Multi-Nutrient Analysis of Dietary Macronutrients with All-Cause, Cardiovascular, and Cancer Mortality: Data from NHANES 1999–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic and Lifestyle Covariates
2.3. Statistical Analyses
2.4. Subgroup and Sensitivity Analyses
3. Results
3.1. Participant Characteristics
3.2. Macronutrients and All-Cause Mortality
3.3. Macronutrients and Cardiovascular and Cancer Mortality
3.4. Other Sensitivity Analyses and Nutritional Correlates
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.; Malik, V.S.; Hu, F.B. Cardiovascular disease prevention by diet modification: JACC health promotion series. J. Am. Coll. Cardiol. 2018, 72, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Mayne, S.T.; Playdon, M.C.; Rock, C.L. Diet, nutrition, and cancer: Past, present and future. Nat. Rev. Clin. Oncol. 2016, 13, 504–515. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Anderson, R.N. The leading causes of death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. Toward a New Philosophy of Preventive Nutrition: From a Reductionist to a Holistic Paradigm to Improve Nutritional Recommendations. Adv. Nutr. 2014, 5, 430–446. [Google Scholar] [CrossRef] [Green Version]
- Raubenheimer, D.; Simpson, S.J. Nutritional Ecology and Human Health. Annu. Rev. Nutr. 2016, 36, 603–626. [Google Scholar] [CrossRef]
- Shan, Z.; Guo, Y.; Hu, F.B.; Liu, L.; Qi, Q. Association of Low-Carbohydrate and Low-Fat Diets With Mortality Among US Adults. JAMA Intern. Med. 2020, 180, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Ho, F.K.; Gray, S.R.; Welsh, P.; Petermann-Rocha, F.; Foster, H.; Waddell, H.; Anderson, J.; Lyall, D.; Sattar, N.; Gill, J.M.R.; et al. Associations of fat and carbohydrate intake with cardiovascular disease and mortality: Prospective cohort study of UK Biobank participants. BMJ 2020, 368, m688. [Google Scholar] [CrossRef] [Green Version]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Solon-Biet, S.M.; McMahon, A.C.; Ballard, J.W.O.; Ruohonen, K.; Wu, L.E.; Cogger, V.C.; Warren, A.; Huang, X.; Pichaud, N.; Melvin, R.G. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014, 19, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Paris, V.; Solon-Biet, S.M.; Senior, A.M.; Edwards, M.C.; Desai, R.; Tedla, N.; Cox, M.J.; Ledger, W.L.; Gilchrist, R.B.; Simpson, S.J.; et al. Defining the impact of dietary macronutrient balance on PCOS traits. Nat. Commun. 2020, 11, 5262. [Google Scholar] [CrossRef] [PubMed]
- Saner, C.; Tassoni, D.; Harcourt, B.E.; Kao, K.T.; Alexander, E.J.; McCallum, Z.; Olds, T.; Rowlands, A.V.; Burgner, D.P.; Simpson, S.J. Evidence for protein leverage in children and adolescents with obesity. Obesity 2020, 28, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Koemel, N.A.; Senior, A.M.; Dissanayake, H.U.; Ross, J.; McMullan, R.L.; Kong, Y.; Phang, M.; Hyett, J.; Raubenheimer, D.; Gordon, A.; et al. Maternal dietary fatty acid composition and newborn epigenetic aging—A geometric framework approach. Am. J. Clin. Nutr. 2022, 115, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Raubenheimer, D.; Senior, A.M.; Le Couteur, D.G.; Simpson, S.J. Cardio-metabolic consequences of dietary carbohydrates: Reconciling contradictions using nutritional geometry. Cardiovasc. Res. 2021, 117, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Senior, A.M.; Nakagawa, S.; Raubenheimer, D.; Simpson, S.J. Global associations between macronutrient supply and age-specific mortality. Proc. Natl. Acad. Sci. USA 2020, 117, 30824–30835. [Google Scholar] [CrossRef]
- Centers for Disease Control Prevention. National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Questionnaire (or Examination Protocol, or Laboratory Protocol). 2006. Available online: http://www.cdc.gov/nchs/nhanes.htm (accessed on 15 May 2021).
