Efficacy of Time-Restricted Eating and Behavioral Economic Intervention in Reducing Fasting Plasma Glucose, HbA1c, and Cardiometabolic Risk Factors in Patients with Impaired Fasting Glucose: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization
2.4. Study Interventions
2.5. Outcomes
2.6. Study Procedure and Data Collection
2.7. Statistical Analysis
3. Results
3.1. FPG and HbA1c Levels
3.1.1. Intention-to-Treat Analysis
3.1.2. As-Treated Analysis
3.2. Body Weight, Nutrition Intake, Systolic and Diastolic Blood Pressure
3.2.1. Intention-to-Treat Analysis
3.2.2. As-Treated Analysis
3.3. Lipid Profiles
3.3.1. Intention-to-Treat Analysis
3.3.2. As-Treated Analysis
3.4. Fasting Insulin and HOMA-IR
3.4.1. Intention-to-Treat Analysis
3.4.2. As-Treated Analysis
3.5. Hs-CRP
3.5.1. Intention-to-Treat Analysis
3.5.2. As-Treated Analysis
3.6. Adverse Events
4. Discussion
4.1. Effect of TRE on Blood Sugar Level and Cardiometabolic Risk Factors
4.2. Effect of Behavioral Economic Interventions on Adherence to TRE Protocol
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aekplakorn, W.; Chariyalertsak, S.; Kessomboon, P.; Assanangkornchai, S.; Taneepanichskul, S.; Putwatana, P. Prevalence of Diabetes and Relationship with Socioeconomic Status in the Thai Population: National Health Examination Survey, 2004–2014. J. Diabetes Res. 2018, 2018, 1654530. [Google Scholar] [CrossRef]
- Porapakkham, Y.; Rao, C.; Pattaraarchachai, J.; Polprasert, W.; Vos, T.; Adair, T.; Lopez, A.D. Estimated causes of death in Thailand, 2005: Implications for health policy. Popul. Health Metr. 2010, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Yeboah, J.; Bertoni, A.G.; Herrington, D.M.; Post, W.S.; Burke, G.L. Impaired fasting glucose and the risk of incident diabetes mellitus and cardiovascular events in an adult population: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2011, 58, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Toi, P.L.; Anothaisintawee, T.; Chaikledkaew, U.; Briones, J.R.; Reutrakul, S.; Thakkinstian, A. Preventive Role of Diet Interventions and Dietary Factors in Type 2 Diabetes Mellitus: An Umbrella Review. Nutrients 2020, 12, 2722. [Google Scholar] [CrossRef]
- Das, S.K.; Gilhooly, C.H.; Golden, J.K.; Pittas, A.G.; Fuss, P.J.; Cheatham, R.A.; Tyler, S.; Tsay, M.; McCrory, M.A.; Lichtenstein, A.H.; et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: A 1-y randomized controlled trial. Am. J. Clin. Nutr. 2007, 85, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Varady, K.A. Intermittent versus daily calorie restriction: Which diet regimen is more effective for weight loss? Obes. Rev. 2011, 12, e593–e601. [Google Scholar] [CrossRef] [PubMed]
- Schuppelius, B.; Peters, B.; Ottawa, A.; Pivovarova-Ramich, O. Time Restricted Eating: A Dietary Strategy to Prevent and Treat Metabolic Disturbances. Front. Endocrinol. 2021, 12, 683140. [Google Scholar] [CrossRef]
