Bariatric Surgery as Treatment Strategy of Obesity in Saudi People: Effects of Gut Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
- a.
- The exclusion criteria:
- b.
- Ethical approval of the study:
2.2. Study Design and Data Collection
- Participants were interviewed face-to-face at the clinic to complete the questionnaire;
- Body measurements were taken by the researcher (such as height, weight, waist and hip circumferences with height- and weight-measuring devices;
- Body composition using electrical tissue conductivity was assessed to obtain an estimation of body fat present, lean body mass, and body water percent;
- Blood samples were taken to check the level of lipid profile and glucose;
- Stool samples were provided by participants to examine the microbiota composition.
2.3. Fecal Samples’ Collection and DNA Extraction
2.4. Analysis of Fecal Microbiota by Real-Time PCR
2.5. Statistical Analysis
3. Results and Discussion
3.1. Participants and Demographic Characteristics
3.2. Anthropometric Characteristics and Clinical Data
3.3. Changes of Gut Microbiota Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- WHO Global Health Observatory (GHO). Data: Fact Sheets, Overweight and Obesity. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 6 December 2022).
- WHO; GHO. By Category. Prevalence of Overweight among Adults, BMI ≥ 25, Age-Standardized-Estimates by Country. Available online: http://apps.who.int/gho/data/node.main.A897A?lang=en (accessed on 6 December 2022).
- Damms-Machado, A.; Mitra, S.; Schollenberger, A.E.; Kramer, K.M.; Meile, T.; Königsrainer, A.; Huson, D.H.; Bischoff, S.C. Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption. BioMed Res. Int. 2015, 2015, 806248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the Gut Microbiota of Adults with Obesity: A Systematic Review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Quercia, I.; Dutia, R.; Kotler, D.P.; Belsley, S.; Laferrère, B. Gastrointestinal Changes after Bariatric Surgery. Diabetes Metab. 2014, 40, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Baothman, O.A.; Zamzami, M.A.; Taher, I.; Abubaker, J.; Abu-Farha, M. The Role of Gut Microbiota in the Development of Obesity and Diabetes. Lipids Health Dis. 2016, 15, 108. [Google Scholar] [CrossRef] [Green Version]
- Moran-Ramos, S.; López-Contreras, B.E.; Canizales-Quinteros, S. Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality? Arch. Med. Res. 2017, 48, 735–753. [Google Scholar] [CrossRef]
- Cani, P.D.; Osto, M.; Geurts, L.; Everard, A. Involvement of Gut Microbiota in the Development of Low-Grade Inflammation and Type 2 Diabetes Associated with Obesity. Gut Microbes 2012, 3, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef]
- Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, Inflammation, and the Gut Microbiota. Lancet Diabetes Endocrinol. 2015, 3, 207–215. [Google Scholar] [CrossRef]
- Nalluri, H.; Kizy, S.; Ewing, K.; Luthra, G.; Leslie, D.B.; Bernlohr, D.A.; Sadowsky, M.J.; Ikramuddin, S.; Khoruts, A.; Staley, C.; et al. Peri-Operative Antibiotics Acutely and Significantly Impact Intestinal Microbiota Following Bariatric Surgery. Sci. Rep. 2020, 10, 20340. [Google Scholar] [CrossRef] [PubMed]