- Huang, K.; Yu, D.; Guo, Q.; Yang, Y.; Wei, X.; Zhao, L.; Fang, H. Validation of the MSM and NCI Method for Estimating the Usual Intake of Nutrients and Food According to Four Seasons of Seven Consecutive Daily 24 Hour Dietary Recalls in Chinese Adults. Nutrients 2022, 14, 445. [Google Scholar] [CrossRef]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H.; on behalf of the EFCOVAL Consortium. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65, S87–S91. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. The International Statistical Classification of Diseases and Health Related Problems ICD-10: Tenth Revision. Volume 1: Tabular List; World Health Organization: Geneva, Switzerland, 2004; Volume 1. [Google Scholar]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation; University of Bath: Bath, UK, 2012. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wickham, H. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics. WIREs Comp. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Raubenheimer, D. Toward a quantitative nutritional ecology: The right-angled mixture triangle. Ecol. Monogr. 2011, 81, 407–427. [Google Scholar] [CrossRef]
- Akaike, H.; Petrov, B.N.; Csaki, F. Second International Symposium on Information Theory; Akadémiai Kiadó: Budapest, Hungary, 1973. [Google Scholar]
- Wali, J.A.; Solon-Biet, S.M.; Freire, T.; Brandon, A.E. Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. Biology 2021, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y.; Giovannucci, E.L. Association between dietary fat intake and mortality from all-causes, cardiovascular disease, and cancer: A systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2021, 40, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Glisic, M.; Song, M.; Aliahmad, H.A.; Zhang, X.; Moumdjian, A.C.; Gonzalez-Jaramillo, V.; van der Schaft, N.; Bramer, W.M.; Ikram, M.A.; et al. Dietary protein intake and all-cause and cause-specific mortality: Results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2020, 35, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Low-carbohydrate diets and all-cause mortality: A systematic review and meta-analysis of observational studies. PLoS ONE 2013, 8, e55030. [Google Scholar] [CrossRef] [Green Version]
- De Souza, R.J.; Dehghan, M.; Anand, S.S. Low carb or high carb? Everything in moderation … until further notice. Eur. Heart J. 2019, 40, 2880–2882. [Google Scholar] [CrossRef]
- McKenzie, B.L.; Harris, K.; Peters, S.A.E.; Webster, J.; Woodward, M. The association of energy and macronutrient intake with all-cause mortality, cardiovascular disease and dementia: Findings from 120,963 women and men in the UK Biobank. Br. J. Nutr. 2021, 127, 1858–1867. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Dog, T.L.; Smith-Ryan, A.E.; Das, S.K.; Baker, F.C.; Madak-Erdogan, Z.; Hammond, B.R.; Sesso, H.D.; Eapen, A.; Mitmesser, S.H.; et al. Sex Differences Across the Life Course: A Focus On Unique Nutritional and Health Considerations among Women. J. Nutr. 2022, 152, 1597–1610. [Google Scholar] [CrossRef]
- US Department of Health Human Services. US Department of Agriculture (2020) Dietary Guidelines for Americans, 2020–2025; Series Dietary Guidelines for Americans 2020; USDA: Washington, DC, USA, 2020.