- Manoogian, E.N.C.; Zadourian, A.; Lo, H.C.; Gutierrez, N.R.; Shoghi, A.; Rosander, A.; Pazargadi, A.; Wang, X.; Fleischer, J.G.; Golshan, S.; et al. Protocol for a randomised controlled trial on the feasibility and effects of 10-hour time-restricted eating on cardiometabolic disease risk among career firefighters doing 24-hour shift work: The Healthy Heroes Study. BMJ Open 2021, 11, e045537. [Google Scholar] [CrossRef]
- Belkacemi, L.; Selselet-Attou, G.; Hupkens, E.; Nguidjoe, E.; Louchami, K.; Sener, A.; Malaisse, W.J. Intermittent fasting modulation of the diabetic syndrome in streptozotocin-injected rats. Int. J. Endocrinol. 2012, 2012, 962012. [Google Scholar] [CrossRef]
- Chung, H.; Chou, W.; Sears, D.D.; Patterson, R.E.; Webster, N.J.; Ellies, L.G. Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. Metabolism 2016, 65, 1743–1754. [Google Scholar] [CrossRef]
- Duncan, M.J.; Smith, J.T.; Narbaiza, J.; Mueez, F.; Bustle, L.B.; Qureshi, S.; Fieseler, C.; Legan, S.J. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol. Behav. 2016, 167, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef] [PubMed]
- Kesztyüs, D.; Cermak, P.; Gulich, M.; Kesztyüs, T. Adherence to Time-Restricted Feeding and Impact on Abdominal Obesity in Primary Care Patients: Results of a Pilot Study in a Pre-Post Design. Nutrients 2019, 11, 2854. [Google Scholar] [CrossRef]
- Lee, S.A.; Sypniewski, C.; Bensadon, B.A.; McLaren, C.; Donahoo, W.T.; Sibille, K.T.; Anton, S. Determinants of Adherence in Time-Restricted Feeding in Older Adults: Lessons from a Pilot Study. Nutrients 2020, 12, 874. [Google Scholar] [CrossRef]
- Vlaev, I.; King, D.; Darzi, A.; Dolan, P. Changing health behaviors using financial incentives: A review from behavioral economics. BMC Public Health 2019, 19, 1059. [Google Scholar] [CrossRef]
- Boonmanunt, S.; Pattanaprateep, O.; Ongphiphadhanakul, B.; McKay, G.; Attia, J.; Vlaev, I.; Thakkinstian, A. Evaluation of the Effectiveness of Behavioral Economic Incentive Programs for Goal Achievement on Healthy Diet, Weight Control and Physical Activity: A Systematic Review and Network Meta-analysis. Ann. Behav. Med. 2022, 57, 277–287. [Google Scholar] [CrossRef]
- Bickel, W.K.; Moody, L.; Higgins, S.T. Some current dimensions of the behavioral economics of health-related behavior change. Prev. Med. 2016, 92, 16–23. [Google Scholar] [CrossRef]
- Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions about Health, Wealth, and Happiness; Yale University Press: New Haven, CT, USA, 2008. [Google Scholar]
- Camerer, C. Behavioral economics: Reunifying psychology and economics. Proc. Natl. Acad. Sci. USA 1999, 96, 10575. [Google Scholar] [CrossRef]
- Giles, E.L.; Robalino, S.; McColl, E.; Sniehotta, F.F.; Adams, J. The effectiveness of financial incentives for health behaviour change: Systematic review and meta-analysis. PLoS ONE 2014, 9, e90347. [Google Scholar] [CrossRef]
- Volpp, K.G.; John, L.K.; Troxel, A.B.; Norton, L.; Fassbender, J.; Loewenstein, G. Financial incentive-based approaches for weight loss: A randomized trial. JAMA 2008, 300, 2631–2637. [Google Scholar] [CrossRef]