- Salazar, N.; Ponce-Alonso, M.; Garriga, M.; Sánchez-Carrillo, S.; Hernández-Barranco, A.M.; Redruello, B.; Fernández, M.; Botella-Carretero, J.I.; Vega-Piñero, B.; Galeano, J.; et al. Fecal Metabolome and Bacterial Composition in Severe Obesity: Impact of Diet and Bariatric Surgery. Gut Microbes 2022, 14, 2106102. [Google Scholar] [CrossRef] [PubMed]
- Peat, C.M.; Kleiman, S.C.; Bulik, C.M.; Carroll, I.M.; States, U.; States, U.; Institutet, K.; States, U.; States, U. The Intestinal Microbiome in Bariatric Surgery Patients. Eur. Eat. Disord. Rev. 2016, 23, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Mun, S.; Oh, Y.; Cho, C.S.; Yun, K.; Ahn, Y.; Chung, W.H.; Lim, M.Y.; Lee, K.E.; Hwang, T.S.; et al. A QRT-PCR Method Capable of Quantifying Specific Microorganisms Compared to NGS-Based Metagenome Profiling Data. Microorganisms 2022, 10, 324. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Boirie, Y.; Cederholm, T.; Chourdakis, M.; Cuerda, C.; Delzenne, N.M.; Deutz, N.E.; Fouque, D.; Genton, L.; Gil, C.; et al. Towards a Multidisciplinary Approach to Understand and Manage Obesity and Related Diseases. Clin. Nutr. 2017, 36, 917–938. [Google Scholar] [CrossRef] [Green Version]
- Waleed, N.R.M.; Algadhi, Y.A.M.; Assiri, S.A.; AlOmari, M.A.; Khouj, O.T.; Albakestani, M.Y.; Abafallata, D.T.; Aloufi, M.A.; Alsobhi, M.A.F.; AlSubhi, N.A.; et al. Bariatric Surgery to Treat Obesity among Adults. Egypt. J. Hosp. Med. 2017, 69, 2400–2404. [Google Scholar] [CrossRef]
- Welbourn, R.; Hollyman, M.; Kinsman, R.; Dixon, J.; Liem, R.; Ottosson, J.; Ramos, A.; Våge, V.; Al-Sabah, S.; Brown, W.; et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. Obes. Surg. 2019, 29, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; Le, Q.A. Effectiveness of Bariatric Surgical Procedures: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Medicine 2017, 96, 12–14. [Google Scholar] [CrossRef]
- Arble, D.M.; Sandoval, D.A.; Seeley, R.J. Mechanisms Underlying Weight Loss and Metabolic Improvements in Rodent Models of Bariatric Surgery. Diabetologia 2015, 58, 211–220. [Google Scholar] [CrossRef]
- Carpentier, A.C. Targeting the Gut to Treat Obesity and Its Metabolic Comorbidities: Focus on Bariatric Surgery-View from the Chair. Int. J. Obes. Suppl. 2016, 6, S6–S7. [Google Scholar] [CrossRef] [Green Version]
- Benaiges, D.; Más-Lorenzo, A.; Goday, A.; Ramon, J.M.; Chillaran, J.J.; Pedro-Botet, J.; Flores-Le Roux, J.A. Laparoscopic Sleeve Gastrectomy: More than a Restrictive Bariatric Surgery Procedure? World J. Gastroenterol. 2015, 21, 11804–11814. [Google Scholar] [CrossRef]
