Discounting of Hyper-Palatable Food and Money: Associations with Food Addiction Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Procedure
2.2. Participant Recruitment
2.3. Measures
2.3.1. Delay Discounting Task
2.3.2. Yale Food Addiction Scale 2.0 (YFAS)
2.3.3. Hunger
2.4. Data Analysis Plan
2.4.1. Calculation of Delay Discounting Parameter
2.4.2. Statistical Analyses
2.4.3. Data Quality Criteria and Missing Data
3. Results
3.1. Participants
3.2. DD Values and Magnitude Effect
3.3. Zero-Inflated Negative Binomial Analyses
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bickel, W.K.; Marsch, L.A. Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction 2001, 96, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Bickel, W.K.; Jarmolowicz, D.P.; Mueller, E.T.; Gatchalian, K.M. The behavioral economics and neuroeconomics of reinforcer pathologies: Implications for etiology and treatment of addiction. Curr. Psychiatry Rep. 2011, 13, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Amlung, M.; Vedelago, L.; Acker, J.; Balodis, I.; MacKillop, J. Steep delay discounting and addictive behavior: A meta-analysis of continuous associations. Addiction 2017, 112, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Odum, A.L.; Becker, R.J.; Haynes, J.M.; Galizio, A.; Frye, C.C.; Downey, H.; Friedel, J.E.; Perez, D.M. Delay discounting of different outcomes: Review and theory. J. Exp. Anal. Behav. 2020, 113, 657–679. [Google Scholar] [CrossRef]
- Moody, L.N.; Tegge, A.N.; Bickel, W.K. Cross-commodity delay discounting of alcohol and money in alcohol users. Psychol. Rec. 2017, 67, 285–292. [Google Scholar] [CrossRef]
- Naudé, G.P.; Reed, D.D.; Jarmolowicz, D.P.; Martin, L.E.; Fox, A.T.; Strickland, J.C.; Johnson, M.W. Single- and cross-commodity discounting among adults who use alcohol and cannabis: Associations with tobacco use and clinical indicators. Drug Alcohol Depend. 2021, 229, 109082. [Google Scholar] [CrossRef]
- Burrows, T.; Kay-Lambkin, F.; Pursey, K.; Skinner, J.; Dayas, C. Food addiction and associations with mental health symptoms: A systematic review with meta-analysis. J. Hum. Nutr. Diet. 2018, 31, 544–572. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Davis, C.; Kuschner, R.; D Brownell, K. The addiction potential of hyperpalatable foods. Curr. Drug Abus. Rev. 2011, 4, 140–145. [Google Scholar] [CrossRef]
- Maxwell, A.L.; Gardiner, E.; Loxton, N.J. Investigating the relationship between reward sensitivity, impulsivity, and food addiction: A systematic review. Eur. Eat. Disord. Rev. 2020, 28, 368–384. [Google Scholar] [CrossRef]
- VanderBroek-Stice, L.; Stojek, M.K.; Beach, S.R.; MacKillop, J. Multidimensional assessment of impulsivity in relation to obesity and food addiction. Appetite 2017, 112, 59–68. [Google Scholar] [CrossRef]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-processed foods and health outcomes: A narrative review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Carter, J.C.; Van Wijk, M.; Rowsell, M. Symptoms of ‘food addiction’ in binge eating disorder using the yale food addiction scale version 2.0. Appetite 2019, 133, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Pivarunas, B.; Conner, B.T. Impulsivity and emotion dysregulation as predictors of food addiction. Eat. Behav. 2015, 19, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Minhas, M.; Murphy, C.M.; Balodis, I.M.; Acuff, S.F.; Buscemi, J.; Murphy, J.G.; MacKillop, J. Multidimensional elements of impulsivity as shared and unique risk factors for food addiction and alcohol misuse. Appetite 2021, 159, 105052. [Google Scholar] [CrossRef]
- Pritschmann, R.K.; Yurasek, A.M.; Yi, R. A review of cross-commodity delay discounting research with relevance to addiction. Behav. Process. 2021, 186, 104339. [Google Scholar] [CrossRef]