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Protein and Amino Acids (Macronutrients); National Academy Press: Washington, DC, USA, 2002. [Google Scholar]
- Panel on Dietary Reference Values. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom: Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy; HM Stationery Office: London, UK, 1991; Volume 41. [Google Scholar]
- National Health; Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific opinion on dietary reference values for protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar]
- European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- Martínez Steele, E.; Raubenheimer, D.; Simpson, S.J.; Baraldi, L.G.; Monteiro, C.A. Ultra-processed foods, protein leverage and energy intake in the USA. Public Health Nutr. 2018, 21, 114–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef]
- Fernandez-Lazaro, C.I.; Zazpe, I.; Santiago, S.; Toledo, E.; Barbería-Latasa, M.; Martínez-González, M.Á. Association of carbohydrate quality and all-cause mortality in the SUN Project: A prospective cohort study. Clin. Nutr. 2021, 40, 2364–2372. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Zähringer, J.; Beyerbach, J.; Werner, S.S.; Heseker, H.; Koletzko, B.; Meerpohl, J.J. Total Dietary Fat Intake, Fat Quality, and Health Outcomes: A Scoping Review of Systematic Reviews of Prospective Studies. Ann. Nutr. Metab. 2021, 77, 4–15. [Google Scholar] [CrossRef]
Participant Characteristic | Mean | SD |
---|---|---|
Age (years) | 49.7 | 18.4 |
Female Sex (%) | 52.5 | − |
BMI (kg/m2) | 28.8 | 6.5 |
Total Energy (kcal) | 1907 | 603 |
Healthy Eating Index Score | 52.7 | 12.8 |
Protein (kcal) | 290 | 106 |
Protein (TEI%) | 15.2 | 4.0 |
Carbohydrate (kcal) | 978 | 340 |
Carbohydrate (TEI%) | 51.4 | 7.3 |
Fat (kcal) | 639 | 246 |
Fat (TEI%) | 33.4 | 6.2 |
SFA (kcal) | 219 | 93 |
SFA (FEI%) | 36.0 | 5.2 |
PUFA (kcal) | 149 | 63 |
PUFA (FEI%) | 24.7 | 4.9 |
MUFA (kcal) | 241 | 101 |
MUFA (FEI%) | 39.3 | 3.3 |
Fiber (g) | 16 | 7 |
Sugar (g) | 78 | 8 |
Sodium (mg) | 1469 | 81 |
Race or Ethnicity | ||
Hispanic (%) | 25.7 | − |
Non-Hispanic White (%) | 46.2 | − |
Non-Hispanic Black (%) | 20.6 | − |
Other (%) | 7.5 | − |
Family Income-to-Poverty Ratio | 2.5 | 1.6 |
Education Level | ||
Less than High School (%) | 10.2 | − |
High School Graduate or GED (%) | 76.2 | − |
Some College or More (%) | 13.6 | − |
Non-drinker (%) | 26.5 | − |
Non-smoker (%) | 50.4 | − |
Physical Activity (METs) | 1657 | 2212 |
Outcome | Model 1 | Model 2 | Model 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inc. | n | Dev Exp | p | Inc. | n | Dev Exp | p | Inc. | n | Dev Exp | p | |
All-Cause Mortality | 4398 | 33,681 | 26.9% | <0.001 | 4398 | 33,681 | 27.1% | <0.001 | 4398 | 33,681 | 28.1% | <0.001 |
Males | 2412 | 15,993 | 25.3% | <0.001 | 2412 | 15,993 | 25.5% | <0.001 | 2412 | 15,993 | 26.4% | <0.001 |
Females | 1986 | 17,688 | 28.0% | <0.001 | 1986 | 17,688 | 28.1% | <0.001 | 1986 | 17,688 | 29.5% | <0.001 |
Pregnancy Sensitivity | 1961 | 16,680 | 27.2% | <0.001 | 1961 | 16,680 | 27.3% | <0.001 | 1961 | 16,680 | 28.8% | <0.001 |
Comorbid Sensitivity | 1455 | 21,378 | 26.3% | <0.001 | 1455 | 21,378 | 26.5% | <0.001 | 1455 | 21,378 | 27.1% | <0.001 |