- Foreman, K.F.; Stockl, K.M.; Le, L.B.; Fisk, E.; Shah, S.M.; Lew, H.C.; Solow, B.K.; Curtis, B.S. Impact of a text messaging pilot program on patient medication adherence. Clin. Ther. 2012, 34, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Suthutvoravut, U.; Anothaisintawee, T.; Boonmanunt, S.; Pramyothin, S.; Chaithanasarn, A.; Reutrakul, S.; Thakkinstian, A. Efficacy of time-restricted eating and behavioural economic interventions in reducing fasting plasma glucose, HbA1c and cardiometabolic risk factors compared with time-restricted eating alone or usual care in patients with impaired fasting glucose: Protocol for an open-label randomised controlled trial. BMJ Open 2022, 12, e058954. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Thamakaison, S.; Anothaisintawee, T.; Sukhato, K.; Unwanatham, N.; Rattanasiri, S.; Reutrakul, S.; Thakkinstian, A. Hemoglobin A1c in combination with fasting plasma glucose trumps fasting plasma glucose alone as predictive indicators for diabetes mellitus: An ambidirectional cohort study of Thai people with impaired fasting glucose. BMJ Open Diabetes Res. Care 2021, 9, e002427. [Google Scholar] [CrossRef]
- Chair, S.Y.; Cai, H.; Cao, X.; Qin, Y.; Cheng, H.Y.; Ng, M.T. Intermittent Fasting in Weight Loss and Cardiometabolic Risk Reduction: A Randomized Controlled Trial. J. Nurs. Res. 2022, 30, e185. [Google Scholar] [CrossRef]
- Jamshed, H.; Steger, F.L.; Bryan, D.R.; Richman, J.S.; Warriner, A.H.; Hanick, C.J.; Martin, C.K.; Salvy, S.J.; Peterson, C.M. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults with Obesity: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 953–962. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; Huang, C.; Yang, S.; Wei, X.; Zhang, P.; Guo, D.; Lin, J.; Xu, B.; Li, C.; et al. Calorie Restriction with or without Time-Restricted Eating in Weight Loss. N. Engl. J. Med. 2022, 386, 1495–1504. [Google Scholar] [CrossRef]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.; et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men with Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 1491–1499. [Google Scholar] [CrossRef]
- Cai, H.; Qin, Y.L.; Shi, Z.Y.; Chen, J.H.; Zeng, M.J.; Zhou, W.; Chen, R.Q.; Chen, Z.Y. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: A randomised controlled trial. BMC Gastroenterol. 2019, 19, 219. [Google Scholar] [CrossRef]
- Chow, L.S.; Manoogian, E.N.C.; Alvear, A.; Fleischer, J.G.; Thor, H.; Dietsche, K.; Wang, Q.; Hodges, J.S.; Esch, N.; Malaeb, S.; et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity 2020, 28, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Cienfuegos, S.; Gabel, K.; Kalam, F.; Ezpeleta, M.; Wiseman, E.; Pavlou, V.; Lin, S.; Oliveira, M.L.; Varady, K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020, 32, 366–378.e3. [Google Scholar] [CrossRef]
- Cienfuegos, S.; McStay, M.; Gabel, K.; Varady, K.A. Time restricted eating for the prevention of type 2 diabetes. J. Physiol. 2022, 600, 1253–1264. [Google Scholar] [CrossRef]
- Roekenes, J.; Martins, C. Ketogenic diets and appetite regulation. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; Panda, S.; Varady, K.A. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Healthy Aging 2018, 4, 345–353. [Google Scholar] [CrossRef]