- Peer, E.; Vosgerau, J.; Acquisti, A. Reputation as a sufficient condition for data quality on amazon mechanical turk. Behav. Res. Methods 2013, 46, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Fazzino, T.L.; Rohde, K.; Sullivan, D.K. Hyper-palatable foods: Development of a quantitative definition and application to the us food system database. Obesity 2019, 27, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Fazzino, T.L.; Bjorlie, K.; Rohde, K.; Smith, A.; Yi, R. Choices between money and hyper-palatable food: Choice impulsivity and eating behavior. Health Psychol. 2022, 41, 538–548. [Google Scholar] [CrossRef]
- Frye, C.C.; Galizio, A.; Friedel, J.E.; DeHart, W.B.; Odum, A.L. Measuring delay discounting in humans using an adjusting amount task. JoVE J. Vis. Exp. 2016, 107, e53584. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Development of the yale food addiction scale version 2.0. Psychol. Addict. Behav. 2016, 30, 113–121. [Google Scholar] [CrossRef]
- Horsager, C.; Færk, E.; Lauritsen, M.B.; Østergaard, S.D. Validation of the yale food addiction scale 2.0 and estimation of the population prevalence of food addiction. Clin. Nutr. 2020, 39, 2917–2928. [Google Scholar] [CrossRef] [PubMed]
- Granero, R.; Jiménez-Murcia, S.; Gearhardt, A.N.; Agüera, Z.; Aymamí, N.; Gómez-Peña, M.; Lozano-Madrid, M.; Mallorquí-Bagué, N.; Mestre-Bach, G.; Neto-Antao, M.I.; et al. Validation of the spanish version of the yale food addiction scale 2.0 (yfas 2.0) and clinical correlates in a sample of eating disorder, gambling disorder, and healthy control participants. Front. Psychiatry 2018, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Meule, A.; Gearhardt, A.N. Ten years of the yale food addiction scale: A review of version 2.0. Curr. Addict. Rep. 2019, 6, 218–228. [Google Scholar] [CrossRef]
- Hendrickson, K.L.; Rasmussen, E.B. Effects of mindful eating training on delay and probability discounting for food and money in obese and healthy-weight individuals. Behav. Res. Ther. 2013, 51, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.H.; Rasmussen, E.B. Comparison of potentially real versus hypothetical food outcomes in delay and probability discounting tasks. Behav. Process. 2018, 149, 8–15. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2012. [Google Scholar]
- Mazur, J.E. An adjusting procedure for studying delayed reinforcement. Quant. Anal. Behav. 1987, 5, 55–73. [Google Scholar]
- Young, M.E. Discounting: A practical guide to multilevel analysis of choice data. J. Exp. Anal. Behav. 2018, 109, 293–312. [Google Scholar] [CrossRef]
- Chapman, G.B.; Winquist, J.R. The magnitude effect: Temporal discount rates and restaurant tips. Psychon. Bull. Rev. 1998, 5, 119–123. [Google Scholar] [CrossRef]
- Green, L.; Myerson, J.; McFadden, E. Rate of temporal discounting decreases with amount of reward. Mem. Cogn. 1997, 25, 715–723. [Google Scholar] [CrossRef]
- Kirby, K.N. Bidding on the future: Evidence against normative discounting of delayed rewards. J. Exp. Psychol. Gen. 1997, 126, 54–70. [Google Scholar] [CrossRef]
- Baker, F.; Johnson, M.W.; Bickel, W.K. Delay discounting in current and never-before cigarette smokers: Similarities and differences across commodity, sign, and magnitude. J. Abnorm. Psychol. 2003, 112, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D. Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 1992, 34, 1–14. [Google Scholar] [CrossRef]
- Dean, C.B.; Lundy, E.R. Overdispersion; Wiley: Hoboken, NJ, USA, 2016; pp. 1–9. [Google Scholar]
- Payne, E.H.; Hardin, J.W.; Egede, L.E.; Ramakrishnan, V.; Selassie, A.; Gebregziabher, M. Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling. Stat. Methods Med. Res. 2015, 26, 1802–1823. [Google Scholar] [CrossRef] [PubMed]
- Rose, C.E.; Martin, S.W.; Wannemuehler, K.A.; Plikaytis, B.D. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data. J. Biopharm. Stat. 2006, 16, 463–481. [Google Scholar] [CrossRef] [PubMed]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Zero-Truncated and Zero-Inflated Models for Count Data; Springer: New York, NY, USA, 2009; pp. 261–293. [Google Scholar]
