaRose, J.G.; Tate, D.F.; Espeland, M.A.; Gorin, A.A.; Lewis, C.E.; Jelalian, E.; Wing, R.R.; et al. Persistent, High Levels of Social Jetlag Predict Poor Weight Outcomes in a Weight Gain Prevention Study for Young adults. J. Behav. Med. 2022, 45, 794–803. [Google Scholar] [CrossRef]
- McMahon, D.M.; Burch, J.B.; Wirth, M.D.; Youngstedt, S.D.; Hardin, J.W.; Hurley, T.G.; Blair, S.N.; Hand, G.A.; Shook, R.P.; Drenowatz, C.; et al. Persistence of social jetlag and sleep disruption in healthy young adults. Chronol. Int. 2018, 35, 312–328. [Google Scholar] [CrossRef]
- Hall, W.L. The emerging importance of tackling sleep–diet interactions in lifestyle interventions for weight management. Br. J. Nutr. 2022, 128, 561–568. [Google Scholar] [CrossRef]
- Zerón-Rugerio, M.F.; Cambras, T.; Izquierdo-Pulido, M. Social Jet Lag Associates Negatively with the Adherence to the Mediterranean Diet and Body Mass Index among Young Adults. Nutrients 2019, 11, 1756. [Google Scholar] [CrossRef] [Green Version]
- Godos, J.; Ferri, R.; Caraci, F.; Cosentino, F.I.I.; Castellano, S.; Shivappa, N.; Hebert, J.R.; Galvano, F.; Grosso, G. Dietary Inflammatory Index and Sleep Quality in Southern Italian Adults. Nutrients 2019, 11, 1324. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.D.; Fekedulegn, D.; Andrew, M.E.; McLain, A.C.; Burch, J.B.; Davis, J.E.; Hébert, J.R.; Violanti, J.M. Longitudinal and cross-sectional associations between the dietary inflammatory index and objectively and subjectively measured sleep among police officers. J. Sleep Res. 2021, 31, e13543. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Liu, J.; Wallace, M.K.K.; McLain, A.C.; Turner-McGrievy, G.M.; Davis, J.E.; Ryan, N.; Hébert, J.R. Dietary Inflammatory Index and sleep quality and duration among pregnant women with overweight or obesity. Sleep 2022, 45, zsac241. [Google Scholar] [CrossRef] [PubMed]
Frequency (%) or Mean ± St. Dev | ||||||
---|---|---|---|---|---|---|
Characteristics | All Participants | DII–1 | DII–2 | DII–3 | DII–4 | p-Value * |
Gender | 427 | 0.02 | ||||
Male | 210 (49%) | 60 (61%) | 55 (52%) | 45 (43%) | 50 (42%) | |
Female | 217 (51%) | 39 (39%) | 51 (48%) | 59 (57%) | 68 (58%) | |
Education | 427 | 0.13 | ||||
<3 years of college | 70 (16%) | 11 (11%) | 19 (18%) | 14 (13%) | 26 (22%) | |
4+ years of college | 357 (84%) | 88 (89%) | 87 (82%) | 90 (87%) | 92 (78%) | |
Income ($USD) | 425 | <0.01 | ||||
0–19,999 | 71 (17%) | 14 (14%) | 18 (17%) | 15 (14%) | 24 (20%) | |
20,000–39,999 | 148 (35%) | 27 (28%) | 27 (25%) | 46 (44%) | 48 (41%) | |
40,000–59,999 | 85 (20%) | 15 (15%) | 29 (27%) | 16 (15%) | 25 (21%) | |
60,000–80,000 | 53 (12%) | 13 (13%) | 16 (15%) | 10 (10%) | 14 (12%) | |
80,000+ | 68 (16%) | 28 (29%) | 16 (15%) | 17 (16%) | 7 (6%) | |
Employment | 426 | 0.15 | ||||
Non-student | 237 (56%) | 64 (65%) | 60 (57%) | 54 (52%) | 59 (50%) | |
Student | 189 (44%) | 35 (35%) | 46 (43%) | 49 (48%) | 59 (50%) | |