- Parr, E.; Devlin, B.; Lim, K.; Moresi, L.; Geils, C.; Brennan, L.; Hawley, J. Time-restricted eating as a nutrition strategy for individuals with type 2 diabetes: A feasibility study. Nutrients 2020, 12, 3228. [Google Scholar] [CrossRef]
- Martens, C.R.; Rossman, M.J.; Mazzo, M.R.; Jankowski, L.R.; Nagy, E.E.; Denman, B.A.; Richey, J.J.; Johnson, S.A.; Ziemba, B.P.; Wang, Y.; et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. GeroScience 2020, 42, 667–686. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; He, Z.; Ye, Y.; Mao, Y. Effects of time-restricted feeding with different feeding windows on metabolic health: A systematic review of human studies. Nutrition 2022, 102, 111764. [Google Scholar] [CrossRef] [PubMed]
- Schroder, J.D.; Falqueto, H.; Mânica, A.; Zanini, D.; de Oliveira, T.; de Sá, C.A.; Cardoso, A.M.; Manfredi, L.H. Effects of time-restricted feeding in weight loss, metabolic syndrome and cardiovascular risk in obese women. J. Transl. Med. 2021, 19, 3. [Google Scholar] [CrossRef]
- Dolan, P.; Hallsworth, M.; Halpern, D.; King, D.; Metcalfe, R.; Vlaev, I. Influencing behaviour: The mindspace way. J. Econ. Psychol. 2012, 33, 264–277. [Google Scholar] [CrossRef]
- Fanaroff, A.C.; Coratti, S.; Halaby, R.; Sanghavi, M.; O'Quinn, R.P.; Krishnan, S.; Glassberg, H.; Bajaj, A.; Adusumalli, S.; Chokshi, N.; et al. Feasibility and outcomes from using a commitment device and text message reminders to increase adherence to time-restricted eating: A randomized trial. Am. Heart J. 2023, 258, 85–95. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (N = 72) | TRE Plus Behavioral Economics (N = 26) | TRE Alone (N = 24) | Usual Care (N = 22) | p-Value |
---|---|---|---|---|---|
Age at enrollment, year, mean (SD) | 54.6 (8.1) | 53.2 (9.2) | 55.5 (7.2) | 55.2 (7.9) | 0.558 |
Sex | |||||
| 50 (69.4) | 18 (69.2) | 16 (66.7) | 16 (72.7) | 0.905 |
| 22 (30.6) | 8 (30.8) | 8 (33.3) | 6 (27.3) | |
Educational level | |||||
| 14 (19.7) | 6 (24.0) | 4 (16.7) | 4 (18.2) | 0.932 |
| 19 (26.8) | 6 (24.0) | 6 (25.0) | 7 (31.8) | |
| 38 (53.5) | 13 (52.0) | 14 (58.3) | 11 (50.0) | |
Marital status | |||||
| 11 (15.3) | 6 (23.1) | 3 (12.5) | 2 (9.1) | 0.788 |
| 48 (66.7) | 15 (57.7) | 18 (75.0) | 15 (68.2) | |
| 10 (13.9) | 4 (15.4) | 2 (8.3) | 4 (18.2) | |
| 3 (4.2) | 1 (3.8) | 1 (4.2) | 1 (4.5) | |
Reimbursement | |||||
| 6 (8.3) | 4 (15.4) | 2 (8.3) | 0 (0.0) | 0.524 |
| 21 (29.2) | 7 (26.9) | 8 (33.3) | 6 (27.3) | |
| 29 (40.3) | 11 (42.3) | 9 (37.5) | 9 (40.9) | |
| 16 (22.2) | 4 (15.4) | 5 (20.8) | 7 (31.8) | |
Smoking status | |||||
| 1 (1.4) | 0 (0.0) | 0 (0.0) | 1 (4.5) | 0.580 |
| 9 (12.5) | 3 (11.5) | 4 (16.7) | 2 (9.1) | |
| 62 (86.1) | 23 (88.5) | 20 (83.3) | 19 (86.4) | |
Alcohol consumption | |||||
| 15 (20.8) | 6 (23.1) | 6 (25.0) | 3 (13.6) | 0.831 |
| 16 (22.2) | 6 (23.1) | 4 (16.7) | 6 (27.3) | |
| 41 (56.9) | 14 (53.8) | 14 (58.3) | 13 (59.1) | |
Family history of DM | |||||
| 38 (52.8) | 17 (65.4) | 12 (50.0) | 9 (40.9) | 0.226 |
| 34 (47.2) | 9 (34.6) | 12 (50.0) | 13 (59.1) | |