- Paneru, K.; Padgett, R.N.; Chen, H. Estimation of zero-inflated population mean: A bootstrapping approach. J. Mod. Appl. Stat. Methods 2018, 17, 9. [Google Scholar] [CrossRef]
- Garay, A.M.; Hashimoto, E.M.; Ortega, E.M.M.; Lachos, V.H. On estimation and influence diagnostics for zero-inflated negative binomial regression models. Comput. Stat. Data Anal. 2011, 55, 1304–1318. [Google Scholar] [CrossRef]
- Johnson, M.W.; Bickel, W.K. An algorithm for identifying nonsystematic delay-discounting data. Exp. Clin. Psychopharmacol. 2008, 16, 264–274. [Google Scholar] [CrossRef]
- Bickel, W.K.; Johnson, M.W.; Koffarnus, M.N.; MacKillop, J.; Murphy, J.G. The behavioral economics of substance use disorders: Reinforcement pathologies and their repair. Annu. Rev. Clin. Psychol. 2014, 10, 641–677. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Lagorio, C.H.; Madden, G.J. Delay discounting of real and hypothetical rewards III: Steady-state assessments, forced-choice trials, and all real rewards. Behav. Process. 2005, 69, 173–187. [Google Scholar] [CrossRef]
- Madden, G.J.; Begotka, A.M.; Raiff, B.R.; Kastern, L.L. Delay discounting of real and hypothetical rewards. Exp. Clin. Psychopharmacol. 2003, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Matusiewicz, A.K.; Carter, A.E.; Landes, R.D.; Yi, R. Statistical equivalence and test-retest reliability of delay and probability discounting using real and hypothetical rewards. Behav. Process. 2013, 100, 116–122. [Google Scholar] [CrossRef] [PubMed]
Condition Type | Condition | Magnitude of Delayed Commodity |
---|---|---|
Single-commodity | Money vs. Money | USD 10 |
Money vs. Money | USD 100 | |
HPF vs. HPF | 4 servings | |
HPF vs. HPF | 40 servings | |
Cross-commodity | Money vs. HPF | 4 servings |
Money vs. HPF | 40 servings | |
HPF vs. Money | USD 10 | |
HPF vs. Money | USD 100 |
Variable | Mean (SD) or N (%) (N = 296) |
---|---|
Gender | |
Man | 170 (57.4) |
Woman | 125 (42.2) |
Transgender | 1 (<1) |
Race/Ethnicity | |
White/Non-Hispanic | 215 (72.6) |
White/Hispanic | 14 (4.7) |
Black/Non-Hispanic | 23 (7.8) |
Asian/Non-Hispanic | 28 (9.5) |
Native American | 3 (1.0) |
Multiracial/Ethnicity | 13 (4.4) |
Age | 38.27 (11.01) |
Education | |
<High-School GED | 1 (<1) |
High School GED or Equivalent | 31 (10.5) |
Some college, no degree | 58 (19.6) |
Post-secondary degree | 131 (44.3) |
Graduate/Professional degree | 47 (15.9) |
Not Reported | 28 (9.5) |
Income | |
<20 k | 29 (9.8) |
20 k–49,999 | 81 (27.4) |
50 k–99,999 | 112 (37.8) |
100 k+ | 46 (15.5) |
Not Reported | 28 (9.5) |
Employment | |
Full/Part-time | 216 (72.9) |
Unemployed/Disabled | 49 (16.6) |
Not Reported | 31 (10.5) |
Condition | Model (Count/Logit) | IRR/OR (95% CI) | SE | p-Value |
---|---|---|---|---|
HPF vs. HPF | Count | 1.02 (0.91–1.14) | 0.05 | 0.650 |
Logit | 1.04 (0.73–2.99) | 0.06 | 0.515 | |
Money vs. HPF | Count | 0.96 (0.89–1.06) | 0.04 | 0.330 |
Logit | 1.02 (0.72–1.32) | 0.05 | 0.729 | |
HPF vs. Money | Count | 1.02 (0.92–1.11) | 0.05 | 0.682 |
Logit | 0.92 (0.44–1.04) | 0.05 | 0.128 | |
Money vs. Money | Count | 1.06 (0.97–1.18) | 0.05 | 0.232 |
Logit | 0.89 (0.20–1.10) | 0.06 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellitti, J.S.; Fazzino, T.L. Discounting of Hyper-Palatable Food and Money: Associations with Food Addiction Symptoms. Nutrients 2023, 15, 4008. https://doi.org/10.3390/nu15184008
Bellitti JS, Fazzino TL. Discounting of Hyper-Palatable Food and Money: Associations with Food Addiction Symptoms. Nutrients. 2023; 15(18):4008. https://doi.org/10.3390/nu15184008
Chicago/Turabian StyleBellitti, Joseph S., and Tera L. Fazzino. 2023. "Discounting of Hyper-Palatable Food and Money: Associations with Food Addiction Symptoms" Nutrients 15, no. 18: 4008. https://doi.org/10.3390/nu15184008
APA StyleBellitti, J. S., & Fazzino, T. L. (2023). Discounting of Hyper-Palatable Food and Money: Associations with Food Addiction Symptoms. Nutrients, 15(18), 4008. https://doi.org/10.3390/nu15184008