Marital | 427 | 0.07 | ||||
Married/living with someone | 197 (46%) | 56 (57%) | 47 (44%) | 48 (46%) | 46 (39%) | |
Single | 230 (54%) | 43 (43%) | 59 (56%) | 56 (54%) | 72 (61%) | |
Children | 426 | 0.35 | ||||
0 | 363 (85%) | 89 (90%) | 95 (90%) | 83 (80%) | 96 (82%) | |
1 | 35 (8%) | 6 (6%) | 4 (4%) | 12 (12%) | 13 (11%) | |
2 | 20 (5%) | 2 (2%) | 6 (6%) | 7 (7%) | 5 (4%) | |
3 | 4 (1%) | 0 (0%) | 1 (1%) | 1 (1%) | 2 (2%) | |
4 | 4 (1%) | 2 (2%) | 0 (0%) | 1 (1%) | 1 (1%) | |
Race | 427 | <0.01 | ||||
European-American | 284 (67%) | 84 (85%) | 71 (67%) | 72 (69%) | 57 (48%) | |
African American | 54 (13%) | 3 (3%) | 13 (12%) | 6 (6%) | 32 (27%) | |
Other | 89 (21%) | 12 (12%) | 22 (21%) | 26 (25%) | 29 (26%) | |
Sleep Med Use 1 | 427 | 0.41 | ||||
Not during the past month | 366 (86%) | 87 (88%) | 86 (81%) | 92 (89%) | 101 (86%) | |
Less than once a week | 61 (14%) | 12 (12%) | 20 (19%) | 12 (12%) | 17 (14%) | |
Age | 99 | 106 | 104 | 118 | 0.12 | |
Mean ± STE | 27.6 ± 3.8 | 28.3 ± 3.5 | 27.7 ± 3.9 | 27.0 ± 3.6 | 27.6 ± 4.0 | |
BMI 2 (kg/m2) | 0.22 | |||||
Mean ± STE | 25.4 ± 3.8 | 25.1 ± 3.5 | 25.0 ± 3.5 | 25.5 ± 4.0 | 25.9 ± 4.2 | |
Systolic BP 3 | 0.06 | |||||
Mean ± STE | 122.8 ± 11.9 | 125.0 ± 11.5 | 123.0 ± 12.2 | 123.1 ± 12.8 | 120.6 ± 10.7 | |
Diastolic BP 3 | 0.51 | |||||
Mean ± STE | 73.7 ± 8.8 | 74.4 ± 8.7 | 74.1 ± 8.6 | 73.6 ± 9.8 | 72.7 ± 8.2 | |
WHR 4 | 0.58 | |||||
Mean ± STE | 0.79 ± 0.070 | 0.80 ± 0.072 | 0.79 ± 0.07 | 0.79 ± 0.07 | 0.79 ± 0.07 | |
PSS 5 Score | 0.05 | |||||
Mean ± STE | 12.5 ± 5.5 | 11.2 ± 5.4 | 12.8 ± 5.9 | 12.7 ± 5.0 | 13.1 ± 5.6 | |
SA 6 Score | 0.93 | |||||
Mean ± STE | 51.5 ± 9.3 | 51.4 ± 9.5 | 51.2 ± 9.4 | 51.3 ± 8.2 | 51.9 ± 10.0 | |
SD 7 Score | 0.09 | |||||
Mean ± STE | 18.5 ± 5.2 | 17.7 ± 5.0 | 19.3 ± 5.0 | 18.1 ± 5.2 | 19.0 ± 5.4 | |
Sedentary Hours | 0.02 | |||||
Mean ± STE | 18.1 ± 1.5 | 17.9 ± 1.5 | 18.1 ± 1.4 | 18.0 ± 1.5 | 18.5 ± 1.3 | |
Physical Activity Hours | 0.01 | |||||
Mean ± STE | 2.3 ± 1.3 | 2.5 ± 1.4 | 2.4 ± 1.2 | 2.3 ± 1.4 | 1.9 ± 1.1 | |
Social Jet Lag | 0.97 | |||||
Mean ± STE | 1.2 ± 0.8 | 1.1 ± 0.7 | 1.2 ± 0.8 | 1.2 ± 0.9 | 1.2 ± 0.9 | |
EAQ 8 1 | <0.01 | |||||
Mean ± STE | 10.3 ± 4.9 | 11.3 ± 4.7 | 10.7 ± 4.8 | 10.2 ± 4.9 | 9.0 ± 4.9 | |
EAQ 8 2 | 0.87 | |||||
Mean ± STE | 5.1 ± 2.9 | 5.0 ± 3.0 | 5.0 ±2.8 | 5.2 ± 2.7 | 5.3 ± 3.1 | |
EAQ 8 3 | 0.31 | |||||
Mean ± STE | 5.07 ± 3.2 | 5.3 ± 3.3 | 5.0 ± 3.3 | 5.4 ± 3.2 | 4.7 ± 2.9 |
Mean (Minimum–Maximum) or (95% CL) | |||||||
---|---|---|---|---|---|---|---|
Sleep Metric | DII Category | ||||||
Very Anti- Inflammatory | Moderately Anti- Inflammatory | Neutral | Pro- Inflammatory | p-Value: * Very Anti vs. Pro | DII Continuous Beta | p-Value: * Continuous | |
WASO 1 (min) | 57.9 (53.6–62.2) | 61.2 (57.2–65.2) | 62.3 (58.3–57.7) | 61.9 (57.7–66.2) | 0.75 | 0.7966 (0.11–1.43) | 0.02 |
Sleep duration (hours) | 6.45 (6.32–6.59) | 6.43 (6.31–393.34) | 6.40 (6.27–6.53) | 6.34 (6.21–6.47) | 0.12 | −0.8567 (−2.04–0.33) | 0.16 |