Underlying diseases | |||||
Hypertension | |||||
| 40 (55.6) | 12 (46.2) | 14 (58.3) | 14 (63.6) | 0.452 |
| 32 (44.4) | 14 (53.8) | 10 (41.7) | 8 (36.4) | |
Dyslipidemia | |||||
| 65 (90.3) | 23 (88.5) | 23 (95.8) | 19 (86.4) | 0.515 |
| 7 (9.7) | 3 (11.5) | 1 (4.2) | 3 (13.6) | |
Depression | |||||
| 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
| 72 (100.0) | 26 (100.0) | 24 (100.0) | 22 (100.0) | |
CKD | |||||
| 2 (2.8) | 1 (3.8) | 0 (0.0) | 1 (4.5) | 0.592 |
| 70 (97.2) | 25 (96.2) | 24 (100.0) | 21 (95.5) | |
CAD | |||||
| 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
| 72 (100.0) | 26 (100.0) | 24 (100.0) | 22 (100.0) | |
CVA | |||||
| 2 (2.8) | 0 (0.0) | 2 (8.3) | 0 (0.0) | 0.128 |
| 70 (97.2) | 26 (100.0) | 22 (91.7) | 22 (100.0) | |
NAFLD | |||||
| 8 (11.1) | 2 (7.7) | 2 (8.3) | 4 (18.2) | 0.447 |
| 64 (88.9) | 24 (92.3) | 22 (91.7) | 18 (81.8) | |
History of GDM | |||||
| 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
| 72 (100.0) | 26 (100.0) | 24 (100.0) | 22 (100.0) | |
Cancer | |||||
| 1 (1.4) | 1 (3.8) | 0 (0.0) | 0 (0.0) | 0.408 |
| 71 (98.6) | 25 (96.2) | 24 (100.0) | 22 (100.0) | |
Physical examination | |||||
| 76.6 (12.9) | 77.3 (15.8) | 75.4 (9.6) | 77.1 (12.7) | 0.856 |
| 29.9 (3.8) | 30.3 (4.9) | 29.2 (2.9) | 30.3 (3.2) | 0.536 |
| 135.1 (15.3) | 134.6 (14.4) | 134.0 (15.3) | 137.0 (16.9) | 0.789 |
| 79.9 (7.7) | 80.0 (7.4) | 79.2 (9.0) | 80.5 (6.9) | 0.835 |
| 95.7 (9.3) | 95.8 (10.4) | 94.8 (7.8) | 96.4 (9.7) | 0.837 |
| 104.4 (7.5) | 104.7 (8.6) | 103.8 (6.5) | 104.9 (7.4) | 0.864 |
| 37.0 (3.3) | 37.3 (3.4) | 37.5 (3.1) | 36.3 (3.3) | 0.427 |
Dietary intakes | |||||
| 1141.0 (522.1) | 1121.5 (547.9) | 1210.5 (614.1) | 1095.4 (382.5) | 0.746 |
| 154.5 (85.4) | 143.3 (58.0) | 179.3 (129.1) | 142.9 (47.1) | 0.259 |
| 47.4 (25.1) | 47.2 (30) | 46 (20.3) | 49.3 (23.8) | 0.911 |
| 32.9 (19.2–46.4) | 34.7 (18.3–55.1) | 28.0 (21.1–43.1) | 35.0 (19.0–50.0) | 0.744 |
| 205.1 (105.0–335.4) | 158.1 (73.2–406.7) | 205.1 (134.7–283.1) | 248.2 (182.1–340.8) | 0.607 |
| 31.9 (17.1–51.1) | 32.3 (18.5–48.0) | 35.0 (16.5–60.6) | 29.4 (17.3–44.5) | 0.338 |
| 6.7 (3.3–12.2) | 6.7 (3.0–14.5) | 7.0 (3.1–12.2) | 6.8 (3.7–11.8) | 0.419 |
Laboratory results | |||||
| 107.7 (6.0) | 107.2 (6.3) | 106.8 (5.6) | 109.2 (5.9) | 0.350 |
| 5.9 (0.4) | 5.8 (0.4) | 5.8 (0.3) | 5.9 (0.4) | 0.433 |
| 128.5 (50.0, 430.0) | 119.5 (88, 139) | 134.5 (50.0, 430.0) | 131.5 (66.0, 311.0) | 0.057 |
| 199.1 (41.6) | 189.3 (34.2) | 201.9 (48.2) | 207.0 (41.0) | 0.319 |
| 50.8 (10.0) | 51.9 (10.6) | 49.7 (9.0) | 50.6 (10.6) | 0.738 |
| 131.8 (40.8) | 126.7 (34.0) | 131.6 (54.1) | 138.2 (31.2) | 0.628 |
| 1.8 (0.1, 10.3) | 1.7 (0.96, 3.21) | 1.3 (0.1, 6.1) | 3.2 (0.8, 9.1) | 0.051 |
| 8.7 (3.1, 38.2) | 8.8 (3.1, 38.2) | 8.6 (4.0, 21.7) | 11.1 (3.4, 19.7) | 0.595 |
| 2.29 (1.85, 3.43) | 2.24 (1.83, 3.43) | 2.27 (1.50, 2.93) | 2.95 (1.96, 3.68) | 0.540 |
Outcomes. | Treatment Comparison | Mean Difference (95% CI) | p-Value |
---|---|---|---|
FPG, mg/dL | TRE vs. Usual care | −3.03 (−7.00, 0.93) | 0.134 |