Dietary Recall Sensitivity | 1789 | 20,339 | 23.4% | 0.04 | 1789 | 20,339 | 23.7% | 0.03 | 1789 | 20,339 | 25.1% | 0.03 |
Follow-up Sensitivity | 4090 | 33,358 | 27.2% | <0.001 | 4090 | 33,358 | 27.4% | <0.001 | 4090 | 33,358 | 28.2% | <0.001 |
Cardiovascular Mortality | 772 | 30,055 | 31.8% | 0.03 | 772 | 30,055 | 32.0% | 0.02 | 772 | 30,055 | 33.1% | 0.02 |
Males | 468 | 14,049 | 28.6% | 0.03 | 468 | 14,049 | 28.8% | 0.03 | 468 | 14,049 | 30.2% | 0.04 |
Females | 304 | 16,006 | 36.0% | 0.12 | 304 | 16,006 | 36.1% | 0.10 | 304 | 16,006 | 37.8% | 0.09 |
Pregnancy Sensitivity | 303 | 15,022 | 35.0% | 0.15 | 303 | 15,022 | 35.2% | 0.12 | 303 | 15,022 | 37.0% | 0.11 |
Comorbid Sensitivity | 207 | 20,130 | 34.7% | 0.14 | 207 | 20,130 | 34.7% | 0.12 | 207 | 20,130 | 36.1% | 0.05 |
Dietary Recall Sensitivity | 302 | 18,852 | 24.8% | 0.93 | 302 | 18,852 | 25.0% | 0.94 | 302 | 18,852 | 26.8% | 0.93 |
Follow-up Sensitivity | 699 | 29,967 | 32.1% | 0.06 | 699 | 29,967 | 32.3% | 0.04 | 699 | 29,967 | 33.3% | 0.05 |
Cancer Mortality | 952 | 30,235 | 21.0% | 0.04 | 952 | 30,235 | 21.3% | 0.03 | 952 | 30,235 | 22.3% | 0.05 |
Males | 557 | 14,138 | 25.2% | 0.39 | 557 | 14,138 | 23.8% | 0.29 | 557 | 14,138 | 24.5% | 0.31 |
Females | 395 | 16,097 | 16.7% | 0.08 | 395 | 16,097 | 16.8% | 0.07 | 395 | 16,097 | 17.5% | 0.11 |
Pregnancy Sensitivity | 388 | 15,107 | 15.9% | 0.09 | 388 | 15,107 | 16.0% | 0.08 | 388 | 15,107 | 16.7% | 0.12 |
Comorbid Sensitivity | 351 | 20,274 | 21.2% | 0.13 | 351 | 20,274 | 21.4% | 0.10 | 351 | 20,274 | 22.0% | 0.11 |
Dietary Recall Sensitivity | 391 | 18,941 | 16.4% | 0.27 | 391 | 18,941 | 16.7% | 0.24 | 391 | 18,941 | 17.8% | 0.24 |
Follow-up Sensitivity | 878 | 30,146 | 21.0% | 0.09 | 878 | 30,146 | 21.2% | 0.07 | 878 | 30,146 | 22.1% | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koemel, N.A.; Senior, A.M.; Celermajer, D.S.; Grech, A.; Gill, T.P.; Simpson, S.J.; Raubenheimer, D.; Skilton, M.R. Multi-Nutrient Analysis of Dietary Macronutrients with All-Cause, Cardiovascular, and Cancer Mortality: Data from NHANES 1999–2014. Nutrients 2023, 15, 345. https://doi.org/10.3390/nu15020345
Koemel NA, Senior AM, Celermajer DS, Grech A, Gill TP, Simpson SJ, Raubenheimer D, Skilton MR. Multi-Nutrient Analysis of Dietary Macronutrients with All-Cause, Cardiovascular, and Cancer Mortality: Data from NHANES 1999–2014. Nutrients. 2023; 15(2):345. https://doi.org/10.3390/nu15020345
Chicago/Turabian StyleKoemel, Nicholas A., Alistair M. Senior, David S. Celermajer, Amanda Grech, Tim P. Gill, Stephen J. Simpson, David Raubenheimer, and Michael R. Skilton. 2023. "Multi-Nutrient Analysis of Dietary Macronutrients with All-Cause, Cardiovascular, and Cancer Mortality: Data from NHANES 1999–2014" Nutrients 15, no. 2: 345. https://doi.org/10.3390/nu15020345
APA StyleKoemel, N. A., Senior, A. M., Celermajer, D. S., Grech, A., Gill, T. P., Simpson, S. J., Raubenheimer, D., & Skilton, M. R. (2023). Multi-Nutrient Analysis of Dietary Macronutrients with All-Cause, Cardiovascular, and Cancer Mortality: Data from NHANES 1999–2014. Nutrients, 15(2), 345. https://doi.org/10.3390/nu15020345