- Al-Enazi, N.; Al-Falah, H. A Needs Assessment of Bariatric Surgery Services in Saudi Arabia. Saudi J. Obes. 2017, 5, 15. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Prifti, E.; Belda, E.; Ichou, F.; Kayser, B.D.; Dao, M.C.; Verger, E.O.; Hedjazi, L.; Bouillot, J.-L.; Chevallier, J.-M.; et al. Major Microbiota Dysbiosis in Severe Obesity: Fate after Bariatric Surgery. Gut 2019, 68, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, X.; Lu, X.; Mattar, S.; Kassab, G. Mechanisms of Weight Loss After Sleeve Gastrectomy and Adjustable Gastric Banding: Far More Than Just Restriction. Obesity 2019, 27, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.; Tsai, P.; Jüllig, M.; Liu, A.; Plank, L.; Booth, M. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes. Surg. 2017, 27, 917–925. [Google Scholar] [CrossRef]
- Shao, Y.; Ding, R.; Xu, B.; Hua, R.; Shen, Q.; He, K.; Yao, Q. Alterations of Gut Microbiota After Roux-En-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats. Obes. Surg. 2017, 27, 295–302. [Google Scholar] [CrossRef]
- Furet, J.-P.; Kong, L.-C.; Tap, J.; Poitou, C.; Basdevant, A.; Bouillot, J.-L.; Mariat, D.; Corthier, G.; Doré, J.; Henegar, C.; et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes 2010, 59, 3049–3057. [Google Scholar] [CrossRef] [Green Version]
- Graessler, J.; Qin, Y.; Zhong, H.; Zhang, J.; Licinio, J.; Wong, M.L.; Xu, A.; Chavakis, T.; Bornstein, A.B.; Ehrhart-Bornstein, M.; et al. Metagenomic Sequencing of the Human Gut Microbiome before and after Bariatric Surgery in Obese Patients with Type 2 Diabetes: Correlation with Inflammatory and Metabolic Parameters. Pharm. J. 2013, 13, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.J.; Florea, L.; Sears, C.L.; Maruthur, N.; Potter, J.J.; Schweitzer, M.; Magnuson, T.; Clark, J.M. Changes in Gut Microbiome after Bariatric Surgery Versus Medical Weight Loss in a Pilot Randomized Trial. Obes. Surg. 2019, 29, 3239–3245. [Google Scholar] [CrossRef]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human Gut Microbiota in Obesity and after Gastric Bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aron-Wisnewsky, J.; Doré, J.; Clement, K. The Importance of the Gut Microbiota after Bariatric Surgery. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.A.; Pedreros, J.P.; Turiel, D.; Quezada, N.; Pimentel, F.; Escalona, A.; Garrido, D. Distinct Patterns in the Gut Microbiota after Surgical or Medical Therapy in Obese Patients. PeerJ 2017, 5, e3443. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; et al. Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Gorvitovskaia, A.; Holmes, S.P.; Huse, S.M. Interpreting Prevotella and Bacteroides as Biomarkers of Diet and Lifestyle. Microbiome 2016, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Yang, S.; Zhang, L.; Qiao, L.; Wang, L.; He, S.; Li, J.; Yang, N.; Yue, B.; Zhou, C. Comparative Metagenomics Analysis Reveals How the Diet Shapes the Gut Microbiota in Several Small Mammals. Ecol. Evol. 2022, 12, 8470. [Google Scholar] [CrossRef]
- Paganelli, F.L.; Luyer, M.; Hazelbag, C.M.; Uh, H.W.; Rogers, M.R.C.; Adriaans, D.; Berbers, R.M.; Hendrickx, A.P.A.; Viveen, M.C.; Groot, J.A.; et al. Roux-Y Gastric Bypass and Sleeve Gastrectomy Directly Change Gut Microbiota Composition Independent of Surgery Type. Sci. Rep. 2019, 9, 10979. [Google Scholar] [CrossRef] [Green Version]