TRE + BE vs. Usual care | −1.74 (−5.60, 2.12) | 0.376 | |
TRE + BE vs. TRE | 1.29 (−2.46, 5.04) | 0.500 | |
HbA1c, mg% | TRE vs. Usual care | −0.15 (−0.36, 0.07) | 0.177 |
TRE + BE vs. Usual care | −0.17 (−0.38, 0.04) | 0.113 | |
TRE + BE vs. TRE | −0.02 (−0.21, 0.17) | 0.821 | |
DBP, mmHg | TRE vs. Usual care | 0.37 (−4.04, 4.78) | 0.871 |
TRE + BE vs. Usual care | −3.42 (−7.70, 0.87) | 0.118 | |
TRE + BE vs. TRE | −3.78 (−8.03, 0.47) | 0.081 | |
SBP, mmHg | TRE vs. Usual care | 0.69 (−7.26, 8.63) | 0.865 |
TRE + BE vs. Usual care | −9.67 (−17.40, −1.95) | 0.014 | |
TRE + BE vs. TRE | −10.36 (−17.96, −2.76) | 0.008 | |
Body weight, kg | TRE vs. Usual care | −2.67 (−8.65, 3.30) | 0.381 |
TRE + BE vs. Usual care | 0.13 (−5.80, 6.07) | 0.965 | |
TRE + BE vs. TRE | 2.81 (−0.23, 5.85) | 0.070 | |
hs-CRP, mg/dL | TRE vs. Usual care | −1.68 (−3.20, −0.14) | 0.032 |
TRE + BE vs. Usual care | −0.43 (−1.91, 1.05) | 0.569 | |
TRE + BE vs. TRE | 1.25 (−0.25, 2.74) | 0.103 | |
Fasting insulin, mIU/L | TRE vs. Usual care | −1.57 (−3.37, 0.23) | 0.087 |
TRE + BE vs. Usual care | −1.59 (−3.34, 0.16) | 0.076 | |
TRE + BE vs. TRE | −0.02 (−1.74, 1.70) | 0.985 | |
HOMA-IR | TRE vs. Usual care | −0.47 (−1.00, 0.05) | 0.079 |
TRE + BE vs. Usual care | −0.40 (−0.91, 0.11) | 0.127 | |
TRE + BE vs. TRE | 0.07 (−0.43, 0.58) | 0.773 | |
TG, mg/dL | TRE vs. Usual care | −6.32 (−25.57, 12.93) | 0.520 |
TRE + BE vs. Usual care | −9.35 (−28.03, 9.34) | 0.327 | |
TRE + BE vs. TRE | −3.03 (−21.71, 15.66) | 0.751 | |
Chol, mg/dL | TRE vs. Usual care | −17.10 (−35.97, 1.78) | 0.076 |
TRE + BE vs. Usual care | −7.70 (−26.08, 10.69) | 0.412 | |
TRE + BE vs. TRE | 9.40 (−8.23, 27.02) | 0.296 | |
LDL-C, mg/dL | TRE vs. Usual care | −12.58 (−29.87, 4.70) | 0.154 |
TRE + BE vs. Usual care | −3.68 (−20.53, 13.17) | 0.668 | |
TRE + BE vs. TRE | 8.90 (−7.00, 24.79) | 0.272 | |
HDL-C, mg/dL | TRE vs. Usual care | −1.55 (−7.01, 3.91) | 0.578 |
TRE + BE vs. Usual care | −3.82 (−9.16, 1.52) | 0.161 | |
TRE + BE vs. TRE | −2.27 (−7.00, 2.45) | 0.347 | |
Total energy intake, kcal/day | TRE vs. Usual care | −72.53 (−241.50, 96.44) | 0.400 |
TRE + BE vs. Usual care | −75.47 (−239.0, 88.05) | 0.366 | |
TRE + BE vs. TRE | −2.94 (−166.41, 160.53) | 0.972 | |
Carbohydrate, g/day | TRE vs. Usual care | −8.36 (−33.45, 16.73) | 0.514 |
TRE + BE vs. Usual care | −9.09 (−33.36, 15.18) | 0.463 | |
TRE + BE vs. TRE | −0.73 (−25.03, 23.57) | 0.953 | |
Protein, g/day | TRE vs. Usual care | −1.74 (−10.51, 7.02) | 0.696 |
TRE + BE vs. Usual care | −0.67 (−9.15, 7.81) | 0.877 | |
TRE + BE vs. TRE | 1.07 (−7.41, 9.55) | 0.804 | |
Total fat, g/day | TRE vs. Usual care | −3.51 (−11.77, 4.74) | 0.404 |
TRE + BE vs. Usual care | −4.09 (−12.08, 3.90) | 0.316 | |
TRE + BE vs. TRE | −0.58 (−8.56, 7.41) | 0.888 | |
Cholesterol, mg/day | TRE vs. Usual care | −34.26 (−95.79, 27.26) | 0.275 |
TRE + BE vs. Usual care | −12.73 (−72.27, 46.80) | 0.675 | |
TRE + BE vs. TRE | 21.53 (−38.01, 81.08) | 0.478 | |
Saturated fat, g/day | TRE vs. Usual care | −2.19 (−5.00, 0.62) | 0.126 |
TRE + BE vs. Usual care | −2.80 (−5.51, −0.09) | 0.043 | |