Sleep latency (min) | 12.9 (12.1–13.7) | 13.1 (12.4–13.9) | 13.0 (12.2–13.8) | 13.2 (12.3–14.1) | 0.70 | 0.005866 (−0.15–0.16) | 0.94 |
Sleep efficiency (%) | 81.2 (80.2–82.2) | 80.7 (79.7–81.6) | 80.6 (79.6–81.5) | 80.6 (79.6–81.6) | 0.23 | −0.1247 (−0.27–0.02) | 0.09 |
Bedtime (00:00–23:59) | 23:58 (23:45–00:11) | 00:07 (23:54–00:18) | 00:11 (23:59–00:22) | 00:22 (00:11–00:34) | <0.01 | 2.8103 (1.19–4.44) | <0.01 |
Waketime (00:00–23:59) | 07:40 (07:27–07:52) | 07:50 (07:38–08:01) | 07:49 (07:39–08:01) | 08:04 (07:53–08:16) | <0.01 | 2.8459 (1.20–4.49) | <0.01 |
PSQI 2 Sleep score | 5.11 (4.80–5.43) | 5.21 (4.91–5.51) | 5.45 (5.14–5.76) | 5.36 (5.02–5.70) | 0.23 | 0.04967 (−0.01–0.10) | 0.08 |
Social jetlag | 1.11 (0.97–1.24) | 1.25 (1.12–1.38) | 1.37 (1.00–1.27) | 1.25 (1.10–1.40) | 0.07 | 0.01016 (−0.01–0.03) | 0.34 |
Sleep Metric | βChange (95% CL) | p-Value * βChange | βBase (95% CL) | p-Value * βBase | p-Value * βChange vs. βBase |
---|---|---|---|---|---|
WASO 1 (min) | 1.0002 (0.26–1.74) | 0.01 | 0.1958 (−0.84–1.23) | 0.71 | 0.16 |
Sleep duration (hours) | −0.7796 (−2.15–0.59) | 0.26 | −0.8114 (−2.56–0.94) | 0.36 | 0.97 |
Sleep latency (min) | −0.01907 (−0.21–0.17) | 0.85 | −0.00317 (−0.20–0.20) | 0.96 | 0.89 |
Sleep efficiency (%) | −0.1626 (−0.32–−0.004) | 0.05 | −0.05328 (−0.29–0.17) | 0.66 | 0.41 |
Bedtime (00:00–23:59) | 1.8647 (0.05–3.68) | 0.04 | 5.7605 (3.27–8.26) | <0.01 | <0.01 |
Waketime (00:00–23:59) | 1.8958 (0.04–3.75) | 0.05 | 4.8252 (2.39–7.26) | <0.01 | 0.03 |
PSQI 2 Sleep score | 0.04163 (−0.03–0.11) | 0.23 | 0.06511 (−0.004–0.13) | 0.07 | 0.57 |
Social jetlag | 0.001611 (−0.03–0.03) | 0.91 | 0.01814 (−0.005–0.04) | 0.12 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrell, E.T.; Wirth, M.D.; McLain, A.C.; Hurley, T.G.; Shook, R.P.; Hand, G.A.; Hébert, J.R.; Blair, S.N. Associations between the Dietary Inflammatory Index and Sleep Metrics in the Energy Balance Study (EBS). Nutrients 2023, 15, 419. https://doi.org/10.3390/nu15020419
Farrell ET, Wirth MD, McLain AC, Hurley TG, Shook RP, Hand GA, Hébert JR, Blair SN. Associations between the Dietary Inflammatory Index and Sleep Metrics in the Energy Balance Study (EBS). Nutrients. 2023; 15(2):419. https://doi.org/10.3390/nu15020419
Chicago/Turabian StyleFarrell, Emily T., Michael D. Wirth, Alexander C. McLain, Thomas G. Hurley, Robin P. Shook, Gregory A. Hand, James R. Hébert, and Steven N. Blair. 2023. "Associations between the Dietary Inflammatory Index and Sleep Metrics in the Energy Balance Study (EBS)" Nutrients 15, no. 2: 419. https://doi.org/10.3390/nu15020419
APA StyleFarrell, E. T., Wirth, M. D., McLain, A. C., Hurley, T. G., Shook, R. P., Hand, G. A., Hébert, J. R., & Blair, S. N. (2023). Associations between the Dietary Inflammatory Index and Sleep Metrics in the Energy Balance Study (EBS). Nutrients, 15(2), 419. https://doi.org/10.3390/nu15020419