- Tabasi, M.; Eybpoosh, S.; Siadat, S.D.; Elyasinia, F.; Soroush, A.; Bouzari, S. Modulation of the Gut Microbiota and Serum Biomarkers After Laparoscopic Sleeve Gastrectomy: A 1-Year Follow-Up Study. Obes. Surg. 2021, 31, 1949–1956. [Google Scholar] [CrossRef]
- Kruppa, P.; Georgiou, I.; Ghods, M.; Biermann, N.; Prantl, L.; Klein-Weigel, P. Lipedema-Pathogenesis, Diagnosis, and Treatment Options. Dtsch. Arztebl. Int. 2020, 117, 396–403. [Google Scholar] [CrossRef]
- Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The Role of PH in Determining the Species Composition of the Human Colonic Microbiota. Environ. Microbiol. 2009, 11, 2112–2122. [Google Scholar] [CrossRef]
- Kong, L.C.; Tap, J.; Aron-Wisnewsky, J.; Pelloux, V.; Basdevant, A.; Bouillot, J.L.; Zucker, J.D.; Doré, J.; Clément, K. Gut Microbiota after Gastric Bypass in Human Obesity: Increased Richness and Associations of Bacterial Genera with Adipose Tissue Genes. Am. J. Clin. Nutr. 2013, 98, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedberg, D.E.; Lebwohl, B.; Abrams, J.A.; Abrams, J. The Impact of Proton Pump Inhibitors on the Human Gastrointestinal Microbiome. Clin Lab Med 2014, 34, 771–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Angelakis, E.; Bibi, F.; Azhar, E.I.; Bachar, D.; Lagier, J.C.; Gaborit, B.; Hassan, A.M.; Jiman-Fatani, A.A.; Alshali, K.Z.; et al. Comparison of the Gut Microbiota of People in France and Saudi Arabia. Nutr. Diabetes 2015, 5, e153. [Google Scholar] [CrossRef] [PubMed]
Total Organism | Primers | Sequence 5′–3′ |
---|---|---|
All bacteria | F_Bact 1369 | CGG TGA ATA CGT TCC CGG |
R_Prok 1492 | TAC GGC TAC CTT GTT ACG ACT T | |
C. leptum | F_Clept 09 | CCT TCC GTG CCG SAG TTA |
R_Clept 08 | GAA TTA AAC CAC ATA CTC CAC TGC TT | |
Bifidobacterium | F_Bifid 09c | CGG GTG AGT AAT GCG TGA CC |
R_Bifid 06 | TGA TAG GAC GCG ACC CCA | |
C. coccoides | F_Ccoc 07 | GAC GCC GCG TGA AGG A |
R_Ccoc 14 | AGC CCC AGC CTT TCA CAT C | |
Bacteroides/Prevotella | F_Bacter 11 | CCT WCG ATG GAT AGG GGT T |
R_Bacter 08 | CAC GCT ACT TGG CTG GTT CAG | |
E. coli | E. coli F | CAT GCC GCG TGT ATG AAG AA |
E. coli R | CGG GTA ACG TCA ATG AGC AAA | |
Lactobacillus/Leuconostoc/Pediococcus | F_Lacto 05 | AGC AGT AGG GAA TCT TCC A |
R_Lacto 04 | CGC CAC TGG TGT TCY TCC ATA TA | |
F. prausnitzii | F_prau 07 | CCA TGA ATT GCC TTC AAA ACT GTT |
F_prau 02 | GAG CCT CAG CGT CAG TTG GT |
Control (n) % | Pre-Surgery (n) % | |
---|---|---|
Participants (No.) | 11 | 28 |
Gender | ||
Male | (2)18.2 | (13) 46.4 |
Female | (9) 81.8 | (15) 53.6 |
Age group | ||
19–30 y | (10) 90.9 | (15) 53.6 |
31–40 y | (1) 9.1 | (5) 17.9 |
41–50 y | 0 | (5) 17.9 |
˃50 | 0 | (3) 10.7 |
Marital status | ||
Single | (9) 81.8 | (12) 42.9 |
Married | (2) 18.2 | (15) 53.6 |
Divorced | 0 | (1) 3.6 |
Edu. Level | ||
Primary or less | 0 | (2) 7.1 |
Secondary | 0 | (9) 32.1 |
Graduate | (10) 90.9 | (15) 53.6 |
Postgraduate. | (1) 9.1 | (2) 7.1 |
Income level (SAR) | ||
˂5000 | (5) 45.5 | (9) 32.1 |
5000–10,000 | 0 | (9) 32.1 |
˃10,000 to 15,000 | 0 | (5) 17.9 |
˃15,000 to 20,000 | (2) 18.2 | (2) 7.1 |