TRE + BE vs. TRE | −0.61 (−3.33, 2.12) | 0.663 | |
Simple sugar, g/day | TRE vs. Usual care | 2.24 (−11.43, 15.90) | 0.748 |
TRE + BE vs. Usual care | −4.23 (−17.45, 8.98) | 0.530 | |
TRE + BE vs. TRE | −6.47 (−19.72, 6.78) | 0.339 |
Outcomes | Mean Difference (95% CI) | p-Value |
---|---|---|
FPG, mg/dL | −4.74 (−8.58, −0.90) | 0.015 |
HbA1C, mg% | −0.24 (−0.457, −0.03) | 0.026 |
Body weight, kg | −1.01 (−7.61, 5.59) | 0.765 |
SBP, mmHg | −7.21 (−15.25, 0.83) | 0.079 |
DBP, mmHg | −5.28 (−9.57, −0.99) | 0.016 |
Triglyceride, mg/dL | −18.54 (−37.03, −0.05) | 0.049 |
Total cholesterol, mg/dL | 6.30 (−13.01, 25.61) | 0.523 |
LDL-C, mg/dL | 7.77 (−9.87, 25.41) | 0.388 |
HDL-C, mg/dL | 0.16 (−5.40, 5.72) | 0.954 |
Fasting insulin, mIU/L | −1.94 (−3.71, −0.18) | 0.031 |
HOMA-IR | −0.61 (−1.12, −0.10) | 0.020 |
hs-CRP | −0.92 (−2.45, 0.60) | 0.236 |
Total energy intake, kcal/day | −182.19 (−341.46, −22.92) | 0.025 |
Carbohydrate, g/day | −19.86 (−43.81, 4.09) | 0.104 |
Protein, g/day | −6.81 (−15.16, 1.53) | 0.110 |
Total fat, g/day | −8.38 (−16.22, -0.55) | 0.036 |
Cholesterol, mg/day | −38.44 (−98.05, 21.17) | 0.206 |
Saturated fat, g/day | −3.66 (−6.31, −1.00) | 0.007 |
Simple sugar, g/day | −15.01 (−27.88, −2.13) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suthutvoravut, U.; Anothaisintawee, T.; Boonmanunt, S.; Pramyothin, S.; Siriyothin, S.; Attia, J.; McKay, G.J.; Reutrakul, S.; Thakkinstian, A. Efficacy of Time-Restricted Eating and Behavioral Economic Intervention in Reducing Fasting Plasma Glucose, HbA1c, and Cardiometabolic Risk Factors in Patients with Impaired Fasting Glucose: A Randomized Controlled Trial. Nutrients 2023, 15, 4233. https://doi.org/10.3390/nu15194233
Suthutvoravut U, Anothaisintawee T, Boonmanunt S, Pramyothin S, Siriyothin S, Attia J, McKay GJ, Reutrakul S, Thakkinstian A. Efficacy of Time-Restricted Eating and Behavioral Economic Intervention in Reducing Fasting Plasma Glucose, HbA1c, and Cardiometabolic Risk Factors in Patients with Impaired Fasting Glucose: A Randomized Controlled Trial. Nutrients. 2023; 15(19):4233. https://doi.org/10.3390/nu15194233
Chicago/Turabian StyleSuthutvoravut, Unyaporn, Thunyarat Anothaisintawee, Suparee Boonmanunt, Sarunporn Pramyothin, Sukanya Siriyothin, John Attia, Gareth J. McKay, Sirimon Reutrakul, and Ammarin Thakkinstian. 2023. "Efficacy of Time-Restricted Eating and Behavioral Economic Intervention in Reducing Fasting Plasma Glucose, HbA1c, and Cardiometabolic Risk Factors in Patients with Impaired Fasting Glucose: A Randomized Controlled Trial" Nutrients 15, no. 19: 4233. https://doi.org/10.3390/nu15194233
APA StyleSuthutvoravut, U., Anothaisintawee, T., Boonmanunt, S., Pramyothin, S., Siriyothin, S., Attia, J., McKay, G. J., Reutrakul, S., & Thakkinstian, A. (2023). Efficacy of Time-Restricted Eating and Behavioral Economic Intervention in Reducing Fasting Plasma Glucose, HbA1c, and Cardiometabolic Risk Factors in Patients with Impaired Fasting Glucose: A Randomized Controlled Trial. Nutrients, 15(19), 4233. https://doi.org/10.3390/nu15194233