˃20,000 | (4) 36.4 | (3) 10.7 |
Health Status | ||
Healthy | 11 | (19) 67.9 |
Sleep Apnea | 0 | (3) 10.7 |
HTN | 0 | (2) 7.1 |
CVD | 0 | (1) 3.6 |
Diabetes, HTN. | 0 | (1) 3.6 |
Diabetes, HTN, High cholesterol | 0 | (1) 3.6 |
Control | M0 | M3 | M6 | M12 | p-Value * | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | <0.05 | |
Weight (kg) | 54.64 (8.21) | 121.31 (16.35) | 98.70 (13.52) | 87.23 (12.73) | 80.70 (11.65) | <0.001 |
Male | 129.4 (17.24) | 101.5 (14.8) | 86.73 (11.59) | 78.93 (8.14) | ||
Female | 114.26 (12.10) | 96.2 (12.1) | 87.66 (14.02) | 82.23 (14.13) | ||
BMI (kg/m2) | 21.59 (2.04) | 44.07 (5.25) | 36.01 (5.47) | 31.79 (5.96) | 29.40 (5.87) | <0.001 |
Male | 42.28 (4.55) | 33.3 (3.8) | 28.54 (3.41) | 25.80 (2.79) | ||
Female | 45.60 (5.46) | 38.3 (5.7) | 34.60 (6.35) | 32.52 (6.11) | ||
Waist (cm) | 73.73 (8.43) | 125.82 (12.56) | 110.02 (11.25) | 101.25 (8.53) | 97.13 (8.51) | <0.001 |
Male | 132.30 (12.63) | 113.61 (12.49) | 102.69 (10.27) | 97.23 (8.24) | ||
Female | 120.20 (9.71) | 106.90 (9.37) | 100.0 (6.80) | 97.03 (9.01) | ||
Hip (cm) | 96.36 (7.90) | 141.50 (19.20) | 123.14 (10.20) | 115.07 (10.50) | 110.25 (10.80) | <0.001 |
Male | 139.15 (21.75) | 118.69 (9.12) | 109.73 (7.98) | 103.76 (6.19) | ||
Female | 143.53 (17.19) | 127.00 (9.74) | 119.70 (10.42) | 115.86 (10.91) | ||
WHR (Ratio) | 0.76 (0.07) | 0.89 (0.10) | 0.89 (0.10) | 0.88 (0.08) | 0.89 (0.09) | <0.631 |
Male | 0.95 (0.08) | 0.95(0.06) | 0.93 (0.05) | 0.93 (0.05) | ||
Female | 0.84 (0.08) | 0.84 (0.08) | 0.84 (0.08) | 0.84 (0.08) | ||
Body fat (%) | 21.88 (5.96) | 45.32 (5.83) | 39.96 (6.69) | 35.54 (8.23) | 32.40 (9.56) | <0.001 |
Male | 40.26 (2.67) | 33.90 (3.25) | 28.39 (4.00) | 23.57 (3.73) | ||
Female | 49.70 (3.87) | 45.20 (3.71) | 41.74 (5.30) | 40.04 (5.42) | ||
Muscle mass | 39.54 (7.74) | 63.49 (11.22) | 56.51 (8.91) | 53.28 (7.28) | 51.78 (7.18) | <0.001 |
Male | 73.57 (6.75) | 63.96 (6.35) | 59.06 (5.40) | 57.65 (4.46) | ||
Female | 54.74 (5.22) | 50.06 (4.73) | 48.25 (4.34) | 46.68 (4.74) | ||
Water (%) | 55.67 (5.07) | 39.23 (3.43) | 42.76 (4.55) | 45.80 (5.68) | 48.23 (6.92) | <0.001 |
Male | 42.06 (2.30) | 46.63 (2.78) | 50.54 (3.25) | 54.48 (3.26) | ||
Female | 36.76 (2.03) | 39.40 (2.68) | 41.68 (3.75) | 42.81 (3.91) |
Control | M0 | M3 | M6 | M12 | p-Value | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | <0.05 | |
ALT | 20.36 (7.42) | 34.96 (22.39) | 35.54 (19.48) | 25.71 (12.60) | 24.07 (6.49) | 0.038 |
AST | 14.55 (3.72) | 19.07 (13.96) | 23.96 (15.64) | 15.75 (10.79) | 15.64 (6.70) | 0.133 |
BUN | 3.54 (0.76) | 4.39 (1.27) | 3.01 (1.33) | 3.72 (0.89) | 4.14 (1.34) | <0.001 |
Creatinine | 58.91 (10.47) | 66.04 (14.64) | 57.21 (9.81) | 61.07 (9.78) | 62.89 (11.56) | 0.014 |
Hgb A1c | 5.32 (0.17) | 5.88 (0.50) | 5.39 (0.40) | 5.34 (0.36) | 5.25 (0.33) | <0.001 |
FBG (mmol/L) | 4.94 (0.39) | 5.25 (0.88) | 4.62 (0.64) | 4.70 (0.67) | 4.58 (0.57) | 0.012 |
Total cholesterol (mmol/L) | 4.02 (0.64) | 4.61 (0.68) | 4.49 (0.83) | 4.74 (0.92) | 4.82 (0.93) | 0.103 |
HDL-cholesterol (mmol/L) | 1.44 (0.42) | 1.20 (0.25) | 1.11 (0.21) | 1.31 (0.26) | 1.49 (0.28) | <0.001 |
LDL-cholesterol (mmol/L) | 2.25 (0.38) | 2.86 (0.68) | 2.86 (0.79) | 3.00 (0.90) | 2.93 (0.75) | 0.596 |
Triglyceride (mmol/L) | 0.84 (0.17) | 1.28 (0.72) | 1.15 (0.33) | 0.98 (0.20) | 0.93 (0.28) | 0.009 |
Control | M0 | M3 | M6 | M12 | p Value | p Value | p Value | p Value | p Value | p Value | p Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Co, M0 | Co, M3, | Co, M6 | Co, M12 | M0, M3 | M0, M6 | M0, M12 | |
All Bacteria | 15.55 (0.63) | 15.09 (0.97) | 14.51 (1.57) | 12.56 (2.54) | 10.05 (1.47) | 0.18 | 0.05 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 |
Bacteroids | 3.38 (3.73) | 0.34 (0.42) | 3.03 (7.19) | 8.85 (22.14) | 0.22 (0.11) | 0.00 * | 0.89 | 0.45 | 0.00 * | 0.09 | 0.09 | 0.23 |
Bifidobacterium | 1.77 (2.11) | 2.22 (3.30) | 4.94 (6.98) | 3.69 (9.57) | 0.60 (1.01) | 0.64 | 0.17 | 0.54 | 0.04 * | 0.12 | 0.51 | 0.01 * |
C. leptum | 2.11 (2.53) | 0.26 (0.19) | 2.24 (4.27) | 0.13 (0.11) | 0.10 (0.05) | 0.00 * | 0.93 | 0.00 * | 0.00 * | 0.04 * | 0.02 * | 0.00 * |
C. coccoides | 2.30 (3.18) | 0.30 (0.35) | 3.11 (8.88) | 0.62 (2.01) | 0.03 (0.02) | 0.01 * | 0.78 | 0.08 | 0.00 * | 0.16 | 0.50 | 0.00 * |
E. coli | 1.62 (1.74) | 15.56 (0.16) | 81.35 (113.05) | 381.58 (913.83) | 8.86 (12.38) | 0.05 * | 0.03 * | 0.20 | 0.08 | 0.01 * | 0.07 | 0.25 |
F. prausnitzii | 4.28 (9.44) | 0.05 (0.08) | 2.57 (5.70) | 0.15 (0.29) | 0.01 (0.01) | 0.00 * | 0.53 | 0.01 * | 0.04 * | 0.05 * | 0.17 | 0.03 * |
Lactobacillus | 1.88 (1.80) | 14.59 (20.84) | 8.81 (9.79) | 875.06 (1657.47) | 0.77 (1.13) | 0.07 | 0.04 * | 0.11 | 0.04 * | 0.28 | 0.02 * | 0.01 * |
Statistical Test | Microbiome Group | p |
---|---|---|
One-way repeated measures MANOVA | Whole microbiome | 0.005 |
One-way repeated measures ANOVA | Bacteroides/Prevotella | 0.094 |
Bifidobacterium | 0.002 | |
C. leptum | <0.001 | |
C. coccoides | 0.004 | |
E. coli | 0.034 | |
F. prausnitzii | 0.023 | |
Lactobacillus/Leuconostoc/Pediococcus | <0.001 |
Function | Eigenvalue | Canonical Correlation |
---|---|---|
1 | 0.293 | 0.476 |
2 | 0.163 | 0.375 |
3 | 0.070 | 0.256 |
4 | 0.004 | 0.060 |
Function | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
E. coli | 4.140 | −3.628 | 5.729 | 4.345 |
Bacteroides | −3.304 | 3.253 | −4.011 | −2.710 |
Lactobacillus | −1.978 | 1.590 | −2.222 | −1.659 |
C. coccoides | 1.256 | −0.781 | 1.254 | 1.047 |
C. leptum | 0.692 | 0.204 | −0.125 | 0.151 |
F. prausnitzii | 0.449 | 0.014 | −0.025 | 0.250 |
Bifidobacterium | 0.140 | 0.538 | 0.528 | −0.656 |
Model Significance | Goodness-of-Fit Pearson | Goodness-of-Fit Deviance | Nagelkerke Pseudo-R2 |
---|---|---|---|
p < 0.001 | 1.0 | 1.0 | 0.823 |
Variable | Chi-Square | df | p Value |
---|---|---|---|
Bacteroides | 5.642 | 4 | 0.228 |
Bifidobacterium | 3.159 | 4 | 0.532 |
C. leptum | 11.936 | 4 | 0.018 |
C. coccoides | 11.148 | 4 | 0.025 |
E. coli | 19.679 | 4 | <0.001 |
F. prausnitzii | 19.605 | 4 | <0.001 |
Lactobacillus | 10.426 | 4 | 0.034 |
Category | Variable | Coefficient | p Value | Odds Ratio | Lower Bound 95% CI | Upper Bound 95% CI |
---|---|---|---|---|---|---|
M0 | F. prausnitzii | −4.047 | 0.148 | 0.017 | 7.24 × 10−5 | 4.221 |
C. leptum | −1.35 | 0.202 | 0.259 | 0.033 | 2.062 | |
Bacteroides | −0.619 | 0.401 | 0.539 | 0.127 | 2.285 | |
C. coccoides | 0.582 | 0.462 | 1.79 | 0.38 | 8.436 | |
E. coli | 0.181 | 0.222 | 1.198 | 0.896 | 1.601 | |
Lactobacillus | 0.035 | 0.488 | 1.036 | 0.938 | 1.144 | |
Bifidobacterium | −0.012 | 0.931 | 0.988 | 0.748 | 1.304 | |
M3 | E. coli | 0.213 | 0.15 | 1.237 | 0.926 | 1.652 |
C. leptum | 0.15 | 0.368 | 1.162 | 0.838 | 1.611 | |
C. coccoides | 0.079 | 0.631 | 1.082 | 0.784 | 1.493 | |
Bacteroides | −0.07 | 0.738 | 0.932 | 0.619 | 1.404 | |
Bifidobacterium | 0.07 | 0.612 | 1.072 | 0.819 | 1.403 | |
Lactobacillus | 0.007 | 0.901 | 1.007 | 0.906 | 1.119 | |
F. prausnitzii | −0.005 | 0.56 | 0.995 | 0.98 | 1.011 | |
M6 | F. prausnitzii | −13.657 | 0.033 | 1.17 × 10−6 | 4.25 × 10−12 | 0.324 |
C. leptum | −7.181 | 0.031 | 0.001 | 1.13 × 10−6 | 0.514 | |
C. coccoides | 1.596 | 0.301 | 4.931 | 0.24 | 101.13 | |
Bacteroides | 0.847 | 0.365 | 2.333 | 0.372 | 14.615 | |
E. coli | 0.183 | 0.217 | 1.201 | 0.898 | 1.605 | |
Bifidobacterium | 0.101 | 0.479 | 1.106 | 0.837 | 1.462 | |
Lactobacillus | 0.034 | 0.507 | 1.034 | 0.936 | 1.143 | |
M12 | F. prausnitzii | −53.65 | 0.013 | 5.01 × 10−24 | 1.79 × 10−42 | 1.40 × 10−5 |
C. coccoides | −22.476 | 0.059 | 1.73 × 10−10 | 1.28 × 10−20 | 2.344 | |
C. leptum | −5.054 | 0.295 | 0.006 | 4.99 × 10−7 | 81.635 | |
Bacteroides | 1.847 | 0.335 | 6.343 | 0.148 | 271.813 | |
Lactobacillus | −0.25 | 0.382 | 0.779 | 0.445 | 1.364 | |
Bifidobacterium | −0.248 | 0.414 | 0.78 | 0.43 | 1.416 | |
E. coli | 0.205 | 0.177 | 1.227 | 0.912 | 1.651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, S.J.; Alfawaz, H.A.; Moubayed, N.M.S.; Hassan, W.M.; Almnaizel, A.T.; Alshiban, N.M.S.; Abuhaimed, J.M.; Alahmed, M.F.; AL-Dagal, M.M.; El-Ansary, A. Bariatric Surgery as Treatment Strategy of Obesity in Saudi People: Effects of Gut Microbiota. Nutrients 2023, 15, 361. https://doi.org/10.3390/nu15020361
Alqahtani SJ, Alfawaz HA, Moubayed NMS, Hassan WM, Almnaizel AT, Alshiban NMS, Abuhaimed JM, Alahmed MF, AL-Dagal MM, El-Ansary A. Bariatric Surgery as Treatment Strategy of Obesity in Saudi People: Effects of Gut Microbiota. Nutrients. 2023; 15(2):361. https://doi.org/10.3390/nu15020361
Chicago/Turabian StyleAlqahtani, Seham J., Hanan A. Alfawaz, Nadine M. S. Moubayed, Wail M. Hassan, Ahmad T. Almnaizel, Noura M. S. Alshiban, Jawahir M. Abuhaimed, Mohammed F. Alahmed, Mosffer M. AL-Dagal, and Afaf El-Ansary. 2023. "Bariatric Surgery as Treatment Strategy of Obesity in Saudi People: Effects of Gut Microbiota" Nutrients 15, no. 2: 361. https://doi.org/10.3390/nu15020361
APA StyleAlqahtani, S. J., Alfawaz, H. A., Moubayed, N. M. S., Hassan, W. M., Almnaizel, A. T., Alshiban, N. M. S., Abuhaimed, J. M., Alahmed, M. F., AL-Dagal, M. M., & El-Ansary, A. (2023). Bariatric Surgery as Treatment Strategy of Obesity in Saudi People: Effects of Gut Microbiota. Nutrients, 15(2), 361. https://doi.org/10.3390/nu15020361